JP2612888B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP2612888B2
JP2612888B2 JP63049142A JP4914288A JP2612888B2 JP 2612888 B2 JP2612888 B2 JP 2612888B2 JP 63049142 A JP63049142 A JP 63049142A JP 4914288 A JP4914288 A JP 4914288A JP 2612888 B2 JP2612888 B2 JP 2612888B2
Authority
JP
Japan
Prior art keywords
sodium
wick
cathode
solid electrolyte
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63049142A
Other languages
Japanese (ja)
Other versions
JPH01225070A (en
Inventor
宏次 杉本
正念 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63049142A priority Critical patent/JP2612888B2/en
Publication of JPH01225070A publication Critical patent/JPH01225070A/en
Application granted granted Critical
Publication of JP2612888B2 publication Critical patent/JP2612888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池に関し、さらに詳しく
は陰極容器及び固体電解質管内に収納された安全対策用
のウイックの線径に関するものである。
Description: TECHNICAL FIELD The present invention relates to a sodium-sulfur battery, and more particularly to a wire diameter of a wick for safety measures housed in a cathode container and a solid electrolyte tube.

(従来の技術及び発明が解決しようとする課題) 最近、電気自動車用、夜間電力貯蔵用の二次電池とし
て性能面及び経済面の両面において優れ、300〜400℃で
作動する高温型のナトリウム−硫黄電池の研究開発が進
められている。
(Problems to be Solved by the Prior Art and the Invention) Recently, as a secondary battery for electric vehicles and nighttime power storage, a high-temperature type sodium battery which is excellent in both performance and economy and operates at 300 to 400 ° C. Research and development of sulfur batteries are underway.

即ち、性能面では、ナトリウム−硫黄電池は鉛蓄電池
に比べて理論エネルギー密度が高く、充放電時における
水素や酸素の発生といった副反応もなく、活物質の利用
率も高く、経済面ではナトリウム及び硫黄が安価である
という利点を有している。
That is, in terms of performance, a sodium-sulfur battery has a higher theoretical energy density than a lead-acid battery, has no side reactions such as generation of hydrogen or oxygen during charge and discharge, has a high utilization rate of active materials, and has an economical aspect of sodium and sulfur. It has the advantage that sulfur is cheap.

従来のナトリウム−硫黄電池は、第5図に示すように
下部に陽極端子1を備え、陽極活物質である溶融硫黄を
含浸したカーボンマット等の陽極用導電材Mを収納する
円筒状の陽極容器2と、該陽極容器2の上端部に対し、
αアルミナ製の絶縁リング3を介して連結され、かつ溶
融金属ナトリウムNaを貯留する陰極容器4と、前記絶縁
リング3の内周部に固着され、かつ陰極活物質であるナ
トリウムイオンを選択的に透過させる機能を有した下方
へ延びる円筒状の袋管を形成するβアルミナ製の固体電
解質管5とからなっている。又、陰極容器4の上部蓋の
中央部には、該陰極容器4を通して固体電解質管5底部
まで延びた細長い陰極管6が貫通支持され、該陰極管6
の上端部には、陰極端子7が固着されている。
A conventional sodium-sulfur battery has an anode terminal 1 at a lower portion as shown in FIG. 5, and a cylindrical anode container for accommodating an anode conductive material M such as a carbon mat impregnated with molten sulfur as an anode active material. 2 and the upper end of the anode container 2
a cathode container 4 that is connected through an insulating ring 3 made of α-alumina and stores molten sodium metal Na; and a sodium ion that is fixed to the inner peripheral portion of the insulating ring 3 and selectively serves as a cathode active material. And a solid electrolyte tube 5 made of β-alumina, which forms a cylindrical bag tube extending downward and having a function of transmitting light. An elongated cathode tube 6 extending through the cathode container 4 to the bottom of the solid electrolyte tube 5 is supported through the center of the upper lid of the cathode container 4.
The cathode terminal 7 is fixed to the upper end of the.

そして、放電時には次のような反応によってナトリウ
ムイオンが固体電解質管5を透過して陽極容器2内の硫
黄と反応し、多硫化ナトリウムを生成する。
At the time of discharge, sodium ions permeate through the solid electrolyte tube 5 and react with sulfur in the anode container 2 by the following reaction to generate sodium polysulfide.

