JP3477364B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP3477364B2
JP3477364B2 JP08898898A JP8898898A JP3477364B2 JP 3477364 B2 JP3477364 B2 JP 3477364B2 JP 08898898 A JP08898898 A JP 08898898A JP 8898898 A JP8898898 A JP 8898898A JP 3477364 B2 JP3477364 B2 JP 3477364B2
Authority
JP
Japan
Prior art keywords
positive electrode
sulfur
sodium
active material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08898898A
Other languages
Japanese (ja)
Other versions
JPH11288736A (en
Inventor
吉見 八島
明宏 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08898898A priority Critical patent/JP3477364B2/en
Publication of JPH11288736A publication Critical patent/JPH11288736A/en
Application granted granted Critical
Publication of JP3477364B2 publication Critical patent/JP3477364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池の正極に関するものである。
TECHNICAL FIELD The present invention relates to a positive electrode for a sodium-sulfur battery.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、硫黄を含む正
極活物質と、正極活物質の電子伝導を補助する導電助材
と、ナトリウムを含む負極活物質と、ナトリウムイオン
に対して伝導性を有する固体電解質と、正極端子である
正極外装缶と、負極端子である封口蓋とから構成されて
いる。
2. Description of the Related Art A sodium-sulfur battery has conductivity with respect to a positive electrode active material containing sulfur, a conductive auxiliary material for assisting electron conduction of the positive electrode active material, a negative electrode active material containing sodium, and sodium ions. It is composed of a solid electrolyte, a positive electrode outer can which is a positive electrode terminal, and a sealing lid which is a negative electrode terminal.

【0003】ナトリウム−硫黄電池の負極における充放
電反応は式(1)に示す通りであり、放電時には、負極
活物質であるナトリウムがナトリウムイオンと電子とに
分かれ、ナトリウムイオンは固体電解質を透過して正極
側に侵入し、電子は負極端子を介して外部回路に流れ
る。一方、正極における充放電反応は式(2)に示す通
りであり、放電時には正極側に侵入したナトリウムイオ
ンが硫黄と反応して、多硫化ナトリウム(Na2x)を
生成する。ナトリウム−硫黄電池の充電時には、ナトリ
ウムおよび硫黄が生成する。
The charging / discharging reaction in the negative electrode of the sodium-sulfur battery is as shown in the formula (1). During discharging, sodium, which is the negative electrode active material, is separated into sodium ions and electrons, and the sodium ions pass through the solid electrolyte. And enters the positive electrode side, and the electrons flow to the external circuit via the negative electrode terminal. On the other hand, the charging / discharging reaction in the positive electrode is as shown in the formula (2), and at the time of discharging, sodium ions penetrating into the positive electrode side react with sulfur to generate sodium polysulfide (Na 2 S x ). When a sodium-sulfur battery is charged, sodium and sulfur are produced.

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【数2】 [Equation 2]

【0006】図2には、ナトリウムと硫黄の相図を示
す。図の横軸には硫黄のモル組成率を示している。電池
を充電すると正極中のナトリウムの量が少なくなって硫
黄のモル組成率が高くなり、電池を放電すると硫黄のモ
ル組成率が低くなる。電池を350℃に保ちつつ放電を
開始すると、正極中での硫黄のモル組成率が低下して、
73%までは硫黄単体(S、液相)と放電生成物である
Na25.2(液相)との2相が存在する状態となる。N
25.2は電子伝導性を示し、正極の内部抵抗を小さく
する作用がある。
FIG. 2 shows a phase diagram of sodium and sulfur. The horizontal axis of the figure shows the molar composition ratio of sulfur. When the battery is charged, the amount of sodium in the positive electrode decreases and the sulfur molar composition ratio increases, and when the battery is discharged, the sulfur molar composition ratio decreases. When discharging is started while maintaining the battery at 350 ° C., the molar composition ratio of sulfur in the positive electrode decreases,
Up to 73%, there are two phases, that is, simple substance of sulfur (S, liquid phase) and discharge product Na 2 S 5.2 (liquid phase). N
a 2 S 5.2 exhibits electronic conductivity and has an effect of reducing the internal resistance of the positive electrode.

【0007】更に放電を続けると、正極では単体の硫黄
(S、液相)がナトリウムと完全に反応してNa2
X(液相)の単相が生成する。放電の進行と共にX値が
5.2から3まで変化する。Na23が生成した時点で
の正極中での硫黄のモル組成率は60%である。更に放
電を続けるとNa22(固相)が析出する。
When the discharge is further continued, elemental sulfur (S, liquid phase) completely reacts with sodium in the positive electrode to form Na 2 S.
A single phase of X (liquid phase) is generated. The X value changes from 5.2 to 3 as the discharge progresses. The molar composition ratio of sulfur in the positive electrode at the time when Na 2 S 3 was produced was 60%. When the discharge is further continued, Na 2 S 2 (solid phase) is deposited.

