JPH0256868A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0256868A
JPH0256868A JP63209243A JP20924388A JPH0256868A JP H0256868 A JPH0256868 A JP H0256868A JP 63209243 A JP63209243 A JP 63209243A JP 20924388 A JP20924388 A JP 20924388A JP H0256868 A JPH0256868 A JP H0256868A
Authority
JP
Japan
Prior art keywords
sodium
battery
sulfur
solid electrolyte
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63209243A
Other languages
Japanese (ja)
Other versions
JPH0766831B2 (en
Inventor
Shigehiro Shimoyashiki
下屋敷 重広
Hiromi Tokoi
博見 床井
Hajime Yamamoto
元 山本
Kazuo Takahashi
和雄 高橋
Hisashi Soma
相馬 尚志
Hajime Wada
元 和田
Hitoshi Sugawara
菅原 均
Masaaki Nakamura
正昭 中村
Masaaki Oshima
正明 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP63209243A priority Critical patent/JPH0766831B2/en
Publication of JPH0256868A publication Critical patent/JPH0256868A/en
Publication of JPH0766831B2 publication Critical patent/JPH0766831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the safety of a battery when an electrolyte is broken by limiting the sodium quantity participating in the reaction with sulfur at a battery reaction section to the minimum and suppressing the direct reaction between sodium and sulfur when the solid electrolyte is broken. CONSTITUTION:An alpha alumina plate 4 electrically insulates an upper container 1 from a lower container 2, a bulkhead 17 is provided on the alpha alumina plate 4, and it forms a sodium storage tank 21 together with the upper container 1. This bulkhead 17 is inserted into a solid electrolyte 3, the upper end of a suction pipe 19 having a blind lower end is fitted, and the suction pipe 19 damps the pressure when the direct reaction between sodium 7 and sulfur 8 is generated by the breakage of the solid electrolyte 3. Even if the solid electrolyte 3 is broken due to deterioration or the like, the quantity of the sodium 7 participating in the direct reaction with sulfur 8 can be limited to the minimum, the direction reaction between sodium and sulfur can be suppressed, and the temperature rise and pressure rise can be suppressed to the minimum. Even if the temperature and pressure in a battery rise, the suction pipe 19 is solved or broken to absorb the pressure, as a result the outermost battery container is not broken.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はナトリウム−硫黄電池に係り、特にナトリウム
と硫黄の直接反応量を抑制した高安全性電池構造に関す
る。ナトリウム−硫黄電池は通常の電池として電源用に
用い得ることは勿論、夜間の余剰電力貯蔵用としても好
適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sodium-sulfur battery, and particularly to a highly safe battery structure that suppresses the amount of direct reaction between sodium and sulfur. Sodium-sulfur batteries can of course be used as a power source as ordinary batteries, and are also suitable for storing surplus power at night.

〔従来の技術〕[Conventional technology]

従来のナトリウム−硫黄電池は、袋管状の固体電解質の
内径側に陰極活物質であるナトリウムを配置し、外径側
に陽極活物質である硫黄または多硫化物質を配置して成
る。運転中に固体電解質が万一破損した場合、ナトリウ
ムと硫黄とが混合し直接反応する。その結果、急激な温
度上昇や圧力上昇をもたらし、電池容器を破損する可能
性も考えられる。そのため、固体電解質が破損してもナ
トリウムと硫黄との急激な反応を緩和するための工夫が
種々講じられている6 以下従来のナトリウム−硫黄電池の構造(例えば、特願
昭58−28540号)について第4図に基づき詳細に
説明する。
A conventional sodium-sulfur battery is constructed by arranging sodium, which is a cathode active material, on the inner diameter side of a bag-tube-shaped solid electrolyte, and arranging sulfur or a polysulfide material, which is an anode active material, on the outer diameter side. If the solid electrolyte is damaged during operation, sodium and sulfur will mix and react directly. As a result, a sudden rise in temperature and pressure may occur, potentially damaging the battery container. Therefore, various measures have been taken to alleviate the rapid reaction between sodium and sulfur even if the solid electrolyte is damaged.6 Below is the structure of a conventional sodium-sulfur battery (for example, Japanese Patent Application No. 58-28540). will be explained in detail based on FIG.

第4図において、1は上部容器、2は下部容器である。In FIG. 4, 1 is an upper container and 2 is a lower container.