2Na+XS→Na2Sx 又、充電時には放電時とは逆の反応が起こり、ナトリ
ウム及び硫黄が生成される。
2Na + XS → Na 2 Sx Also, at the time of charging, a reaction opposite to that at the time of discharging occurs, and sodium and sulfur are generated.

前記陰極容器4及び固体電解質管5内には、該固体電
解質管5が破損した場合の安全対策として、ステンレス
製のウイック8(繊維)が充填されている。このウイッ
ク8の線径Dは、従来ほぼ8μmに統一され、ウイック
8以外の空間の占める割合、つまり空孔率Rは97%と一
定に保持されている。
The wick 8 (fiber) made of stainless steel is filled in the cathode container 4 and the solid electrolyte tube 5 as a safety measure when the solid electrolyte tube 5 is broken. The wire diameter D of the wick 8 is conventionally unified to approximately 8 μm, and the ratio occupied by the space other than the wick 8, that is, the porosity R is kept constant at 97%.

ところが、前述したナトリウム−硫黄電池は、ウイッ
ク8全体の線径Dが同じであるため、充電あるいは放電
時、特に放電時に固体電解質管5内の溶融金属ナトリウ
ムの上部液面が均等に上昇あるいは降下し、この結果陰
極管6自身のもつ電気抵抗が大きくなり、電池エネルギ
ー効率が低下するという問題があった。
However, in the above-described sodium-sulfur battery, since the wire diameter D of the entire wick 8 is the same, the upper liquid level of the molten metal sodium in the solid electrolyte tube 5 rises or falls even at the time of charging or discharging, particularly at the time of discharging. However, as a result, there is a problem that the electric resistance of the cathode tube 6 itself is increased, and the battery energy efficiency is reduced.

又、陰極容器4から固体電解質管5内へのナトリウム
の移動がスムーズに行われず、この結果ナトリウムの利
用率を向上することができないという問題もあった。こ
のようにナトリウムの利用率が低いと、電池容量を向上
することができないばかりでなく、電池容量のバラツキ
が生じるという問題もあった。
In addition, there was a problem that the movement of sodium from the cathode container 4 into the solid electrolyte tube 5 was not performed smoothly, and as a result, the utilization rate of sodium could not be improved. When the utilization rate of sodium is low, not only the battery capacity cannot be improved, but also the battery capacity varies.

本発明の第1の目的は上記問題点を解消して電池の充
電時あるいは放電時に陰極管の電気抵抗を軽減して電池
エネルギー効率を向上することができるナトリウム−硫
黄電池を提供することにある。
A first object of the present invention is to provide a sodium-sulfur battery capable of solving the above-mentioned problems and reducing the electric resistance of the cathode tube at the time of charging or discharging the battery and improving the energy efficiency of the battery. .

又、本発明の第2の目的は、第1の目的に加えて、陰
極容器内のナトリウムの利用率を向上して、電池容量を
アップし、さらに、陰極容器内へのナトリウムの充填量
を減少し、電池を小型化することができるナトリウム−
硫黄電池を提供することにある。
A second object of the present invention, in addition to the first object, is to improve the utilization rate of sodium in the cathode container, increase the battery capacity, and further reduce the amount of sodium filled in the cathode container. Sodium-which can reduce and reduce the size of the battery
It is to provide a sulfur battery.

(課題を解決するための手段) 請求項1記載のナトリウム−硫黄電池は、第1の目的
を達成するため、陽極用導電材を貯留する有底筒状の陽
極容器の上部に対し、絶縁リングを介して、溶融金属ナ
トリウムを貯留する有蓋筒状の陰極容器を接合固定し、
前記陽極容器の内部には、上端を前記絶縁リングの内周
部に固着して前記陰極容器内部と連通し、かつ陰極作用
物質であるナトリウムイオンを選択的に透過させる機能
を有した有底筒状の固体電解質管を配設し、さらに、前
記陰極容器の上蓋を貫通して前記固体電解質管内に進入
する陰極管を備え、前記陰極容器及び固体電解質管の内
部に該固体電解質管が破壊した場合の安全対策用のウイ
ックを充填してなるナトリウム−硫黄電池において、 前記陰極管の固体電解質管と対応する外周壁面側のウ
イックの線径を小さくし、該ウイックの外側に位置する
ウイック及び陰極容器内のウイックの線径を大きくする
という手段をとっている。
(Means for Solving the Problems) In order to achieve the first object, the sodium-sulfur battery according to claim 1 has an insulating ring on an upper part of a bottomed cylindrical anode container for storing a conductive material for an anode. Through, jointed and fixed a closed cylindrical cathode container that stores molten metal sodium,
Inside the anode container, a bottomed cylinder having an upper end fixed to an inner peripheral portion of the insulating ring and communicating with the inside of the cathode container, and having a function of selectively transmitting sodium ions as a cathode active substance. A solid electrolyte tube, further comprising a cathode tube penetrating through the upper lid of the cathode container and entering the solid electrolyte tube, wherein the solid electrolyte tube was broken inside the cathode container and the solid electrolyte tube. In the case of a sodium-sulfur battery filled with a wick for safety measures in the case, the wire diameter of the wick on the outer peripheral wall side corresponding to the solid electrolyte tube of the cathode tube is reduced, and the wick and the cathode located outside the wick The measure is to increase the wire diameter of the wick in the container.