【0008】ナトリウム−硫黄電池を充電すると正極で
の硫黄のモル組成率が高くなり、特に硫黄が88.2%
以上になると、電子伝導性を示すNa25.2の量が少な
くなって正極の内部抵抗が高くなるので充電不能とな
る。更に充電を続けるためには高い充電電圧が必要にな
るが、充電電圧を上げると固体電解質が破損してしま
う。
[0008] When a sodium-sulfur battery is charged, the molar composition ratio of sulfur in the positive electrode becomes high, and especially, the sulfur content is 88.2%.
In the above case, the amount of Na 2 S 5.2 exhibiting electron conductivity is reduced and the internal resistance of the positive electrode is increased, so charging becomes impossible. A higher charging voltage is required to continue charging, but increasing the charging voltage will damage the solid electrolyte.

【0009】また、ナトリウム−硫黄電池を放電すると
正極での硫黄のモル組成率が低くなり、特に硫黄が6
3.8%以下になると、Na22(固相)が析出する。
Na22は電池の作動温度下(300〜350℃)にお
いても固相であるので、もはや電池の活物質としては作
用しなくなる。
Further, when the sodium-sulfur battery is discharged, the molar composition ratio of sulfur in the positive electrode becomes low, and particularly, the sulfur content is 6%.
When it is 3.8% or less, Na 2 S 2 (solid phase) is precipitated.
Since Na 2 S 2 is a solid phase even at the operating temperature of the battery (300 to 350 ° C.), it no longer acts as an active material of the battery.

【0010】[0010]

【発明が解決しようとする課題】以上のことから、従来
のナトリウム−硫黄電池は、正極活物質の一部しか充放
電反応に利用できないために、ナトリウム−硫黄電池の
エネルギー密度を高くすることができないという課題が
あった。
From the above, the conventional sodium-sulfur battery can increase the energy density of the sodium-sulfur battery because only a part of the positive electrode active material can be used for the charge / discharge reaction. There was a problem that I could not do it.

【0011】そこで本発明は、上記の課題を解決するた
めになされたものであって、正極活物質の利用率を高め
てエネルギー密度が高いナトリウム−硫黄電池を提供す
ることを目的とする。
The present invention has been made in order to solve the above problems, and an object thereof is to provide a sodium-sulfur battery having a high energy density by increasing the utilization rate of the positive electrode active material.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明のナトリ
ウム−硫黄電池は、硫黄からなる正極活物質を少なくと
も有する正極と、ナトリウムからなる負極活物質を少な
くとも有する負極と、ナトリウムイオンに対して伝導性
を有する固体電解質とを備えたナトリウム−硫黄電池で
あって、前記正極は、Se、Bの両方を含み、SeとB
と前記正極活物質である硫黄との比率が、Seが0.1
モル%以上6モル%以下であり、Bが0.1モル%以上
8モル%以下であり、硫黄が86モル%以上99.8モ
ル%以下であることを特徴とする。
In order to achieve the above object, the present invention has the following constitutions. The sodium-sulfur battery of the present invention comprises a positive electrode having at least a positive electrode active material made of sulfur, a negative electrode having at least a negative electrode active material made of sodium, and a solid electrolyte having conductivity with respect to sodium ions. In a sulfur battery, the positive electrode contains both Se and B, and Se and B
And the ratio of sulfur as the positive electrode active material is Se 0.1
Mol% or more and 6 mol% or less, B is 0.1 mol% or more and 8 mol% or less, and sulfur is 86 mol% or more and 99.8 mol% or less.
It is characterized by being less than 1 % .

【0013】 また、本発明のナトリウム−硫黄電池
は、硫黄からなる正極活物質を少なくとも有する正極
と、ナトリウムからなる負極活物質を少なくとも有する
負極と、ナトリウムイオンに対して伝導性を有する固体
電解質とを備えたナトリウム−硫黄電池であって、前記
正極にBが含有され、Bと前記正極活物質である硫黄と
の比率が、Bが0.1モル%以上6モル%以下であり、
硫黄が94モル%以上99.9モル%以下であることを
特徴とする。
Further, the sodium-sulfur battery of the present invention comprises a positive electrode having at least a positive electrode active material made of sulfur, a negative electrode having at least a negative electrode active material made of sodium, and a solid electrolyte having conductivity with respect to sodium ions. In the sodium-sulfur battery, the positive electrode contains B, and the ratio of B to sulfur as the positive electrode active material is such that B is 0.1 mol% or more and 6 mol% or less,
The sulfur is 94 mol% or more and 99.9 mol% or less.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1に示すナトリウム−硫黄電池
1には、硫黄を含む正極活物質3と、ナトリウムを含む
負極活物質2と、ナトリウムイオンに対して伝導性を有
する固体電解質管4と、正極端子6である正極外装缶
6’と、絶縁リング8と、負極端子7である封口蓋11
とが備えられている。固体電解質管4の材質としては、
β−アルミナ(Na2O・11Al23)や、安定化剤
としてMgO、Li2O等が添加されたβ”−アルミナ
(3Na2O・16Al23)等が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The sodium-sulfur battery 1 shown in FIG. 1 includes a positive electrode active material 3 containing sulfur, a negative electrode active material 2 containing sodium, a solid electrolyte tube 4 having conductivity with respect to sodium ions, and a positive electrode terminal 6. Positive electrode outer can 6 ′, insulating ring 8, and negative electrode terminal 7 sealing lid 11
And are provided. As the material of the solid electrolyte tube 4,
β-alumina (Na 2 O · 11Al 2 O 3 ) or β ″ -alumina (3Na 2 O · 16Al 2 O 3 ) to which MgO, Li 2 O or the like is added as a stabilizer is used.