3は固体電解質で、通常はナトリウムイオンの電導性を
有するβアルミナ(NazO・Al2203)で構成さ
れている。固体電解質3は絶縁性を有するαアルミナ板
4とガラス半田等で接続され、αアルミナ板4は上部容
器1及び下部容器2と熱圧接等により接続されている。
3 is a solid electrolyte, which is usually composed of β-alumina (NazO.Al2203) having sodium ion conductivity. The solid electrolyte 3 is connected to an insulating α-alumina plate 4 by glass solder or the like, and the α-alumina plate 4 is connected to the upper container 1 and the lower container 2 by thermo-pressure welding or the like.

αアルミナ4は上部容器1と下部容器2を絶縁する働き
をする。また、βアルミナは電子伝導性を持たないため
、陽極5と陰極6とを分離するセパレータとしての役目
も合わせて果している。
The α alumina 4 serves to insulate the upper container 1 and the lower container 2. Furthermore, since β-alumina does not have electron conductivity, it also serves as a separator that separates the anode 5 and the cathode 6.

この電池には陰極活物質7として溶融ナトリウム、陽極
活物質8として溶融硫黄と多硫化ナトリウムを使用する
。陽極活物質をなす多硫化ナトリウムはイオン電導性は
あるが電子伝導性がなく。
This battery uses molten sodium as the cathode active material 7, and molten sulfur and sodium polysulfide as the anode active material 8. Sodium polysulfide, which is the anode active material, has ionic conductivity but no electronic conductivity.

また同じく陽極活物質をなす硫黄も電子伝導性がないた
め電気化学反応に伴なう電子の授受を助ける目的で、該
陽極活物質8は伝導材(例えば繊維状にしたグラファイ
トなど)に含浸されている。
Furthermore, since sulfur, which also constitutes the anode active material, has no electron conductivity, the anode active material 8 is impregnated with a conductive material (for example, fibrous graphite, etc.) in order to help transfer electrons during electrochemical reactions. ing.

作動温度は陽極活物質の融点を考慮して、300℃以上
が有効とされている。
Considering the melting point of the anode active material, an effective operating temperature is 300°C or higher.

充放電反応は、 であり、従って電池全体としては次の如くなる。The charge/discharge reaction is Therefore, the entire battery is as follows.

さて、9は陰極活物質の注入管、10は陽極活物質の注
入管で、それぞれ活物質注入後に盲栓11が施される。
Now, 9 is an injection tube for the cathode active material, and 10 is an injection tube for the anode active material, each of which is fitted with a blind plug 11 after the active material is injected.

12は陰極活物質の液位、13は陽極活物質の液位を示
す。
12 indicates the liquid level of the cathode active material, and 13 indicates the liquid level of the anode active material.

さて、固体電解質3が寿命等何らかの影響で破損すると
、陰極活物質7をなすナトリウムと、陽極活物質8をな
す硫黄とが直接反応をして、電池内に急激な高温、高圧
をもたらす、その場合の反応式は次の通りである。
Now, if the solid electrolyte 3 is damaged due to some reason such as lifespan, the sodium forming the cathode active material 7 and the sulfur forming the anode active material 8 will directly react, causing rapid high temperature and high pressure inside the battery. The reaction formula in this case is as follows.