又、請求項2記載のナトリウム−硫黄電池は請求項1
記載のナトリウム−硫黄電池において、固体電解質管の
内周壁面側のウィックの線径を、前記陰極管の固体電解
質管と対応する外周壁面側のウイックの線径と同様に小
さくし、さらに、両ウイックの間のウイックの線径及び
陰極容器内のウイックの線径を大きくするという手段を
とっている。
The sodium-sulfur battery according to the second aspect is the first aspect.
In the sodium-sulfur battery according to the above, the wire diameter of the wick on the inner peripheral wall surface side of the solid electrolyte tube is reduced similarly to the wire diameter of the wick on the outer peripheral wall surface corresponding to the solid electrolyte tube of the cathode tube. A measure is taken to increase the wire diameter of the wick between the wicks and the wire diameter of the wick in the cathode container.

(作用) 請求項1記載のナトリウム−硫黄電池は、放電末期に
なり固体電解質管内のナトリウムの上部液面が低下して
も、陰極管の外周壁面側では線径の細いウイックの毛細
管現象によるナトリウムの浸み上り効果により陰極管の
外周壁面がナトリウムと長時間接触しているので、陰極
管の電気抵抗の増大が抑制され、電池エネルギー効率が
低下することはない。
(Operation) The sodium-sulfur battery according to claim 1 is characterized in that even if the upper liquid level of sodium in the solid electrolyte tube drops at the end of discharge, the sodium wick due to the capillary effect of a wick having a small wire diameter on the outer peripheral wall surface of the cathode tube. Since the outer peripheral wall surface of the cathode tube is in contact with sodium for a long time due to the infiltration effect, the increase in electric resistance of the cathode tube is suppressed, and the battery energy efficiency does not decrease.

又、請求項2記載のナトリウム−硫黄電池は、陰極容
器内の線径の大きいウイックの間隙から固体電解質管内
の線径の小さいウイックの間隙へのナトリウムの移動が
スムーズに行われ、かつ固体電解質管内壁側では線径の
小さいウイックの毛細管現象によるナトリウムの浸み上
り効果により、固体電解質管内壁面の広い範囲でナトリ
ウムイオンが浸透し、この結果ナトリウムの利用率が向
上する。
Also, in the sodium-sulfur battery according to the second aspect, the movement of sodium from the gap of the wick having a large diameter in the cathode vessel to the gap of the wick having a small diameter in the solid electrolyte tube is smoothly performed, and the solid electrolyte is solid electrolyte. On the inner wall side of the tube, sodium ions permeate over a wide area of the inner wall surface of the solid electrolyte tube due to the infiltration effect of sodium by a capillary phenomenon of a wick having a small wire diameter, and as a result, the utilization rate of sodium is improved.

(実施例) 次に、請求項1記載のナトリウム−硫黄電池を具体化
した一実施例を第1図〜第3図に従って説明する。
(Embodiment) Next, an embodiment of the sodium-sulfur battery according to claim 1 will be described with reference to FIGS.