【0015】正極外装缶6’には、正極活物質3と、正
極活物質3の電子伝導を補助する導電助材5が収納され
ている。導電助材5は、炭素繊維布等を中空円筒状に巻
いたものに溶融状態の硫黄を含浸させて冷却固化したも
のである。導電助材5の中空部には固体電解質管4が挿
入され、固体電解質管4には負極活物質2であるナトリ
ウムが充填されている。このようにして、ナトリウム−
硫黄電池1には、正極活物質3と導電助材5からなる正
極21と、負極活物質2からなる負極22が備えられて
いる。
The positive electrode outer can 6'contains the positive electrode active material 3 and the conductive auxiliary material 5 for assisting the electron conduction of the positive electrode active material 3. The conductive auxiliary material 5 is obtained by impregnating a carbon fiber cloth or the like wound in a hollow cylindrical shape with sulfur in a molten state and cooling and solidifying. The solid electrolyte tube 4 is inserted into the hollow portion of the conductive auxiliary material 5, and the solid electrolyte tube 4 is filled with sodium as the negative electrode active material 2. In this way, sodium-
The sulfur battery 1 is provided with a positive electrode 21 composed of the positive electrode active material 3 and the conductive auxiliary material 5, and a negative electrode 22 composed of the negative electrode active material 2.

【0016】固体電解質管4の上部開口端には、カ゛ラス半
田等の接着材により絶縁リング8が接合されている。絶
縁リング8は、アルミニウム合金等を介して正極外装缶
6’のフランジ9にろう付けされている。また、絶縁リ
ング8は、アルミニウム合金等を介して負極端子7であ
る封口蓋11にろう付けされている。封口蓋11には、
負極活物質2の充填孔11aが設けられている。充填孔
11aは、封口材11bにより封口されている。
An insulating ring 8 is joined to the upper open end of the solid electrolyte tube 4 by an adhesive material such as glass solder. The insulating ring 8 is brazed to the flange 9 of the positive electrode outer can 6'through an aluminum alloy or the like. The insulating ring 8 is brazed to the sealing lid 11, which is the negative electrode terminal 7, through an aluminum alloy or the like. The sealing lid 11 has
A filling hole 11 a for the negative electrode active material 2 is provided. The filling hole 11a is sealed by a sealing material 11b.

【0017】また、このナトリウム−硫黄電池1には、
形状が有底円筒管である安全管10が備えられている。
安全管10は、固体電解質管4内にその外周面と固体電
解質管4の内周面とが所定の間隔を持って離間するよう
に配置されている。安全管10には、その底面に負極活
物質2が流通するための流通孔10’が設けられてい
る。安全管10は、固体電解質管4が破損して負極活物
質2と正極活物質3とが直接接触して反応した場合に、
両者の急激な反応を防ぐ役割を果たす。また、安全管1
0は、封口蓋11に接合されて負極集電体としての役割
をも果たす。
Further, the sodium-sulfur battery 1 includes
A safety pipe 10 having a bottomed cylindrical pipe is provided.
The safety tube 10 is arranged in the solid electrolyte tube 4 such that its outer peripheral surface and the inner peripheral surface of the solid electrolyte tube 4 are separated from each other by a predetermined distance. The safety tube 10 is provided with a flow hole 10 ′ on the bottom surface thereof for allowing the negative electrode active material 2 to flow therethrough. The safety tube 10 is provided when the solid electrolyte tube 4 is damaged and the negative electrode active material 2 and the positive electrode active material 3 directly contact with each other and react with each other.
It plays a role in preventing a sudden reaction between the two. Also, safety tube 1
0 is also bonded to the sealing lid 11 and also serves as a negative electrode current collector.