2 N a + 3 S→N azss−107,3k
ca42/moQこのような反応を緩和する手段として
従来は、第4図に示すように固体電解IX3の内径側に
小孔14をあけた安全管15を設けたり、固体電解質3
の安全管15の間に隙間に充填物(通常は金属メツシュ
等)16を充填している。すなわち、固体電解質3が破
損した場合に、充填物は硫黄との反応にあずかるナトリ
ウムの流動を抑制すること、他方、安全管は、固体電解
質内径側との隙間で作るナトリウム保有体積を小さくす
るとともに、安全管内からのナトリウムの流動を小孔に
よって絞るとい°う効果を有する。しかしながら、この
ような手段では固体電解質内に保有する全ナトリウム量
、すなわち硫黄との反応にあずかるナトリウム量の低減
はできない。より安全性の高いナトリウム−硫黄電池と
するためには、硫黄と直接反応にあずかる固体電解質内
のナトリウムの絶対量を少上記従来技術は、電池反応に
あずかる全ナトリラム量を固体電解質内に保有しており
、固体電解質が破損すると、その全ナトリウムと硫黄の
直接反応が起こり1反応が進展して拡大し、電池内部に
急激な温度上昇及び圧力上昇をもたらし、電池容器の破
損を招く可能性があった。
2 Na + 3 S→N azss-107,3k
ca42/moQ Conventionally, as a means of mitigating such a reaction, a safety tube 15 with a small hole 14 is provided on the inner diameter side of the solid electrolyte IX3, as shown in FIG.
A filler (usually metal mesh or the like) 16 is filled in the gap between the safety tubes 15. That is, in the event that the solid electrolyte 3 is damaged, the filling material suppresses the flow of sodium that participates in the reaction with sulfur, and on the other hand, the safety pipe reduces the volume of sodium retained in the gap between the inner diameter side of the solid electrolyte and the filling material. This has the effect of restricting the flow of sodium from within the safety tube through the small holes. However, such means cannot reduce the total amount of sodium held within the solid electrolyte, that is, the amount of sodium that participates in the reaction with sulfur. In order to make a sodium-sulfur battery with higher safety, the absolute amount of sodium in the solid electrolyte that participates in the direct reaction with sulfur is reduced. When the solid electrolyte is damaged, a direct reaction between all the sodium and sulfur occurs, and the reaction progresses and expands, causing a rapid rise in temperature and pressure inside the battery, which can lead to damage to the battery container. there were.

本発明は、上記問題点を解決するために、従来のナトリ
ウム−硫黄電池の欠点である固体電解質破損時のナトリ
ウムと硫黄との直接反応を抑制し、電池内部の急激な温
度上昇及び圧力上昇をもたらすことによる電池の破壊を
防止可能なナトリウム上記目的を達成するために、本発
明はナトリウムイオンが通過可能に構成されてなる固体
電解質を境にして、ナトリウムから成る陰極活物質と、
硫黄または多硫化ナトリウムを必須成分とする陽極活物
質とにより電池反応領域部が構成されてなるナトリウム
−硫黄電池において、ナトリウムを貯蔵する貯槽と、該
貯槽と前記電池反応領域部とを分離する隔壁と、前記固
体電解質と狭隙を介して、当該固体電解質管の内径側に
設けられ、I性材料で構成されて成る圧力吸収管と、前
記狭隙と前記貯槽とが連通ずるように前記隔壁に設けら
れた孔と、を備えて成ることを特徴とするナトリウム−
硫黄電池である。
In order to solve the above problems, the present invention suppresses the direct reaction between sodium and sulfur when the solid electrolyte breaks, which is a drawback of conventional sodium-sulfur batteries, and prevents rapid temperature and pressure increases inside the battery. In order to achieve the above object, the present invention provides a solid electrolyte configured to allow passage of sodium ions, a negative electrode active material made of sodium, and a solid electrolyte configured to allow passage of sodium ions.
In a sodium-sulfur battery in which a battery reaction area is constituted by an anode active material containing sulfur or sodium polysulfide as an essential component, a storage tank for storing sodium and a partition wall separating the storage tank and the battery reaction area. and a pressure absorbing tube which is provided on the inner diameter side of the solid electrolyte tube through a narrow gap between the solid electrolyte and the pressure absorbing tube made of an I-type material, and the partition wall so that the narrow gap and the storage tank communicate with each other. a pore provided in the sodium-
It is a sulfur battery.

〔作用〕[Effect]

ナトリウム貯槽と電池反応部である固体電解質を上下に
隔壁で分離したこと、及び電池反応領域で硫黄と直接反
応するナトリウム量を最少量に押えたことにより、ナト
リウムと硫黄の直接反応の進展、拡大を防止する。固体
電解質内に配置した吸収管は、固体電解質内径面と吸収
管外径面とで狭い間隙を形成し、ナトリウムを充填する
容積を最小にする。放電反応で消費された分のすトリウ
ムは、ナトリウム貯槽から隔壁の孔を流して補給される
。逆に充電反応で生成したナトリウムは、上記間隙より
隔壁の穴を流れてナトリウム貯槽に戻る。
By separating the sodium storage tank and the solid electrolyte, which is the battery reaction area, by a partition wall above and below, and by minimizing the amount of sodium that directly reacts with sulfur in the battery reaction area, the direct reaction between sodium and sulfur has progressed and expanded. prevent. The absorption tube placed in the solid electrolyte forms a narrow gap between the solid electrolyte inner diameter surface and the absorption tube outer diameter surface to minimize the volume filled with sodium. The thorium consumed in the discharge reaction is replenished by flowing from the sodium storage tank through the holes in the partition wall. Conversely, the sodium produced by the charging reaction flows through the holes in the partition wall through the gap and returns to the sodium storage tank.