この実施例のナトリウム−硫黄電池は、後述する特徴
部分、つまりウイック8a〜8cの線径D1〜D3を除いて、前
述した第5図に示す従来のナトリウム−硫黄電池と構造
が同様である。すなわち、この実施例のナトリウム−硫
黄電池も、第1図及び第2図に示すように下部に陽極端
子1を備えた陽極用導電材Mを貯留する円筒状の陽極容
器2と、該陽極容器2の上端部に対し、αアルミナ製の
絶縁リング3を介して連結され、かつ溶融金属ナトリウ
ムNaを貯留する陰極容器4と、前記絶縁リング3の内周
部に固着され、βアルミナ製の固体電解質管5と、陰極
端子7を備えた陰極管6とにより構成されている。
The structure of the sodium-sulfur battery of this embodiment is the same as that of the conventional sodium-sulfur battery shown in FIG. 5 except for a characteristic portion described later, that is, the wire diameters D1 to D3 of the wicks 8a to 8c. That is, the sodium-sulfur battery of this embodiment also has a cylindrical anode container 2 for storing an anode conductive material M having an anode terminal 1 at a lower portion as shown in FIG. 1 and FIG. A cathode container 4 that is connected to an upper end portion of an insulating ring 3 through an α-alumina insulating ring 3 and stores molten sodium metal Na; and is fixed to an inner peripheral portion of the insulating ring 3 to form a β-alumina solid. It is composed of an electrolyte tube 5 and a cathode tube 6 having a cathode terminal 7.

従って、電池の放電時には溶融金属ナトリウムはナト
リウムイオンとなって固体電解質管5を浸透し、陽極容
器2及び固体電解質管5で区画形成された陽極用導電材
Mの収容空間に入り、そこで前述した反応式に基づいて
硫黄と反応し多硫化ナトリウム、特に最終的には三硫化
ナトリウムを生成する。
Therefore, when the battery is discharged, the molten metal sodium becomes sodium ions and permeates the solid electrolyte tube 5 and enters the space for accommodating the anode conductive material M defined by the anode container 2 and the solid electrolyte tube 5, where it is described above. It reacts with sulfur based on the reaction formula to form sodium polysulfide, especially finally sodium trisulfide.

次に、本発明のナトリウム−硫黄電池の特徴的構成を
説明する。
Next, the characteristic configuration of the sodium-sulfur battery of the present invention will be described.

前記陰極管6の外周壁面側に充填するウイック8aの線
径D1は、5〜20μm、空孔率R1は98%未満、厚さTは0.
1〜5mmである。又、固体電解質管5内壁面側に充填する
ウイック8bの線径D2は、20〜50μm、空孔率R2は、95%
以上の範囲である。さらに、陰極容器4内に配置するウ
イック8cの線径D3は、20〜50μm、空孔率R3は、95%以
上の範囲である。
The wire diameter D1 of the wick 8a filling the outer peripheral wall surface side of the cathode tube 6 is 5 to 20 μm, the porosity R1 is less than 98%, and the thickness T is 0.
1 to 5 mm. The wire diameter D2 of the wick 8b filling the inner wall surface side of the solid electrolyte tube 5 is 20 to 50 μm, and the porosity R2 is 95%.
This is the above range. Further, the wire diameter D3 of the wick 8c disposed in the cathode container 4 is in the range of 20 to 50 μm, and the porosity R3 is in the range of 95% or more.

従って、放電時において陰極管6の外周壁面側の線径
D1の小さいウイック8aの毛細管現象でナトリウムの陰極
管6の外周壁面での浸み上がり保持効果により、放電末
期になり固体電解質管5内のナトリウムの上部液面が低
下しても、ナトリウムが第3図に鎖線で示すように陰極
管6の上部外周壁面と接触して、該陰極管6の電気抵抗
の上昇を防止することができ、電池エネルギー効率の低
下を抑制することができる。
Accordingly, the wire diameter on the outer peripheral wall side of the cathode tube 6 during discharge
Due to the capillary effect of the small wick 8a having a small D1 and the effect of sodium soaking up on the outer peripheral wall surface of the cathode tube 6 and maintaining the upper liquid level of sodium in the solid electrolyte tube 5 at the end of discharge, the sodium remains As shown by the dashed line in FIG. 3, the contact with the upper outer peripheral wall surface of the cathode tube 6 can prevent an increase in electric resistance of the cathode tube 6, and can suppress a decrease in battery energy efficiency.

なお、前記固体電解質管5の外径は例えば1.5cm、流
さは15cm、又は外径5cm、長さ40cmというように、外径
に対する長さの比を5〜10の範囲に設定するのが、固体
電解質管5の製造上の真直度向上及び欠陥品の発生率低
減による歩留まりの向上と、性能の良好な安価な電池を
得る上で望ましい。
Note that the outer diameter of the solid electrolyte tube 5 is, for example, 1.5 cm, the flow is 15 cm, or the outer diameter is 5 cm, the length is 40 cm, and the ratio of the length to the outer diameter is set in the range of 5 to 10, It is desirable to improve the straightness in manufacturing the solid electrolyte tube 5 and to improve the yield by reducing the incidence of defective products, and to obtain an inexpensive battery with good performance.