【0018】正極21には、正極活物質3の他に、少な
くともSe、Bのうちの一種以上の元素が含まれてい
る。Se及びBは、正極活物質の利用率を高めてナトリ
ウム−硫黄電池のエネルギー密度を高くする作用があ
る。Seは、硫黄と共に導電助材5に含侵させた形態で
正極21に添加される。Seの融点は217℃であり、
ナトリウム−硫黄電池1の作動温度は300〜350℃
であるので、Seは硫黄中に溶解する。Seは、金属で
あるために電子伝導性を有しており、正極活物質3に電
子伝導性を付与する作用がある。従って、ナトリウム−
硫黄電池1の充電末期にNa25の量が減少したとして
も、Seによって正極21の内部抵抗が低いまま維持さ
れる。Seが正極活物質3に含まれない場合には、正極
21中の硫黄のモル組成率が88.2%になるまでしか
充電できないが、Seが正極21に含まれることによっ
て硫黄のモル組成率が90%程度になるまで充電するこ
とが可能になる。Seと正極活物質3である硫黄との比
率は、Seが0.1モル%以上6モル%以下であり、硫
黄が94モル%以上99.9モル%以下であり、Seと
硫黄の合計量が100モル%であることが好ましい。S
eの比率が0.1モル%未満では、Seの量が少なすぎ
て正極21の内部抵抗を低くすることができないために
好ましくなく、Seの比率が6モル%を越えると、正極
活物質重量が増加してエネルギー密度の低下が著しくな
るので好ましくない。
The positive electrode 21 contains at least one element selected from Se and B in addition to the positive electrode active material 3. Se and B have the effect of increasing the utilization rate of the positive electrode active material and increasing the energy density of the sodium-sulfur battery. Se is added to the positive electrode 21 in a form in which the conductive auxiliary material 5 is impregnated with sulfur. The melting point of Se is 217 ° C.,
The operating temperature of the sodium-sulfur battery 1 is 300 to 350 ° C.
Therefore, Se dissolves in sulfur. Since Se is a metal, it has electron conductivity, and has a function of imparting electron conductivity to the positive electrode active material 3. Therefore, sodium-
Even if the amount of Na 2 S 5 decreases at the end of charging of the sulfur battery 1, Se keeps the internal resistance of the positive electrode 21 low. When Se is not contained in the positive electrode active material 3, charging can be performed only until the molar composition ratio of sulfur in the positive electrode 21 reaches 88.2%. However, when Se is contained in the positive electrode 21, the molar composition ratio of sulfur is increased. Can be charged up to about 90%. The ratio of Se to sulfur as the positive electrode active material 3 is such that Se is 0.1 mol% or more and 6 mol% or less, sulfur is 94 mol% or more and 99.9 mol% or less, and the total amount of Se and sulfur is Is preferably 100 mol%. S
If the ratio of e is less than 0.1 mol%, the amount of Se is too small to lower the internal resistance of the positive electrode 21, which is not preferable. If the ratio of Se exceeds 6 mol%, the weight of the positive electrode active material is increased. Is increased and the energy density is significantly decreased, which is not preferable.

【0019】Bは、Seと同様に、硫黄と共に導電助材
5に含侵させた形態で正極21に添加される。例えば、
Bが粉体状で添加される場合には、B平均粒径は10μ
m以上、1000μm以下であることが好ましい。B
は、放電末期に生成するNa22の析出を抑える作用が
ある。従って、ナトリウム−硫黄電池1の放電末期にN
22 が析出して活物質量の低下を抑えることが可能
になる。Bが正極21に含まれない場合には、正極21
中の硫黄のモル組成率が63.8%になるまでしか放電
できないが、Bが正極21に含まれることによって硫黄
のモル組成率が61%程度になるまで放電してもNa2
2 が析出することがない。Bと正極活物質3である硫
黄との比率は、Bが0.1モル%以上8モル%以下であ
り、硫黄が92モル%以上99.9モル%以下であり、
Bと硫黄の合計量が100モル%であることが好まし
い。Bの比率が0.1モル%未満では、Bの量が少なす
ぎてNa22の析出を抑える効果が著しく減少するので
好ましくなく、Bの比率が8モル%を越えると、逆にN
22の析出が助長されるので好ましくない。
Similar to Se, B is added to the positive electrode 21 in the form of being impregnated with the conductive auxiliary material 5 together with sulfur. For example,
When B is added in powder form, the average particle size of B is 10 μm.
It is preferably m or more and 1000 μm or less. B
Has the effect of suppressing the precipitation of Na 2 S 2 generated at the end of discharge. Therefore, at the end of discharge of the sodium-sulfur battery 1, N
It becomes possible to suppress the decrease of the amount of the active material due to the precipitation of a 2 S 2 . When B is not included in the positive electrode 21, the positive electrode 21
The discharge can be performed only until the molar composition ratio of sulfur in the inside becomes 63.8%, but since B is contained in the positive electrode 21, even if the molar composition ratio of sulfur reaches about 61%, Na 2 is discharged.
S 2 does not precipitate. The ratio of B to sulfur that is the positive electrode active material 3 is such that B is 0.1 mol% or more and 8 mol% or less, and sulfur is 92 mol% or more and 99.9 mol% or less,
The total amount of B and sulfur is preferably 100 mol%. If the ratio of B is less than 0.1 mol%, the amount of B is too small and the effect of suppressing the precipitation of Na 2 S 2 is significantly reduced, which is not preferable.
It is not preferable because precipitation of a 2 S 2 is promoted.