吸収管の他の作用は、ナトリウムと硫黄の直接反応によ
って上昇した温度または圧力により吸収管自身が破壊ま
たは変形して電池内の圧力を吸収し電池容器への影響を
防ぐ。
Another function of the absorption tube is that the absorption tube itself breaks or deforms due to the increased temperature or pressure caused by the direct reaction between sodium and sulfur, absorbing the pressure inside the battery and preventing it from affecting the battery container.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。第1図にその実
施例を示す。第1図は一実施例の電池の縦断面構成図で
ある。
Next, examples of the present invention will be described. An example is shown in FIG. FIG. 1 is a vertical cross-sectional configuration diagram of a battery according to an embodiment.

第1図において、1は上部容器、2は下部容器、3は固
体電解質、4はαアルミナ板であり、ここまでの構成は
前記第4図に示した従来のナトリウム−硫黄電池と同じ
である。4のαアルミナと固体電解質3とは一般にガラ
ス半田等で接続され、αアルミナ板4は上部容器1と下
部容器2を電気的に絶縁する働きをし、上、下の容器と
は熱圧接等で接続されている。固体電解質3には一般に
βアルミナ(N a zo−A Q 203 )が用い
られる。
In Fig. 1, 1 is an upper container, 2 is a lower container, 3 is a solid electrolyte, and 4 is an α-alumina plate, and the configuration up to this point is the same as the conventional sodium-sulfur battery shown in Fig. 4 above. . The α-alumina plate 4 and the solid electrolyte 3 are generally connected by glass solder, etc., and the α-alumina plate 4 serves to electrically insulate the upper container 1 and the lower container 2, and the upper and lower containers are connected by thermo-pressure welding, etc. connected with. β alumina (N azo-A Q 203 ) is generally used as the solid electrolyte 3 .

上部容器1と固体電解質3の上部、すなわちαアルミナ
板4の上には、隔壁17が設けられ、1の上部容器とで
ナトリウム貯槽21を形成する。
A partition wall 17 is provided above the upper container 1 and the solid electrolyte 3, that is, above the α-alumina plate 4, and the upper container 1 forms a sodium storage tank 21.

この隔壁17には固体電解質3の中に差し込まれ、下端
が盲の吸収管19の上端が取付けられている。この吸収
管19は、固体電解質3の破損によってナトリウムと硫
黄との直接反応が生じた場合の圧力を緩衝するものであ
る。すなわち、電池内圧力を吸収し、電池容器の破裂を
防止するものである。この吸収管19は、ある値の弾性
変形上限を越え、塑性変形するものである。
The upper end of an absorption tube 19, which is inserted into the solid electrolyte 3 and whose lower end is blind, is attached to the partition wall 17. This absorption tube 19 buffers the pressure when a direct reaction between sodium and sulfur occurs due to damage to the solid electrolyte 3. That is, it absorbs the internal pressure of the battery and prevents the battery container from bursting. This absorption tube 19 exceeds a certain upper limit of elastic deformation and undergoes plastic deformation.

固体電解質3の内径面と、吸収管19の外径面とで狭い
間隙22が形成され、間隙22とナトリウム貯槽21と
を結ぶ小孔18が隔壁17に設けられている。吸収管1
9の中には通常不活性ガス、例えばアルゴンガス等が減
圧状態又は大気圧程度に封じ込まれている。
A narrow gap 22 is formed between the inner diameter surface of the solid electrolyte 3 and the outer diameter surface of the absorption tube 19, and a small hole 18 connecting the gap 22 and the sodium storage tank 21 is provided in the partition wall 17. Absorption tube 1
Usually, an inert gas such as argon gas is sealed in the chamber 9 at a reduced pressure or about atmospheric pressure.

