JPH11329488A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH11329488A
JPH11329488A JP10138513A JP13851398A JPH11329488A JP H11329488 A JPH11329488 A JP H11329488A JP 10138513 A JP10138513 A JP 10138513A JP 13851398 A JP13851398 A JP 13851398A JP H11329488 A JPH11329488 A JP H11329488A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
sodium
anode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10138513A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kawaguchi
敏幸 川口
Taku Oshima
卓 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10138513A priority Critical patent/JPH11329488A/en
Publication of JPH11329488A publication Critical patent/JPH11329488A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sodium-sulfur battery capable of preventing breakage of a solid electrolyte tube when the battery temperature falls and capable of being manufactured at a lower cost. SOLUTION: In this sodium-sulfur battery, a bottomed, cylindrical solid electrolyte tube 5 is housed within a bottomed, cylindrical positive-electrode container 1, an upper end part of the positive-electrode container 1 and an upper end part of the solid electrolyte tube 5 are joined/fixed together by an insulation ring 4, an upper end opening part of the insulation ring 4 is sealed up with a negative-electrode lid 6, a positive-electrode conducting material 7 impregnated with sulfur S as a positive-electrode active material is housed in a positive- electrode chamber R1 formed between the positive-electrode container 1 and the solid electrolyte tube 5, and sodium Na as a negative-electrode active material is housed in a negative-electrode chamber R2 formed within the solid electrolyte tube 5. A contractive bag body 10 easily contractible in the axial direction of the battery is provided between a bottom part upper surface of the positive- electrode container 1 and a bottom part under surface of the solid electrolyte tube 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、電力貯蔵用の二
次電池として好適に利用されるナトリウム−硫黄電池に
関するものである。
TECHNICAL FIELD The present invention relates to a sodium-sulfur battery suitably used as a secondary battery for storing electric power.

【0002】[0002]

【従来の技術】 従来のナトリウム−硫黄電池において
は、有底円筒状の陽極容器の内部に同じく有底円筒状を
なすβ−アルミナ製の固体電解質管を収容して、陽極容
器及び固体電解質管の上端部間を絶縁リングにより気密
的に接合固定し、該絶縁リングの上端開口部を陰極蓋に
より密閉している。また、陽極容器と固体電解質管との
間に形成された陽極室には陽極活物質としての硫黄を含
浸したカーボンマット等よりなる肉厚円筒状の陽極用導
電材を収容するとともに、固体電解質管内部の陰極室に
は陰極活物質としてのナトリウムを収容している。
2. Description of the Related Art In a conventional sodium-sulfur battery, a bottomed cylindrical solid electrolyte tube made of β-alumina is accommodated inside a bottomed cylindrical anode container, and the anode container and the solid electrolyte tube are placed in the same. Are joined and fixed air-tight with an insulating ring, and the opening at the upper end of the insulating ring is sealed with a cathode lid. The anode chamber formed between the anode container and the solid electrolyte tube accommodates a thick cylindrical conductive material for the anode, such as a carbon mat impregnated with sulfur, as an anode active material. The internal cathode chamber contains sodium as a cathode active material.

【0003】 そして、放電時には、300〜350℃
に加熱された状態で、前記陰極室内の溶融ナトリウムが
電子を放出してナトリウムイオンとなり、固体電解質管
を透過して陽極室に移動し、陽極室の硫黄及び外部回路
を通ってきた電子と反応して多硫化ナトリウムを生成す
るとともに電圧を発生する。また、充電時には、放電時
とは逆に多硫化ナトリウムからナトリウム及び硫黄が生
成する反応が起こる。
[0003] At the time of discharge, 300 to 350 ° C
When heated, the molten sodium in the cathode chamber emits electrons to become sodium ions, passes through the solid electrolyte tube, moves to the anode chamber, and reacts with sulfur in the anode chamber and electrons that have passed through the external circuit. To generate sodium polysulfide and generate voltage. Further, at the time of charging, a reaction occurs in which sodium and sulfur are generated from sodium polysulfide, contrary to the time of discharging.