又、前記固体電解質管5の外径を例えば1.5cm、肉厚
を0.09cm、外径5cm、肉厚を0.25cmというように、外径
に対する肉厚の比を0.035〜0.065の範囲に設定するの
が、固体電解質管5の製造上の真円度向上及び欠陥品の
発生率低減による歩留まりの向上と、性能の良好な安価
な電池を得る上で望ましい。
In addition, the ratio of the wall thickness to the outer diameter is set in the range of 0.035 to 0.065 such that the outer diameter of the solid electrolyte tube 5 is, for example, 1.5 cm, the wall thickness is 0.09 cm, the outer diameter is 5 cm, and the wall thickness is 0.25 cm. This is desirable for improving the roundness in the production of the solid electrolyte tube 5, improving the yield by reducing the incidence of defective products, and obtaining an inexpensive battery with good performance.

次に第4図により請求項2記載のナトリウム−硫黄電
池の一実施例を説明する。
Next, an embodiment of the sodium-sulfur battery according to claim 2 will be described with reference to FIG.

この実施例では請求項1記載のナトリウム−硫黄電池
において、前記固体電解質管5の内周壁面側のウイック
8dの線径D4を、前記陰極管6の外壁面側のウイック8aの
線径D1と同様に小さくし、両ウイック8a,8dの間のウイ
ック8b′の線径D2′及び陰極容器4内のウイック8cの線
径D3を請求項1の実施例と同様に大きくしている。な
お、ウイック8dの空孔率R4及びウイック8b′の空孔率R
2′も、ウイック8a及びウイック8bの空孔率R1、R2と同
じである。
In this embodiment, in the sodium-sulfur battery according to claim 1, a wick on the inner peripheral wall surface side of the solid electrolyte tube 5 is provided.
The wire diameter D4 of the wick 8a on the outer wall surface side of the cathode tube 6 is reduced similarly to the wire diameter D4 of the wick 8b, and the wire diameter D2 'of the wick 8b' between the wicks 8a and 8d and the inside of the cathode vessel 4 are reduced. The wire diameter D3 of the wick 8c is increased similarly to the first embodiment. The porosity R4 of the wick 8d and the porosity R of the wick 8b '
2 'is also the same as the porosity R1, R2 of the wick 8a and the wick 8b.

従って、この実施例のナトリウム−硫黄電池は、放電
時において陰極容器4内の線径D3の大きいウイック8cの
間隙から固体電解質管5内壁面側の線径D4の小さいウイ
ック8dの間隙へのナトリウムの移動がスムーズに行わ
れ、かつ固体電解質管内壁側では線径の小さいウイック
8dの毛細管現象によるナトリウムの浸み上り効果によ
り、固体電解質管内壁面の広い範囲でナトリウムイオン
が浸透し、この結果ナトリウムの利用率が向上する。従
って、電池容量をアップし、ナトリウムの充填量を少な
くして、電池を小型化することができる。
Therefore, the sodium-sulfur battery of this embodiment is characterized in that sodium is discharged from the gap between the wick 8c having a large wire diameter D3 in the cathode vessel 4 to the gap between the wicks 8d having a small wire diameter D4 on the inner wall surface side of the solid electrolyte tube 5 during discharging. The wick moves smoothly and the wick has a small wire diameter on the inner wall of the solid electrolyte tube.
Due to the soaking up effect of sodium by the capillary action of 8d, sodium ions permeate over a wide area of the inner wall surface of the solid electrolyte tube, and as a result, the utilization rate of sodium is improved. Therefore, the battery capacity can be increased and the amount of sodium filling can be reduced, and the battery can be downsized.

なお、本発明は次のように具体化することも可能であ
る。
The present invention can be embodied as follows.

前記ウイック8a〜8dの材質をステンレス以外に、例え
ばニッケル等の耐ナトリウム性を有する材質にするこ
と。
The wicks 8a to 8d are made of a material having sodium resistance such as nickel, for example, other than stainless steel.