【0020】また、正極21にSeとBとを同時に添加
しても良い。この場合の硫黄とSeとBとの比率は、S
eが0.1モル%以上6モル%以下であり、Bが0.1
モル%以上8モル%以下であり、硫黄が86モル%以上
99.9モル%以下であり、硫黄とSeとBの合計量が
100モル%であることが好ましい。
Further, Se and B may be added to the positive electrode 21 at the same time. In this case, the ratio of sulfur, Se and B is S
e is 0.1 mol% or more and 6 mol% or less, and B is 0.1
It is preferable that the amount of sulfur is 8 mol% or more, the amount of sulfur is 86 mol% or more and 99.9 mol% or less, and the total amount of sulfur, Se, and B is 100 mol%.

【0021】上述のナトリウム−硫黄電池1は、正極2
1に電子導電性を有するSeが添加されているので、充
電末期でのNa25の減少による正極21の内部抵抗の
上昇が抑えられて、従来の電池よりも充放電容量を高く
することができる。
The sodium-sulfur battery 1 described above has a positive electrode 2
Since Se having electronic conductivity is added to 1, the increase in the internal resistance of the positive electrode 21 due to the decrease of Na 2 S 5 at the end of charging is suppressed, and the charge / discharge capacity is made higher than that of the conventional battery. You can

【0022】また、上述のナトリウム−硫黄電池1は、
正極21にNa22の析出を抑えるBが添加されている
ので、放電末期でのNa22の析出を抑えて活物質量の
低下を防いで、電池の充放電容量を高くすることができ
る。
The sodium-sulfur battery 1 described above is
Since B which suppresses the precipitation of Na 2 S 2 is added to the positive electrode 21, it is possible to suppress the precipitation of Na 2 S 2 at the end of discharge to prevent the decrease in the amount of the active material and to increase the charge / discharge capacity of the battery. You can

【0023】[0023]

【実施例】(実験例1)炭素繊維布を中空円筒状に巻い
て導電助材とし、この導電助材に溶融した硫黄とSeを
含浸させ、硫黄とSeを固化させることにより、中空円
筒状の正極を作成した。次に、得られた正極を、外径3
4mm、内径30mm、高さ80mmの内面にCrメッ
キしたステンレス製の正極円筒缶に挿入し、更に正極の
中空部に外径20mm、有効長さ60mmのβ”−アル
ミナからなる有底円筒管状の固体電解質管を挿入した。
更に、負極封口蓋に接合された安全管を挿入し、絶縁リ
ング、負極封口蓋、正極円筒缶をそれぞれ接合し、充填
孔からナトリウムを充填することにより、図1及び表1
に示すような実施例1〜5のナトリウム−硫黄電池を組
み立てた。
(Experimental Example 1) A carbon fiber cloth is wound into a hollow cylindrical shape to form a conductive auxiliary material, and the conductive auxiliary material is impregnated with molten sulfur and Se, and the sulfur and Se are solidified to form a hollow cylindrical shape. The positive electrode of was produced. Next, the obtained positive electrode was treated with an outer diameter of 3
4 mm, inner diameter 30 mm, height 80 mm, inserted into a stainless steel positive electrode cylindrical can with Cr plating on the inner surface, and further, in the hollow portion of the positive electrode, a bottomed cylindrical tubular member made of β ″ -alumina having an outer diameter of 20 mm and an effective length of 60 mm. A solid electrolyte tube was inserted.
Further, by inserting the safety tube joined to the negative electrode sealing lid, joining the insulating ring, the negative electrode sealing lid, and the positive electrode cylindrical can, respectively, and filling sodium from the filling hole.
The sodium-sulfur batteries of Examples 1-5 as shown in FIG.

【0024】(実験例2)炭素繊維布を中空円筒状に巻
いて導電助材とし、この導電助材に溶融した硫黄と平均
粒径100μmのBの粉体を含浸させ、硫黄を固化させ
ることにより、中空円筒状の正極を作成したこと以外は
実験例1と同様にして図1及び表1に示すような実施例
6〜11のナトリウム−硫黄電池を組み立てた。
(Experimental Example 2) A carbon fiber cloth is wound into a hollow cylinder to form a conductive auxiliary material, and the conductive auxiliary material is impregnated with molten sulfur and B powder having an average particle size of 100 μm to solidify the sulfur. Thus, sodium-sulfur batteries of Examples 6 to 11 as shown in FIG. 1 and Table 1 were assembled in the same manner as in Experimental Example 1 except that a hollow cylindrical positive electrode was prepared.