【0004】 ところで、この従来構造のナトリウム−
硫黄電池は、陽極容器の底部上面と固体電解質管の底部
下面とにより形成された間隙に多硫化ナトリウムが堆積
しやすく、電池を加熱動作させた状態から降温して停止
状態に移行した際における、この堆積した多硫化ナトリ
ウムの液体から固体への状態変化と、固体電解質管と陽
極容器との熱膨張率の相違とにより、固体電解質管に応
力が作用し、該固体電解質管が破壊されるという問題が
あった。
By the way, the conventional sodium-
In the sulfur battery, sodium polysulfide is easily deposited in a gap formed by the bottom upper surface of the anode container and the bottom lower surface of the solid electrolyte tube, and when the battery is heated, the temperature is lowered and the state is shifted to a stopped state. Due to the change in state of the deposited sodium polysulfide from liquid to solid and the difference in the coefficient of thermal expansion between the solid electrolyte tube and the anode container, stress acts on the solid electrolyte tube and the solid electrolyte tube is broken. There was a problem.

【0005】 すなわち、陽極容器はアルミニウム等に
より形成され、固体電解質管はβ−アルミナ等により形
成されているため、両者は熱膨張率が相違する。このた
め、電池の加熱動作時には、陽極容器が固体電解質管よ
りも大きく膨張して、陽極容器の底部上面と固体電解質
管の底部下面との間隙が大きくなり、一方、電池の低温
停止時には、陽極容器が固体電解質管よりも大きく収縮
して、前記間隙は小さくなる。しかし、電池の加熱動作
時に生成された多硫化ナトリウムが、溶融状態で前記間
隙に侵入し、そこに残留したまま、電池停止の温度低下
に伴って溶融状態から固体化すると、その固体化した多
硫化ナトリウムにより電池停止時における前記間隙の寸
法変化が阻止され、陽極容器の収縮によって、固体電解
質管が強く圧縮され破損するおそれがあった。
That is, since the anode container is formed of aluminum or the like and the solid electrolyte tube is formed of β-alumina or the like, the two have different coefficients of thermal expansion. Therefore, during the heating operation of the battery, the anode container expands more than the solid electrolyte tube, and the gap between the upper surface of the bottom of the anode container and the lower surface of the bottom of the solid electrolyte tube becomes larger. The gap shrinks as the container shrinks more than the solid electrolyte tube. However, if sodium polysulfide generated during the heating operation of the battery enters the gap in a molten state and remains there and solidifies from the molten state with a decrease in the temperature at which the battery is stopped, the solidified polysulfate Sodium sulfide prevented the dimensional change of the gap when the battery was stopped, and there was a possibility that the solid electrolyte tube was strongly compressed and damaged by the contraction of the anode container.

【0006】 このような問題を解決すべく、本出願人
は先に、陽極容器(外容器)の一部に、くびれ状の変形
容易な部分を設けたナトリウム−硫黄電池を案出した
(特開平5−109433号公報)。このナトリウム−
硫黄電池では、陽極容器の収縮により固体電解質管(β
−アルミナ管)に作用する応力が、前記変形容易な部分
の変形により吸収されるので、固体電解質管が強く圧縮
されることがなく、降温時における固体電解質管の破損
が防止される。
[0006] In order to solve such a problem, the present applicant has previously devised a sodium-sulfur battery in which a part of an anode container (outer container) is provided with a constriction-shaped easily deformable portion (particularly, JP-A-5-109433). This sodium-
In a sulfur battery, the solid electrolyte tube (β
Since the stress acting on the (alumina tube) is absorbed by the deformation of the easily deformable portion, the solid electrolyte tube is not strongly compressed, and the solid electrolyte tube is prevented from being damaged when the temperature is lowered.

【0007】[0007]

【発明が解決しようとする課題】 しかしながら、前記
のようなナトリウム−硫黄電池は、固体電解質管の破損
防止には効果的であるものの、陽極容器にくびれ状の部
分を加工するのにコストがかかり過ぎるという新たな問
題をあった。本発明は、このような状況に鑑みてなされ
たものであり、その目的とするところは、前記のような
電池降温時における固体電解質管の破損を防止できると
ともに、より低コストで生産可能なナトリウム−硫黄電
池を提供することにある。
However, although the sodium-sulfur battery as described above is effective in preventing the solid electrolyte tube from being damaged, it is costly to process a constricted portion in the anode container. There was a new problem of passing. The present invention has been made in view of such a situation, and an object of the present invention is to prevent the solid electrolyte tube from being damaged when the battery temperature is lowered as described above, and to produce sodium at a lower cost. -To provide a sulfur battery.