(発明の効果) 以上詳述したように、請求項1記載のナトリウム−硫
黄電池は、陰極管の固体電解質管と対応する外周面側の
径の細いウイックのナトリウム浸み上がり効果により、
陰極管の外壁面にナトリウムを長時間接触させて陰極管
の電気抵抗の上昇を抑制し、電池エネルギー効率の低下
を抑制することができる。
(Effects of the Invention) As described in detail above, the sodium-sulfur battery according to claim 1 has a sodium immersion effect of a small-diameter wick on the outer peripheral surface corresponding to the solid electrolyte tube of the cathode tube.
By bringing sodium into contact with the outer wall surface of the cathode tube for a long time, an increase in the electric resistance of the cathode tube can be suppressed, and a decrease in battery energy efficiency can be suppressed.

又、請求項2記載のナトリウム−硫黄電池は、請求項
1記載のナトリウム−硫黄電池の効果に加えて、陰極容
器のナトリウム利用率を向上し、電池容量をアップする
ことができる効果がある。又、ナトリウム利用率が高ま
るので、その充填量を減少することができ、電池の小型
化を図ることができる効果がある。
In addition, the sodium-sulfur battery according to the second aspect has the effect of improving the sodium utilization of the cathode container and increasing the battery capacity in addition to the effect of the sodium-sulfur battery according to the first aspect. In addition, since the sodium utilization rate is increased, the filling amount can be reduced, and the size of the battery can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は請求項1記載のナトリウム−硫黄電池の中央部
縦断面図、第2図は第1図の拡大横断面図、第3図は要
部の拡大断面図、第4図は請求項2記載のナトリウム−
硫黄電池の一実施例を示す中央部縦断面図、第5図は従
来のナトリウム−硫黄電池の中央部縦断面図である。 2……陽極容器、3……絶縁リング、4……陰極容器、
5……固体電解質管、6……陰極管、8a……陰極管6の
外周面側のウイック、8b……固体電解質管5の内周面と
ウイック8aとの間に位置するウイック、8c……陰極容器
4内のウイック、8d……固体電解質管5の内周面側に位
置するウイック、8b′…前記ウイック8aと8dとの間に位
置するウイック、D1〜D4……ウイック8a〜8dの線径、
D′……ウイック8b′の線径、R1〜R4……ウイック8a〜
8dの充填状態の空孔率、R2′……ウイック8b′の充填状
態の空孔率、M……陽極用導電材。
1 is a longitudinal sectional view of a central portion of the sodium-sulfur battery according to claim 1, FIG. 2 is an enlarged transverse sectional view of FIG. 1, FIG. 3 is an enlarged sectional view of a main part, and FIG. Sodium according to 2-
FIG. 5 is a longitudinal sectional view of a central portion of a conventional sodium-sulfur battery showing an embodiment of a sulfur battery. 2 ... Anode container, 3 ... Insulation ring, 4 ... Cathode container,
5: solid electrolyte tube, 6: cathode tube, 8a: wick on the outer peripheral surface side of cathode tube 6, 8b: wick located between inner peripheral surface of solid electrolyte tube 5 and wick 8a, 8c ... A wick in the cathode container 4; 8d; a wick located on the inner peripheral surface side of the solid electrolyte tube 5; Wire diameter,
D ': Wire diameter of wick 8b', R1 ~ R4 ... Wick 8a ~
The porosity of the filled state of 8d, R2 '... The porosity of the wick 8b' in the filled state, M...