【0025】(実験例3)炭素繊維布を中空円筒状に巻
いて導電助材とし、この導電助材に溶融した硫黄とSe
と平均粒径100μmのBの粉体を含浸させ、硫黄を固
化させることにより、中空円筒状の正極を作成したこと
以外は実験例1と同様にして図1及び表1に示すような
実施例12〜14のナトリウム−硫黄電池を組み立て
た。
(Experimental Example 3) A carbon fiber cloth was wound into a hollow cylinder to form a conductive auxiliary material, and sulfur and Se melted in the conductive auxiliary material.
And an example as shown in FIG. 1 and Table 1 in the same manner as in Experimental Example 1 except that a hollow cylindrical positive electrode was prepared by impregnating a powder of B having an average particle diameter of 100 μm and solidifying sulfur. A 12-14 sodium-sulfur battery was assembled.

【0026】(実験例4)炭素繊維布を中空円筒状に巻
いて導電助材とし、この導電助材に溶融した硫黄を含浸
させ、硫黄を固化させることにより、中空円筒状の正極
を作成したこと以外は実験例1と同様にして図1及び表
1に示すような比較例1のナトリウム−硫黄電池を組み
立てた。
(Experimental Example 4) A carbon fiber cloth was wound into a hollow cylindrical shape to form a conductive auxiliary material, and the conductive auxiliary material was impregnated with molten sulfur to solidify the sulfur to prepare a hollow cylindrical positive electrode. A sodium-sulfur battery of Comparative Example 1 as shown in FIG. 1 and Table 1 was assembled in the same manner as in Experimental Example 1 except for the above.

【0027】上述のようにして得られたナトリウム−硫
黄電池の5サイクル目の放電曲線を図3〜図7に示す。
また、このときの電池の平均放電電圧、正極活物質の理
論容量に対する放電容量の比率(利用率)、正極のエネ
ルギー密度を表1に示す。図3〜図7における充電率は
下記式(3)で表される。また、ここでの理論容量と
は、電池中の正極活物質であるSがNa23に還元され
るまでに取り出せる電気容量をいい、セル容量とは、理
論容量から実際の放電容量を差し引いたものをいう。
The discharge curves of the sodium-sulfur battery obtained as described above at the 5th cycle are shown in FIGS.
Table 1 shows the average discharge voltage of the battery, the ratio of the discharge capacity to the theoretical capacity of the positive electrode active material (utilization rate), and the energy density of the positive electrode at this time. The charging rate in FIGS. 3 to 7 is represented by the following formula (3). The theoretical capacity here means the electric capacity that can be taken out before S, which is the positive electrode active material in the battery, is reduced to Na 2 S 3 , and the cell capacity is the theoretical capacity minus the actual discharge capacity. I mean something.

【0028】 充電率(%)=セル容量÷理論容量×100 …(3)[0028] Charge rate (%) = cell capacity ÷ theoretical capacity × 100 (3)

【0029】更に、充電末期及び放電末期における正極
中のナトリウムと硫黄の合計量に対する硫黄の含有量を
以下の式(4)により求めた。結果を表2に示す。ここ
で、Smolは正極の硫黄のモル量である。
Further, the sulfur content with respect to the total amount of sodium and sulfur in the positive electrode at the end of charging and the end of discharging was determined by the following formula (4). The results are shown in Table 2. Here, Smol is the molar amount of sulfur in the positive electrode.

【0030】 硫黄の含有量(モル%)=Smol÷(Smol+(放電容量÷26.8))×100 …(4)[0030]   Sulfur content (mol%) = Smol / (Smol + (discharge capacity / 26.8)) x 100 (4)

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1から明らかなように、実施例1〜14
の電池は、比較例1の電池よりも正極活物質の利用率が
高く、エネルギー密度も高いことがわかる。また、表2
から明らかなように、実施例1〜5の電池は、比較例1
の電池よりも充電末期における正極中の硫黄量が多いこ
とがわかる。これは、Seの添加により正極に電子伝導
性が付与されて正極の内部抵抗が低下したため、放電生
成物であるNaの量が低下しても充電することが
できたためと推定される。更に、表2から明らかなよう
に、実施例6〜7の電池は、比較例1の電池よりも放電
末期における正極中の硫黄量が少ないことがわかる。こ
れは、Bの添加によりNaの析出が防がれたため
に、より深い放電が可能になったものと推定される。更
にまた、実施例12〜14の電池は、比較例1の電池よ
りも充電末期における正極中の硫黄量が多く、放電末期
における正極中の硫黄量が少ないことがわかる。
As is apparent from Table 1, Examples 1 to 14
It can be seen that the battery of 1 has a higher utilization rate of the positive electrode active material and a higher energy density than the battery of Comparative Example 1. Also, Table 2
As is apparent from Comparative Example 1, the batteries of Examples 1 to 5 were
It can be seen that the amount of sulfur in the positive electrode at the end of charging is higher than that of the battery of No. It is presumed that this is because the addition of Se imparted electron conductivity to the positive electrode and lowered the internal resistance of the positive electrode, so that even if the amount of Na 2 S 5 as a discharge product was reduced, charging was possible. . Further, as is clear from Table 2, the batteries of Examples 6 to 7 have a smaller amount of sulfur in the positive electrode at the end of discharge than the battery of Comparative Example 1. This is presumably because the addition of B prevented the precipitation of Na 2 S 2 and thus enabled deeper discharge. Furthermore, it is understood that the batteries of Examples 12 to 14 have a larger amount of sulfur in the positive electrode at the end of charging and a smaller amount of sulfur in the positive electrode at the end of discharging than those of the battery of Comparative Example 1.