【0008】[0008]

【課題を解決するための手段】 本発明によれば、有底
円筒状の陽極容器の内部に同じく有底円筒状の固体電解
質管を収容し、前記陽極容器の上端部と固体電解質管の
上端部とを絶縁リングにより接合固定し、当該絶縁リン
グの上端開口部を陰極蓋により密閉するとともに、前記
陽極容器と固体電解質管との間に形成された陽極室には
陽極活物質としての硫黄を含浸させた陽極用導電材を収
容し、固体電解質管内部に形成された陰極室には陰極活
物質としてのナトリウムを収容したナトリウム−硫黄電
池であって、前記陽極容器の底部上面と前記固体電解質
管の底部下面との間に、電池の軸線方向に容易に収縮す
るような収縮性を有する袋体を設けたことを特徴とする
ナトリウム−硫黄電池、が提供される。
According to the present invention, a bottomed cylindrical solid electrolyte tube is housed inside a bottomed cylindrical anode container, and the upper end of the anode container and the upper end of the solid electrolyte tube are housed. With an insulating ring, and the upper end opening of the insulating ring is closed with a cathode lid, and sulfur as an anode active material is supplied to an anode chamber formed between the anode container and the solid electrolyte tube. A sodium-sulfur battery containing an impregnated conductive material for an anode and containing sodium as a cathode active material in a cathode chamber formed inside the solid electrolyte tube, wherein a bottom upper surface of the anode container and the solid electrolyte are contained. A sodium-sulfur battery is provided, in which a bag having a shrinkage property is provided between the bottom surface of the tube and the bottom surface of the tube so as to easily shrink in the axial direction of the battery.

【0009】[0009]

【発明の実施の形態】 本発明のナトリウム−硫黄電池
においては、陽極容器の底部上面と固体電解質管の底部
下面との間に袋体が存在することによって、この部分に
多硫化ナトリウムが侵入し堆積することが防止される。
そして、この袋体は電池の軸線方向(長さ方向)に容易
に収縮するような収縮性を有しているので、電池降温時
に陽極容器が収縮して、陽極容器の底部上面と固体電解
質管の底部下面との間隙が小さくなると、これに追従し
て袋体も容易に収縮変形し固体電解質管にかかる応力を
吸収する。この結果、陽極容器の収縮による応力によ
り、固体電解質管が強く圧縮されることがなく、電池降
温時における固体電解質管の破損が防止される。また、
このナトリウム−硫黄電池は、前記したような陽極容器
にくびれ状の変形容易な部分を形成したものに比べて、
陽極室の体積が大きくとれるため電池の体積エネルギー
密度が高くなる上、低コストで生産できる。更に、この
ようなくびれ状の部分は強度上弱点となるので、それが
無いことにより強度的にも優れる。
BEST MODE FOR CARRYING OUT THE INVENTION In the sodium-sulfur battery of the present invention, since a bag exists between the upper surface of the bottom of the anode container and the lower surface of the bottom of the solid electrolyte tube, sodium polysulfide enters the portion. Accumulation is prevented.
The bag has a contraction property such that the bag easily contracts in the axial direction (length direction) of the battery. Therefore, when the temperature of the battery decreases, the anode container shrinks, and the bottom surface of the anode container and the solid electrolyte tube When the gap with the lower surface of the bottom becomes small, the bag body easily contracts and deforms to follow this, absorbing the stress applied to the solid electrolyte tube. As a result, the solid electrolyte tube is not strongly compressed due to the stress caused by the contraction of the anode container, and the solid electrolyte tube is prevented from being damaged when the temperature of the battery is lowered. Also,
This sodium-sulfur battery has a narrower easily deformable portion formed in the anode container as described above,
Since the volume of the anode chamber can be increased, the volume energy density of the battery is increased, and production can be performed at low cost. Furthermore, since such a constricted portion is a weak point in strength, the absence of such a portion is excellent in strength.

【0010】 以下、本発明のナトリウム−硫黄電池の
実施形態を図面を用いて具体的に説明するが、本発明は
これらの実施形態によって何らの限定をも受けるもので
はなく、本発明の趣旨を逸脱しない限りにおいて、当業
者の通常の知識に基づき、種々の変更や改良等を加え得
るものであることが理解されるべきである。
Hereinafter, embodiments of the sodium-sulfur battery of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited by these embodiments, and the gist of the present invention will be described. It should be understood that various changes, modifications, and the like can be made based on the ordinary knowledge of those skilled in the art without departing from the scope of the present invention.