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽極作用物質である溶融硫黄を含んだカー
ボンマツト等の陽極用導電材(M)を貯留する有底筒状
の陽極容器(2)の上部に対し、絶縁リング(3)を介
して、溶融金属ナトリウム(Na)を貯留する有蓋筒状の
陰極容器(4)を接合固定し、前記陽極容器(2)の内
部には、上端を前記絶縁リング(3)の内周部に固着し
て前記陰極容器(4)内部と連通し、かつ陰極作用物質
であるナトリウムイオンを選択的に透過させる機能を有
した有底筒状の固体電解質管(5)を配設し、さらに、
前記陰極容器(4)の上蓋を貫通して前記固体電解質管
(5)内に進入する陰極管(6)を備え、前記陰極容器
(4)及び固体電解質管(5)の内部に各固体電解質管
(5)が破壊した場合の安全対策用のステンレス又はニ
ッケル等の耐ナトリウム性を有するウイック(8)を充
填してなるナトリウム−硫黄電池において、 前記陰極管(6)の固体電解質管(5)と対応する外周
壁面側のウイック(8a)の線径(D1)を小さくし、該ウ
イック(8a)の外側に位置するウイック(8b)及び陰極
容器(4)内のウイック(8c)の線径(D2,D3)を大き
くしたことを特徴とするナトリウム−硫黄電池。
An insulating ring (3) is provided on an upper part of a bottomed cylindrical anode container (2) for storing a conductive material (M) for an anode such as carbon matte containing molten sulfur as an anode active substance. A cathode cylindrical container (4) having a cylindrical shape for storing molten metal sodium (Na) is fixedly connected thereto, and an upper end thereof is provided inside the anode container (2) at an inner peripheral portion of the insulating ring (3). A bottomed cylindrical solid electrolyte tube (5), which is fixed and communicates with the inside of the cathode container (4) and has a function of selectively transmitting sodium ions as a cathode active substance,
A cathode tube (6) that penetrates through the upper lid of the cathode container (4) and enters the solid electrolyte tube (5); and each solid electrolyte is provided inside the cathode container (4) and the solid electrolyte tube (5). In a sodium-sulfur battery filled with a sodium-resistant wick (8) such as stainless steel or nickel for safety measures when the tube (5) is broken, a solid electrolyte tube (5) of the cathode tube (6) is provided. ), The wire diameter (D1) of the wick (8a) on the outer peripheral wall side corresponding to the wick (8b) located outside the wick (8a) and the wick (8c) in the cathode container (4) are reduced. A sodium-sulfur battery having a large diameter (D2, D3).
【請求項2】請求項1記載のナトリウム−硫黄電池にお
いて、固体電解質管(5)の内周壁面側のウィック(8
d)の線径(D4)を、前記陰極管(6)の固体電解質管
(5)と対応する外周壁面側のウイック(8a)の線径
(D1)と同様に小さくし、さらに、両ウイック(8a,8
d)の間のウイック(8b′)の線径(D2′)及び陰極容
器(4)内のウイック(8c)の線径(D3)を大きくした
ことを特徴とするナトリウム−硫黄電池。
2. The wick (8) on the inner peripheral wall side of the solid electrolyte tube (5) in the sodium-sulfur battery according to claim 1.
The wire diameter (D4) of (d) is reduced similarly to the wire diameter (D1) of the wick (8a) on the outer peripheral wall side corresponding to the solid electrolyte tube (5) of the cathode tube (6). (8a, 8
A sodium-sulfur battery wherein the wire diameter (D2 ') of the wick (8b') and the wire diameter (D3) of the wick (8c) in the cathode container (4) during d) are increased.
JP63049142A 1988-03-01 1988-03-01 Sodium-sulfur battery Expired - Lifetime JP2612888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049142A JP2612888B2 (en) 1988-03-01 1988-03-01 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049142A JP2612888B2 (en) 1988-03-01 1988-03-01 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH01225070A JPH01225070A (en) 1989-09-07
JP2612888B2 true JP2612888B2 (en) 1997-05-21

Family

ID=12822834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049142A Expired - Lifetime JP2612888B2 (en) 1988-03-01 1988-03-01 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2612888B2 (en)

Also Published As

Publication number Publication date
JPH01225070A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
US3811943A (en) Mass transportation electrode for energy conversion device
US4376811A (en) Electrochemical cell
JPH01194276A (en) Electrochemical cell
US4357398A (en) Electrochemical cell having cylindrical electrode elements
CN209843832U (en) Liquid metal battery
US4076902A (en) Sodium-sulfur storage battery
US4004067A (en) Rechargeable electrochemical cell
US4492742A (en) Electrochemical storage cell
US4011367A (en) Sodium-sulphur electric cells
JPS5825086A (en) Electrochemical storage battery
JP2612888B2 (en) Sodium-sulfur battery
JPS5928031B2 (en) sodium-sulfur battery
US4004068A (en) Electrochemical cell of a rechargeable nature
JP2568622B2 (en) Sodium-sulfur battery
JP2612894B2 (en) Sodium-sulfur battery
JP2635989B2 (en) Sodium-sulfur battery
JPH01221867A (en) Sodium-sulfur battery
JPH0631648Y2 (en) Sodium-sulfur battery
JP2614262B2 (en) Sodium-sulfur battery
JPS63294671A (en) Sodium-sulfur cell
US4230780A (en) Sodium-sulphur electric cell
JPS6353865A (en) Sodium-sulfur battery
JP2708998B2 (en) Sodium-sulfur battery
JP2526285Y2 (en) Sodium-sulfur battery
AU2020338256A1 (en) Electrochemical energy storage device