吸収管19は、ナトリウムと硫黄との反応によって上昇
する温度で軟化または溶解する材料、または圧力で破壊
もしくは変形(潰れて見かけの体積が減少)しやすい材
料、構造とする。その材料は電池の運転温度が300〜
350℃なので、軟化または溶解する温度が500℃前
後のものであればよい。吸収管は、パイプ状になってお
り、材質は5US304などが用いられる。この吸収管
はナトリウムに耐食性を持つものでなければならない、
不活性ガスを充填するとしたのは、空気が入るとナトリ
ウムと硫黄との反応を促進する恐れがあるからである。
The absorption tube 19 is made of a material that softens or melts at a temperature that increases due to the reaction between sodium and sulfur, or a material and structure that is easily destroyed or deformed (collapsed and its apparent volume is reduced) under pressure. The material has a battery operating temperature of 300~
Since the temperature is 350°C, it is sufficient if the softening or melting temperature is around 500°C. The absorption tube has a pipe shape and is made of material such as 5US304. This absorption tube must be corrosion resistant to sodium.
The reason for filling the chamber with inert gas is that if air enters, there is a risk that the reaction between sodium and sulfur will be accelerated.

この他の圧力吸収管としてはやわらかい材料で構成され
た内実のパイプ状のものであってもよい。また、圧力で
破壊する構造として、第2図に示すように吸収管19の
表面に応力集中を起こさせ破壊を促す切欠溝30を設け
ることができる。第2図において(1)は吸収管19の
縦断面図を示し、(2)は第2図(1)のr−r’断面
図である。下部容器2と固体電解質3の外径面とで形成
する隙間23には、陽極活物質である硫黄8が液位13
を持って封入されている。硫黄8は注入管10により注
入され、その後注入管は盲栓11で密閉される。他方、
陰極活物質7は注入管9よりナトリウム貯槽21と、隔
壁17の小孔18を流れて固体電解質3と吸収管19と
で形成する隙間22に充填される。硫黄8を充填する隙
間23で形成する体積は、電池反応に必要な硫黄全量を
充填できるだけの大きさが必要である。他方、ナトリウ
ムを充填する固体電解質3と吸収管19の間の隙間22
は電池反応に必要なナトリウム全量を充填するのではな
く、固体電解質3の内径面をぬらすだけのナトリウムを
充填できる大きさであればよい。此の隙間の大きさは、
固体電解質3の内径及び吸収管19の外径によって任意
に決定できる。放電反応によって隙間22のナトリウム
が消費されると、ナトリウム貯槽21より隔壁17の小
孔18を流してナトリウムが補給される。逆に、充電反
応でナトリウムが生成された場合には、隙間22より小
孔18を流してナトリウムをナトリウム貯槽に戻す。8
時間充放電サイクルのlKwh級ナトツナトリウム電池
を例にとると、電池反応に必要なナトリウム供給量は0
.23g/seeである。これだけのすトリウムを流す
ための小孔18は直径0 、5 am以下のものが1個
あれば良い。しかしナトリウムの詰りなどを考慮し一般
には直径1〜2IIw1程度の孔を1〜2個設けている
。小孔は複数個でも良い。
Other pressure absorbing tubes may be in the form of a solid pipe made of a soft material. Further, as a structure that can be destroyed by pressure, a notched groove 30 can be provided on the surface of the absorption tube 19 to cause stress concentration and promote destruction, as shown in FIG. In FIG. 2, (1) shows a longitudinal sectional view of the absorption tube 19, and (2) shows an rr' sectional view of FIG. 2 (1). In the gap 23 formed between the lower container 2 and the outer diameter surface of the solid electrolyte 3, sulfur 8, which is an anode active material, reaches a liquid level of 13.
It is enclosed with. Sulfur 8 is injected through an injection tube 10, after which the injection tube is sealed with a blind stopper 11. On the other hand,
The cathode active material 7 flows through the injection tube 9 into the sodium storage tank 21 and the small hole 18 of the partition wall 17, and is filled into the gap 22 formed between the solid electrolyte 3 and the absorption tube 19. The volume formed by the gap 23 filled with sulfur 8 needs to be large enough to fill the entire amount of sulfur required for the battery reaction. On the other hand, a gap 22 between the solid electrolyte 3 filled with sodium and the absorption tube 19
need not be filled with the entire amount of sodium necessary for the battery reaction, but may be of a size that can be filled with just enough sodium to wet the inner diameter surface of the solid electrolyte 3. The size of this gap is
It can be arbitrarily determined depending on the inner diameter of the solid electrolyte 3 and the outer diameter of the absorption tube 19. When the sodium in the gap 22 is consumed by the discharge reaction, sodium is replenished by flowing from the sodium storage tank 21 through the small holes 18 of the partition wall 17. Conversely, when sodium is generated by the charging reaction, the sodium flows through the small hole 18 through the gap 22 and returns to the sodium storage tank. 8
Taking as an example a lKwh class sodium battery with a time charge/discharge cycle, the amount of sodium supplied required for the battery reaction is 0.
.. It is 23g/see. In order to allow this amount of thorium to flow, it is sufficient to have one small hole 18 with a diameter of 0.5 am or less. However, in consideration of sodium clogging, etc., one or two holes with a diameter of about 1 to 2 IIw1 are generally provided. There may be a plurality of small holes.