【0034】なお、本発明の技術範囲は上記実施の形態
に限定されるものではなく、本発明の趣旨を逸脱しない
範囲において種々の変更を加えることが可能である。例
えば、これまで説明した図1に示すナトリウム−硫黄電
池は、インサイドアウト構造を採用して、固体電解質の
内側に負極活物質を収納し、固体電解質の外側に正極活
物質を配置しているが、これに限られず、正極活物質を
固体電解質に収納し、負極活物質を固体電解質の外側に
配置したものであっても良い。更に、ナトリウム−硫黄
電池の構造はインサイドアウト構造に限るものではな
く、例えば、電解漕の内部に平板状の固体電解質を配置
し、この固体電解質を介して正極活物質と負極活物質と
が対向して配置された構造であっても良い。また、ナト
リウム−硫黄電池の形態は円筒形に限られず、角形やそ
の他の形状であっても良い。
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the sodium-sulfur battery shown in FIG. 1 described so far has an inside-out structure in which the negative electrode active material is housed inside the solid electrolyte and the positive electrode active material is arranged outside the solid electrolyte. However, the present invention is not limited to this, and the positive electrode active material may be housed in the solid electrolyte and the negative electrode active material may be arranged outside the solid electrolyte. Furthermore, the structure of the sodium-sulfur battery is not limited to the inside-out structure, and for example, a flat plate-shaped solid electrolyte is arranged inside the electrolytic cell, and the positive electrode active material and the negative electrode active material face each other through this solid electrolyte. It may be a structure in which they are arranged. Further, the form of the sodium-sulfur battery is not limited to a cylindrical shape, and may be a prismatic shape or another shape.

【0035】[0035]

【発明の効果】以上、詳細に説明したように、本発明の
ナトリウム−硫黄電池は、正極に電子導電性を有するS
eが添加されているので、充電末期でのNa25の減少
による正極の内部抵抗の上昇が抑えられて、従来の電池
よりも充放電容量が高くなって正極活物質の利用率を高
くすることが可能となり、エネルギー密度を高くするこ
とができる。また、上述のナトリウム−硫黄電池は、正
極にNa22の析出を抑えるBが添加されているので、
放電末期でのNa22の析出を抑えて活物質量の低下を
防ぎ、充放電容量が高くなって正極活物質の利用率を高
くすることが可能となり、エネルギー密度を高くするこ
とができる。
As described above in detail, in the sodium-sulfur battery of the present invention, the positive electrode contains S having electron conductivity.
Since e is added, the increase in the internal resistance of the positive electrode due to the decrease in Na 2 S 5 at the end of charging is suppressed, the charging / discharging capacity is higher than that of the conventional battery, and the utilization rate of the positive electrode active material is high. It is possible to increase the energy density. Further, in the above-mentioned sodium-sulfur battery, B which suppresses the precipitation of Na 2 S 2 is added to the positive electrode,
It is possible to suppress the precipitation of Na 2 S 2 at the end of discharge to prevent a decrease in the amount of the active material, increase the charge / discharge capacity, and increase the utilization rate of the positive electrode active material, which can increase the energy density. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態であるナトリウム−硫黄
電池の正面断面図である。
FIG. 1 is a front sectional view of a sodium-sulfur battery according to an embodiment of the present invention.

【図2】 ナトリウムと硫黄の相図である。FIG. 2 is a phase diagram of sodium and sulfur.

【図3】 実施例1のナトリウム−硫黄電池の5サイク
ル目の放電曲線を示す図である。
FIG. 3 is a view showing a discharge curve at the 5th cycle of the sodium-sulfur battery of Example 1.

【図4】 実施例2のナトリウム−硫黄電池の5サイク
ル目の放電曲線を示す図である。
FIG. 4 is a diagram showing a discharge curve of a sodium-sulfur battery of Example 2 at the 5th cycle.

【図5】 実施例6のナトリウム−硫黄電池の5サイク
ル目の放電曲線を示す図である。
FIG. 5 is a diagram showing a discharge curve at the 5th cycle of the sodium-sulfur battery of Example 6.

【図6】 実施例7のナトリウム−硫黄電池の5サイク
ル目の放電曲線を示す図である。
FIG. 6 is a view showing a discharge curve at the 5th cycle of the sodium-sulfur battery of Example 7.