【0011】 図1は、本発明のナトリウム−硫黄電池
の一例を示す断面説明図である。この図に示すように、
陽極容器1は円筒体2と円筒体2の下端縁に嵌合固定さ
れた底板3とにより有底円筒状に形成されている。円筒
体2の上部内周面にはα−アルミナよりなる絶縁リング
4の外周面が熱圧接合され、その内周面にはβ−アルミ
ナよりなる有底円筒状の固体電解質管5の上部外周面が
接合固定されている。絶縁リング4の上端面には陰極蓋
6が接合固定されている。そして、この固体電解質管5
の外側には陽極室R1が区画形成され、内側には陰極室
R2が区画形成されている。
FIG. 1 is an explanatory sectional view showing an example of the sodium-sulfur battery of the present invention. As shown in this figure,
The anode container 1 is formed in a cylindrical shape with a bottom by a cylindrical body 2 and a bottom plate 3 fitted and fixed to a lower end edge of the cylindrical body 2. The outer peripheral surface of an insulating ring 4 made of α-alumina is joined to the upper inner peripheral surface of the cylindrical body 2 by heat and pressure, and the upper outer periphery of a bottomed cylindrical solid electrolyte tube 5 made of β-alumina is adhered to the inner peripheral surface. The surfaces are bonded and fixed. A cathode lid 6 is joined and fixed to the upper end surface of the insulating ring 4. And this solid electrolyte tube 5
An anode chamber R1 is defined on the outside, and a cathode chamber R2 is defined on the inside.

【0012】 陽極室R1内には陽極活物質としての硫
黄Sを含浸したカーボンマット等よりなる陽極用導電材
7が収容されている。また、陰極室R2には陰極活物質
としてのナトリウムNaが収容されている。更に陰極室
R2の上部空間には、窒素ガスやアルゴンガス等の不活
性ガスGが所定の圧力で封入され、この不活性ガスGに
よりナトリウムNaが加圧されている。
An anode conductive material 7 made of a carbon mat or the like impregnated with sulfur S as an anode active material is accommodated in the anode chamber R 1. The cathode chamber R2 contains sodium Na as a cathode active material. Further, an inert gas G such as nitrogen gas or argon gas is sealed at a predetermined pressure in an upper space of the cathode chamber R2, and sodium Na is pressurized by the inert gas G.

【0013】 陰極蓋6は図示しない導電部材を介して
固体電解質管5内のナトリウムNaに接触して、陰極側
の集電行われる。そして、放電時にナトリウムNaが固
体電解質管5をナトリウムイオンとなって透過して、陽
極室R1側へ移動されるようになっている。
The cathode lid 6 is brought into contact with sodium Na in the solid electrolyte tube 5 via a conductive member (not shown) to collect electricity on the cathode side. Then, at the time of discharge, sodium Na permeates through the solid electrolyte tube 5 as sodium ions and moves to the anode chamber R1 side.

【0014】 陽極容器1の底部上面と固体電解質管5
の底部下面との間には、本発明の特徴的な構造である袋
体10が設けられている。この袋体10は、陽極容器1
の収縮時に固体電解質管5の底部にかかる応力を吸収で
きるよう、電池の軸線方向に容易に収縮するような収縮
性を有することが必要である。この例では袋体10の内
部にバネ11を配することにより、袋体10に前記のよ
うな収縮性を付与している。
The bottom upper surface of the anode container 1 and the solid electrolyte tube 5
A bag 10 having a characteristic structure of the present invention is provided between the bag 10 and the bottom lower surface of the bag. This bag body 10 is the anode container 1
In order to absorb the stress applied to the bottom of the solid electrolyte tube 5 during the contraction of the battery, it is necessary to have a contractibility such that the battery easily contracts in the axial direction of the battery. In this example, the bag 10 is provided with the above-described contractility by disposing the spring 11 inside the bag 10.

【0015】 そして、上述のように、この袋体10が
存在することによって、陽極容器1の底部上面と固体電
解質管5の底部下面とにより形成された間隙に多硫化ナ
トリウムが流れ込んで堆積・固化することが防止され、
また、電池が降温して陽極容器1が収縮し前記間隙が小
さくなったときには、それに追従して袋体10も変形収
縮し、固体電解質管5の底部にかかる応力を吸収する。
As described above, due to the presence of the bag body 10, sodium polysulfide flows into a gap formed by the bottom upper surface of the anode container 1 and the bottom lower surface of the solid electrolyte tube 5 to deposit and solidify. Is prevented,
Further, when the temperature of the battery drops and the anode container 1 shrinks to reduce the gap, the bag 10 also deforms and shrinks accordingly, absorbing the stress applied to the bottom of the solid electrolyte tube 5.

【0016】 この袋体10は、腐食性の活物質に接触
し、また電池の放電時には300〜350℃程度の温度
環境にさらされるので、耐腐食性及び耐熱性に優れた材
質からなるものであることを要する。具体的には、ステ
ンレス箔でできた包装材を用いることが好ましい。
The bag 10 is made of a material having excellent corrosion resistance and heat resistance because it comes into contact with a corrosive active material and is exposed to a temperature environment of about 300 to 350 ° C. when the battery is discharged. It needs to be. Specifically, it is preferable to use a packaging material made of stainless steel foil.

【0017】 なお、袋体としては、前記のように内部
にバネを配したものに限定されず、例えば、バネの変わ
りに内部にステンレススポンジを充填したり、所定の圧
力でガスを封入したりして収縮性を付与した袋体を用い
てもよい。
The bag body is not limited to the bag body having a spring disposed therein as described above. For example, the bag body may be filled with a stainless sponge instead of the spring, or gas may be sealed at a predetermined pressure. Alternatively, a bag provided with shrinkage may be used.

【0018】 また、前記の例では、袋体が電池の構造
物とは別個に作製されているが、袋体はその一部が電池
の構造物を利用して形成されたものであってもよい。例
えば、図2は固体電解質管5の底部形状に対応した形状
の部位を有する柔軟性のある金属薄板13を使用し、こ
の金属薄板13の外周を溶接等の手段により陽極容器1
の内周面に接合することによって、金属薄板13と陽極
容器1の下部とで袋体12を形成した例である。この袋
体12の中には所定の圧力でガスを封入してもよい。金
属薄板13は陽極容器1と同じ材質であることが好まし
く、例えばアルミニウム合金などが好ましい。
In the above-described example, the bag is manufactured separately from the battery structure. However, even if the bag is partially formed using the battery structure. Good. For example, FIG. 2 uses a flexible thin metal plate 13 having a portion corresponding to the bottom shape of the solid electrolyte tube 5, and the outer periphery of the thin metal plate 13 is welded to the anode container 1 by means such as welding.
This is an example in which the metal sheet 13 and the lower part of the anode container 1 form the bag body 12 by bonding to the inner peripheral surface of the bag. A gas may be sealed in the bag 12 at a predetermined pressure. The thin metal plate 13 is preferably made of the same material as the anode container 1, for example, an aluminum alloy is preferable.

【0019】 本発明において、袋体と固体電解質管の
底部下面とは、常に軽く接触した状態となっていること
が好ましいが、両者の間に若干の隙間があっても本発明
の応力吸収効果は損なわれない。また、袋体の横断面に
おける断面積は固体電解質管の横断面における断面積と
ほぼ同一か、それより大きめであることが好ましく、前
記図1や図2に示す例のように、袋体が完全に底部を占
めるようにしてもよい。
In the present invention, it is preferable that the bag body and the bottom lower surface of the solid electrolyte tube are always in light contact with each other, but even if there is a slight gap between the two, the stress absorbing effect of the present invention can be obtained. Is not compromised. Further, the cross-sectional area in the cross section of the bag body is preferably substantially the same as or larger than the cross-sectional area in the cross section of the solid electrolyte tube, and as in the examples shown in FIGS. It may completely occupy the bottom.

【0020】[0020]

【発明の効果】 以上説明したように、本発明のナトリ
ウム−硫黄電池は、電池降温時における固体電解質管の
破損が防止できるとともに、低コストで生産でき、更に
陽極容器の強度も向上できるという顕著な効果を奏する
ものである。
As described above, the sodium-sulfur battery of the present invention can prevent breakage of the solid electrolyte tube when the battery temperature drops, can be produced at low cost, and can also improve the strength of the anode container. It has a great effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態の一例を示す断面説明図で
ある。
FIG. 1 is an explanatory sectional view showing an example of an embodiment of the present invention.

【図2】 本発明の実施形態の別の一例を示す断面説明
図である。
FIG. 2 is an explanatory sectional view showing another example of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…陽極容器、2…円筒体、3…底板、4…絶縁リン
グ、5…固体電解質管、6…陰極蓋、7…陽極用導電
材、10…袋体、11…バネ、12…袋体、13…金属
薄板。
DESCRIPTION OF SYMBOLS 1 ... Anode container, 2 ... Cylindrical body, 3 ... Bottom plate, 4 ... Insulation ring, 5 ... Solid electrolyte tube, 6 ... Cathode lid, 7 ... Conductive material for anode, 10 ... Bag, 11 ... Spring, 12 ... Bag , 13 ... metal sheet.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有底円筒状の陽極容器の内部に同じく有
底円筒状の固体電解質管を収容し、前記陽極容器の上端
部と固体電解質管の上端部とを絶縁リングにより接合固
定し、当該絶縁リングの上端開口部を陰極蓋により密閉
するとともに、前記陽極容器と固体電解質管との間に形
成された陽極室には陽極活物質としての硫黄を含浸させ
た陽極用導電材を収容し、固体電解質管内部に形成され
た陰極室には陰極活物質としてのナトリウムを収容した
ナトリウム−硫黄電池であって、 前記陽極容器の底部上面と前記固体電解質管の底部下面
との間に、電池の軸線方向に容易に収縮するような収縮
性を有する袋体を設けたことを特徴とするナトリウム−
硫黄電池。
A bottomed cylindrical solid electrolyte tube is also housed inside a bottomed cylindrical anode container, and an upper end of the anode container and an upper end of the solid electrolyte tube are joined and fixed by an insulating ring, While closing the upper end opening of the insulating ring with a cathode lid, the anode chamber formed between the anode container and the solid electrolyte tube contains a conductive material for the anode impregnated with sulfur as an anode active material. A sodium-sulfur battery containing sodium as a cathode active material in a cathode chamber formed inside the solid electrolyte tube, wherein a battery is provided between a bottom upper surface of the anode container and a bottom lower surface of the solid electrolyte tube. Characterized in that a bag having a shrinkage property such that the bag body easily shrinks in the axial direction of the sodium is provided.
Sulfur battery.
【請求項2】 前記袋体が、内部にバネを配して収縮性
を付与したものである請求項1記載のナトリウム−硫黄
電池。
2. The sodium-sulfur battery according to claim 1, wherein the bag body is provided with a spring to provide shrinkage.
【請求項3】 前記袋体が、内部にステンレススポンジ
を充填して収縮性を付与したものである請求項1記載の
ナトリウム−硫黄電池。
3. The sodium-sulfur battery according to claim 1, wherein the bag body is filled with a stainless sponge to impart shrinkage.
【請求項4】 前記袋体が、内部に所定の圧力でガスを
封入して収縮性を付与したものである請求項1記載のナ
トリウム−硫黄電池。
4. The sodium-sulfur battery according to claim 1, wherein the bag body is provided with shrinkage by filling a gas therein at a predetermined pressure.
JP10138513A 1998-05-20 1998-05-20 Sodium-sulfur battery Withdrawn JPH11329488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138513A JPH11329488A (en) 1998-05-20 1998-05-20 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138513A JPH11329488A (en) 1998-05-20 1998-05-20 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH11329488A true JPH11329488A (en) 1999-11-30

Family

ID=15223913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138513A Withdrawn JPH11329488A (en) 1998-05-20 1998-05-20 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH11329488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353596B1 (en) * 2012-06-05 2014-01-27 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353596B1 (en) * 2012-06-05 2014-01-27 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery

Similar Documents

Publication Publication Date Title
US3946751A (en) Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell
US3959013A (en) Cathode cell casing portion, a cell casing, and a hermetically sealed sodium-sulfur cell
US3841912A (en) Sodium sulfur storage battery
US4419418A (en) Individual rechargeable electric cell
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
US4084040A (en) Cell casing and a hermetically sealed sodium-sulfur cell
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JPH11329488A (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JP2561772B2 (en) Sodium-sulfur battery
GB2162680A (en) Electrochemical generator of the sodium-sulfur type
JPH01221870A (en) Sodium-sulfur battery
JPH01246772A (en) Sodium-sulfur battery
JPH01252587A (en) Method for binding ceramic part to metallic part
JP2589743B2 (en) Sodium-sulfur battery
JPH0631649Y2 (en) Sodium-sulfur battery
JPH05121095A (en) Sealed secondary battery
JPS59194366A (en) Sodium-sulfur battery
JP3146661B2 (en) Sealed secondary battery
JPH07226227A (en) Electrochemical storage battery
JPH02114463A (en) Sodium-sulfur battery
JPH0633647Y2 (en) Bonding structure of insulating ring and electrode container in sodium-sulfur battery
JPH07176328A (en) Sodium secondary battery
JPH0582716B2 (en)
JPH02199777A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802