前記隔壁17に設けられた小孔18の大きさを小さくす
れば、ナトリウムと硫黄との直接反応によって隙間22
に生じた反応物により、小孔18が閉塞される。したが
ってナトリウム貯槽21からのナトリウム流出を防止し
、電池の破壊拡大を防止することができる。この小孔1
8には、運転時にナトリウムが流れやすいように金属メ
ツシュなどのウィックを設けることもできる。このウィ
ック°があると、ナトリウム−硫黄直接反応時の反応物
による閉塞はより容易となる。
If the size of the small holes 18 provided in the partition wall 17 is reduced, the gap 22 will be reduced due to the direct reaction between sodium and sulfur.
The small pores 18 are blocked by the reactants generated. Therefore, it is possible to prevent the sodium from flowing out from the sodium storage tank 21, and to prevent the damage and expansion of the battery. This small hole 1
8 may be provided with a wick such as a metal mesh to facilitate the flow of sodium during operation. With this wick, blockage by reactants during the sodium-sulfur direct reaction becomes easier.

以上、本実施例によれば固体電解質3が劣化等により万
一破損しても硫黄8と直接反応にあずかるナトリウムの
量を最小限にでき、ナトリウムと硫黄の直接反応を抑制
でき、温度上昇、圧力上昇を最小限に抑えることができ
る。さらに万−電池内の温度及び圧力が上昇したとして
も、吸収管19が溶解または破壊されて圧力を吸収する
結果。
As described above, according to this embodiment, even if the solid electrolyte 3 is damaged due to deterioration or the like, the amount of sodium that directly reacts with the sulfur 8 can be minimized, the direct reaction between sodium and sulfur can be suppressed, and the temperature rise and Pressure rise can be minimized. Furthermore, even if the temperature and pressure inside the battery rises, the absorption tube 19 will melt or break and absorb the pressure.

最外側の電池容器を破損することはない。It will not damage the outermost battery container.

なお、第4図で説明した充填物16を第1図の電池の隙
間22に配置することができる。また硫黄側には、従来
例で説明した導電補助材が使用されている。
Note that the filler 16 described in FIG. 4 can be placed in the gap 22 of the battery in FIG. 1. Further, on the sulfur side, the conductive auxiliary material described in the conventional example is used.

次に、本発明に係るナトリウム−硫黄電池の他の実施例
について説明する。
Next, other embodiments of the sodium-sulfur battery according to the present invention will be described.

隔壁17に設ける孔18を小さくすることにより、ナト
リウムとの硫黄の直接反応生成物によって閉塞し、ナト
リウム貯槽からのナトリウムの流出を防止するが、さら
に閉塞を確実にするためには、温度上昇またはナトリウ
ム、硫黄及びその化合物との反応によって形状または性
状を変化させることにより小孔18を塞ぐ手段が存在す
る。小孔18の周囲に第3図に示すように、上記機能を
有する材料をはめ込んでおけば良い。第3図は孔18付
近の断面図である。温度によって変形する材料としては
具体的には形状記憶合金が考えられる。温度上昇によっ
て孔が塞がる形状記憶合金で隔壁17そのものを作るか
、隔壁17に形状記憶合金で作った小孔付き片31をは
め込む構造とする。
By reducing the size of the holes 18 in the partition wall 17, they are blocked by the direct reaction products of sulfur with sodium, preventing sodium from escaping from the sodium reservoir; however, to further ensure blockage, temperature increases or Means exist to close the pores 18 by changing their shape or properties by reaction with sodium, sulfur and their compounds. As shown in FIG. 3, a material having the above function may be fitted around the small hole 18. FIG. 3 is a sectional view of the vicinity of the hole 18. Specifically, a shape memory alloy can be considered as a material that deforms depending on temperature. Either the partition wall 17 itself is made of a shape memory alloy whose holes close when the temperature rises, or a piece 31 with small holes made of a shape memory alloy is fitted into the partition wall 17.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体電解質内、すなわち電池反応部に
おける硫黄との反応にあずかるナトリウム量を最小限に
制限できるので、固体電解質が破損した場合のナトリウ
ムと硫黄の直接反応の抑制が可能であり、電池性能を低
下させることなく固体電解質破損時の電池の安全性を飛
躍的に向上することができる。
According to the present invention, the amount of sodium that participates in the reaction with sulfur in the solid electrolyte, that is, in the battery reaction section, can be minimized, so it is possible to suppress the direct reaction between sodium and sulfur in the event that the solid electrolyte is damaged. , it is possible to dramatically improve battery safety in the event of solid electrolyte damage without reducing battery performance.

また、圧力吸収管が設けられているため、固体電解質破
損時の圧力上昇を緩和し、電池容器の破損を防ぐことが
できる。その結果、さらに安全性が向上する。
Further, since the pressure absorption tube is provided, it is possible to alleviate the pressure increase when the solid electrolyte is damaged and prevent damage to the battery container. As a result, safety is further improved.

【図面の簡単な説明】 第1図は本発明のナトリウム−硫黄電池の一実施例を示
す縦断面構成図、第2図は本発明の吸収管の構造の一実
施例断面構造図、第3図は本発明の隔壁の孔周囲構造を
示す断面図、第4図は従来のナトリウム−硫黄電池の構
造を示す縦断面構成図である。 17・・・隔壁、18・・・小孔、19・・・吸収管、
21・・・ナトリウム貯槽、22・・・隙間。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a vertical cross-sectional configuration diagram showing one embodiment of the sodium-sulfur battery of the present invention, FIG. 2 is a cross-sectional structural diagram of one embodiment of the structure of the absorption tube of the present invention, and FIG. The figure is a sectional view showing the structure around the holes of the partition wall of the present invention, and FIG. 4 is a vertical sectional view showing the structure of a conventional sodium-sulfur battery. 17... Partition wall, 18... Small hole, 19... Absorption tube,
21...Sodium storage tank, 22...Gap.

Claims (1)

【特許請求の範囲】 1、ナトリウムイオンが通過可能に構成されてなる固体
電解質を境にして、ナトリウムから成る陰極活物質と、
硫黄または多硫化ナトリウムを必須成分とする陽極活物
質とにより電池反応領域部が構成されてなるナトリウム
−硫黄電池において、 ナトリウムを貯蔵する貯槽と、 該貯槽と前記電池反応領域部とを分離する隔壁と、 前記固体電解質と狭隙を介して、当該固体電解質管の電
池内径側に設けられ、塑性材料で構成されて成る圧力吸
収管と、 前記狭隙と前記貯槽とが連通するように前記隔壁に設け
られた孔と、 を備えて成ることを特徴とするナトリウム−硫黄電池。 2、特許請求の範囲第1項において、前記孔は小孔であ
り、陽極活物質と陰極活物質との直接反応によつて生じ
た反応生成物により、当該小孔が閉塞されて成ることを
特徴とするナトリウム−硫黄電池。 3、特許請求の範囲第1項において、前記圧力吸収管は
、パイプの中に不活性ガスが減圧状態又は大気圧程度で
保持されて成ることを特徴とするナトリウム−硫黄電池
。 4、特許請求の範囲第1項において、前記圧力吸収管の
表面に切欠溝が設けられて成ることを特徴とするナトリ
ウム−硫黄電池。 5、特許請求の範囲第1項において、前記圧力吸収管は
400℃以上の温度で軟化または溶解する材料で構成さ
れて成ることを特徴とするナトリウム−硫黄電池。 6、特許請求の範囲第1項において、前記隔壁は、温度
上昇または陰極活物質と陽極活物質との直接反応によつ
て、当該隔壁に設けられた前記孔が閉塞される材料で構
成されていることを特徴とするナトリウム−硫黄電池。
[Claims] 1. A cathode active material made of sodium, separated by a solid electrolyte configured to allow passage of sodium ions;
In a sodium-sulfur battery in which a battery reaction region is constituted by an anode active material containing sulfur or sodium polysulfide as an essential component, a storage tank for storing sodium, and a partition wall separating the storage tank from the battery reaction region. a pressure absorbing tube made of a plastic material and provided on the battery inner diameter side of the solid electrolyte tube through a narrow gap between the solid electrolyte and the partition wall so that the narrow gap communicates with the storage tank. A sodium-sulfur battery comprising: a hole provided in the battery; and a hole provided in the battery. 2. In claim 1, the pore is a small hole, and the small hole is blocked by a reaction product generated by a direct reaction between an anode active material and a cathode active material. Features of sodium-sulfur battery. 3. The sodium-sulfur battery according to claim 1, wherein the pressure absorption pipe is formed by holding an inert gas in a reduced pressure state or at about atmospheric pressure. 4. The sodium-sulfur battery according to claim 1, characterized in that a cutout groove is provided on the surface of the pressure absorption tube. 5. The sodium-sulfur battery according to claim 1, wherein the pressure absorption tube is made of a material that softens or melts at a temperature of 400° C. or higher. 6. In claim 1, the partition wall is made of a material that allows the pores provided in the partition wall to be closed by an increase in temperature or a direct reaction between a cathode active material and an anode active material. A sodium-sulfur battery characterized by:
JP63209243A 1988-08-23 1988-08-23 Sodium-sulfur battery Expired - Lifetime JPH0766831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209243A JPH0766831B2 (en) 1988-08-23 1988-08-23 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209243A JPH0766831B2 (en) 1988-08-23 1988-08-23 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0256868A true JPH0256868A (en) 1990-02-26
JPH0766831B2 JPH0766831B2 (en) 1995-07-19

Family

ID=16569731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209243A Expired - Lifetime JPH0766831B2 (en) 1988-08-23 1988-08-23 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0766831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435691A (en) * 1993-02-13 1995-07-25 Robert Bosch Gmbh Aggregate for feeding fuel from supply tank to internal combustion engine of motor vehicles
GB2387621A (en) * 2002-04-01 2003-10-22 Visteon Global Tech Inc Fuel delivery module for petrol direct injection with supply line pressure regulator and return line shut-off valve to provide different fuel line pressures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041025A (en) * 1973-02-28 1975-04-15
JPS63170868A (en) * 1987-01-07 1988-07-14 Hitachi Ltd Sodium-sulfur battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041025A (en) * 1973-02-28 1975-04-15
JPS63170868A (en) * 1987-01-07 1988-07-14 Hitachi Ltd Sodium-sulfur battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435691A (en) * 1993-02-13 1995-07-25 Robert Bosch Gmbh Aggregate for feeding fuel from supply tank to internal combustion engine of motor vehicles
GB2387621A (en) * 2002-04-01 2003-10-22 Visteon Global Tech Inc Fuel delivery module for petrol direct injection with supply line pressure regulator and return line shut-off valve to provide different fuel line pressures
GB2387621B (en) * 2002-04-01 2004-09-01 Visteon Global Tech Inc Fuel delivery module for petrol direct injection applications including supply line pressure regulator and return line shut-off valve

Also Published As

Publication number Publication date
JPH0766831B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US4657830A (en) Sodium-sulfur storage battery
KR102028847B1 (en) Sodium-sulfur battery
US2614138A (en) Sealable storage battery construction
CN209843832U (en) Liquid metal battery
US4044191A (en) Electric cells
JPH0256868A (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JP3049151B2 (en) Sodium-sulfur battery
JP2895991B2 (en) Sodium-sulfur battery
JPH0240866A (en) Sodium-sulfur battery
JPH02226672A (en) Electrochemical battery
JP2708998B2 (en) Sodium-sulfur battery
JPH02112168A (en) Sodium-sulfur battery
JP3253827B2 (en) Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same
JP3377579B2 (en) Sodium-based secondary battery
JPS6110880A (en) Sodium-sulfur battery
JP4417681B2 (en) Sodium-sulfur battery
JP2561772B2 (en) Sodium-sulfur battery
JPS6226768A (en) Sodium-sulfur battery
JPS6020475A (en) Sodium-sulfur battery
JP2612888B2 (en) Sodium-sulfur battery
JP2001084997A (en) Lead-acid battery for automobile
JP2636022B2 (en) Sodium-sulfur battery
AU2020338256A1 (en) Electrochemical energy storage device
JPH01120771A (en) Reserve type nonaqueous battery