【図7】 実施例8のナトリウム−硫黄電池の5サイク
ル目の放電曲線を示す図である。
FIG. 7 is a diagram showing a discharge curve in a fifth cycle of the sodium-sulfur battery of Example 8.

【符号の説明】[Explanation of symbols]

1 ナトリウム−硫黄電池 2 負極活物質 3 正極活物質 4 固体電解質管 21 正極 22 負極 1 Sodium-sulfur battery 2 Negative electrode active material 3 Positive electrode active material 4 Solid electrolyte tube 21 Positive electrode 22 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−67474(JP,A) 特開 平7−335251(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-67474 (JP, A) JP-A-7-335251 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/39

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫黄からなる正極活物質を少なくとも有
する正極と、ナトリウムからなる負極活物質を少なくと
も有する負極と、ナトリウムイオンに対して伝導性を有
する固体電解質とを備えたナトリウム−硫黄電池であっ
て、 前記正極は、Se、Bの両方を含み、SeとBと前記正
極活物質である硫黄との比率が、Seが0.1モル%以
上6モル%以下であり、Bが0.1モル%以上8モル%
以下であり、硫黄が86モル%以上99.8モル%以下
であることを特徴とするナトリウム−硫黄電池。
1. A sodium-sulfur battery comprising a positive electrode having at least a positive electrode active material made of sulfur, a negative electrode having at least a negative electrode active material made of sodium, and a solid electrolyte having conductivity with respect to sodium ions. The positive electrode contains both Se and B, and the ratio of Se and B to sulfur as the positive electrode active material is such that Se is 0.1 mol% or more and 6 mol% or less and B is 0.1 mol% or less. 8% by mol or more
It is below, and sulfur is 86 mol% or more and 99.8 mol% or less, The sodium-sulfur battery characterized by the above-mentioned.
【請求項2】 硫黄からなる正極活物質を少なくとも有
する正極と、ナトリウムからなる負極活物質を少なくと
も有する負極と、ナトリウムイオンに対して伝導性を有
する固体電解質とを備えたナトリウム−硫黄電池であっ
て、 前記正極にBが含有され、Bと前記正極活物質である硫
黄との比率が、Bが0.1モル%以上6モル%以下であ
り、硫黄が94モル%以上99.9モル%以下であるこ
とを特徴とするナトリウム−硫黄電池。
2. A sodium-sulfur battery including a positive electrode having at least a positive electrode active material made of sulfur, a negative electrode having at least a negative electrode active material made of sodium, and a solid electrolyte having conductivity with respect to sodium ions. The positive electrode contains B, and the ratio of B to sulfur as the positive electrode active material is such that B is 0.1 mol% or more and 6 mol% or less and sulfur is 94 mol% or more and 99.9 mol%. A sodium-sulfur battery characterized by being:
JP08898898A 1998-04-01 1998-04-01 Sodium-sulfur battery Expired - Fee Related JP3477364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08898898A JP3477364B2 (en) 1998-04-01 1998-04-01 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08898898A JP3477364B2 (en) 1998-04-01 1998-04-01 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH11288736A JPH11288736A (en) 1999-10-19
JP3477364B2 true JP3477364B2 (en) 2003-12-10

Family

ID=13958193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08898898A Expired - Fee Related JP3477364B2 (en) 1998-04-01 1998-04-01 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP3477364B2 (en)

Also Published As

Publication number Publication date
JPH11288736A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US9065133B2 (en) Cathode for an electrochemical cell
US3969139A (en) Lithium electrode and an electrical energy storage device containing the same
JP5172059B2 (en) Rechargeable electrochemical cell
US4064325A (en) Electric storage batteries
JP2001243994A (en) Recycle method of sodium sulfur battery
JP2022519942A (en) High temperature lithium air battery
JP5304961B1 (en) Negative electrode plate for magnesium ion secondary battery, magnesium ion secondary battery, and battery pack
JP3477364B2 (en) Sodium-sulfur battery
US4397924A (en) High temperature solid state storage cell
JPH0251221B2 (en)
US3966491A (en) Molten salt electrochemical systems for battery applications
JPS63121268A (en) Lithium secondary battery
JP3550007B2 (en) Method for producing zinc or zinc alloy powder for alkaline batteries
JP3422682B2 (en) Sodium-sulfur battery
US20230327093A1 (en) Lithium alloy based anode for non-aqueous ammonia primary and reserve batteries
JPS58216367A (en) Rechargeable electrochemical battery
JP2594973B2 (en) Fluidized molten salt battery
JPH0441471B2 (en)
JPH04282571A (en) Alkali metal-metal chloride battery
JPS5983364A (en) Molten salt/oxide battery
Dunstan et al. Low Temperature Operation of the Cell Na/β"-Alumina/S (IV) in AlCl3-NaCl Melt
Vincent Non-aqueous battery systems
JPH0364987B2 (en)
JPH0570269B2 (en)
JPH04282570A (en) Alkali metal-metal chloride battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees