JPS59194366A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS59194366A
JPS59194366A JP58067579A JP6757983A JPS59194366A JP S59194366 A JPS59194366 A JP S59194366A JP 58067579 A JP58067579 A JP 58067579A JP 6757983 A JP6757983 A JP 6757983A JP S59194366 A JPS59194366 A JP S59194366A
Authority
JP
Japan
Prior art keywords
sodium
inner container
battery
gap
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067579A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Sumitada Iwabuchi
岩「淵」 純允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP58067579A priority Critical patent/JPS59194366A/en
Publication of JPS59194366A publication Critical patent/JPS59194366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To limit flow out of sodium to increase safety when an inner container is broken by sealing inactive gas in a gap between an inner container which is an anode constructor and the outer container, and forming a sodium connecting path in an opposite U-shape in the inner container. CONSTITUTION:In a battery using molten sodium as anode active material, molten sulfur-sodium polysulfide as cathode active material, and a solid electrolyte tube 21 which is sodium ion conductive as electrolyte, a closed gap A is installed between a container 26 which is an anode constructor and an outer container 27, and a substance which generates inactive gas by heat decomposition under larger pressure than gas pressure of the inner container 26 is filled in this gap, and an opposite U-shaped sodium connecting path 28 is formed in a bottom cover 29 of the inner container 26. Flow out of sodium, when a battery is broken, is limited by gas pressure inside the gap A and the opposite U-shaped sodium connecting path 28. Therefore, safety of the battery is increased.

Description

【発明の詳細な説明】 本発明は陰極活物質に溶融ナトリウム、陽極活物質に溶
融硫黄−多硫化ナトリウムを用い、電解質としてナトリ
ウムイオン伝導性の固体電解質管を用いるナトリウム−
硫黄電池に関するもので、目的とするところは安全性を
向上させたものである。
Detailed Description of the Invention The present invention uses molten sodium as a cathode active material, molten sulfur-sodium polysulfide as an anode active material, and a sodium ion conductive solid electrolyte tube as an electrolyte.
It concerns sulfur batteries and aims to improve safety.

j)リウムー硫黄電池はナトリウムイオン伝導性の有底
固体電解質管、例えばβ−アルミナ、β′−アルミナ、
ナシコンなどにより前記両活物質を分離して約500〜
400 ’Cの高温で作動させる二次電池である。
j) Lithium-sulfur batteries are made of sodium ion conductive bottomed solid electrolyte tubes, such as β-alumina, β′-alumina,
Separate the above-mentioned active materials using Nasicon etc. and
This is a secondary battery that operates at a high temperature of 400'C.

従来のナトリウム−硫黄電池は第1図に示す構造からな
り、固体電解質管1が破損してもナトリウム−硫黄の直
接反応量はある程度抑制することができたが、数多く電
池を製造し、それらの電池を各種の電池破壊試験した場
合、電池内で破壊が終了、及び電池容器5にふくらみが
発生する以外に、電池容器5に穴があき活物質が漏洩し
、隣接電池にも熱的影響を与えることがあり、安全性に
対して信頼性はながった。すなわち、固体電解質管1が
破損してもその破損によりナトリウムと硫黄が直接反応
する際、発生する熱が外容器9を破壊し、外容器9しい
ては内容器8の内部と固体電解質管1との間隙とを等圧
にし、内容器8内からのナトリウム連通路10を通して
のナトリウム供給を停止させる時の停止時間及び停止状
態、すなわち間隙に残存するナトリウム量等により破壊
規模が異なることが原因であった。
The conventional sodium-sulfur battery has the structure shown in Fig. 1, and even if the solid electrolyte tube 1 is damaged, the amount of direct sodium-sulfur reaction can be suppressed to some extent. When the battery is subjected to various battery destruction tests, in addition to the destruction being completed within the battery and a bulge occurring in the battery container 5, a hole is formed in the battery container 5 and the active material leaks, causing a thermal effect on adjacent batteries. The safety and reliability have decreased. That is, even if the solid electrolyte tube 1 is damaged, the heat generated when sodium and sulfur react directly due to the damage will destroy the outer container 9 and the inside of the inner container 8 and the solid electrolyte tube 1. The reason for this is that the scale of destruction varies depending on the stop time and stop state when stopping the supply of sodium from the inner container 8 through the sodium communication path 10 by making the gap between Met.

又、上記の破壊以外に、第1図の構造であれば、内容器
8と外容器9とが連通しているため、内容器8内に容器
ナトリウムを充填する場合、容器の間隙にす) IJウ
ムが不注意等により充填される場合や一定量のナトリウ
ムを充填することが難しく、所定のナトリウム量が充填
できないために電池反応に寄与するナトリウムが少なく
なるなど電池性能をも悪くする欠点を有していた。
In addition to the above-mentioned destruction, in the structure shown in Fig. 1, the inner container 8 and the outer container 9 are in communication, so when filling the container sodium into the inner container 8, it is necessary to fill the gap between the containers.) If the IJum is filled inadvertently, or if it is difficult to fill a certain amount of sodium, the battery performance may deteriorate, such as when the specified amount of sodium cannot be filled, resulting in less sodium contributing to the battery reaction. had.

本発明は上記の欠点を解消したものであり、実施例によ
り詳細に説明する。第2図により実施例の陰極構成体の
電池断面図を示せば、21は上端部が一定口径を得るた
め研磨され、底部を丸く加工成型したβ′−アルミナか
らなる固体電解質管、22は下部の溝に固体電解質管2
1の開放端が挿入され、ガラス半田で気密・液密シール
されたα−アルミナなどの電気絶縁性物質からなる固定
部材、23は耐ナトリウム性金属、例えばステンレスな
どからなる陰極蓋、24は固定部材22の上面に熱圧接
合されたアルミニウム被覆鋼材からなる陰極補助蓋、2
5は陰極構成体と陰極蓋23との間に圧縮された状態で
配しナトリウムを含浸すると電気的接触を良好とする耐
溶融ナトリウム性金属繊維、例えばステンレス繊維、2
6はナトリウムが充填された肉厚が600〜900μの
ステンレスからなる内容器、27は肉厚60〜500μ
のアルミニウム、又は肉厚50〜300μのステンレス
からなる外容器で、内容器26内と外容器27の内部と
は完全に隔離され、それらの間mAは密閉されている。
The present invention eliminates the above-mentioned drawbacks and will be explained in detail by way of examples. FIG. 2 shows a battery sectional view of the cathode structure of the embodiment. 21 is a solid electrolyte tube made of β'-alumina whose upper end is polished to obtain a constant diameter and whose bottom is rounded, and 22 is a lower part. Solid electrolyte tube 2 in the groove of
A fixing member made of an electrically insulating material such as α-alumina into which the open end of 1 is inserted and sealed airtight and liquid-tight with glass solder, 23 a cathode cover made of a sodium-resistant metal such as stainless steel, and 24 a fixing member. A cathode auxiliary cover 2 made of aluminum-coated steel bonded to the upper surface of the member 22 by heat and pressure;
5 is a melt-resistant sodium metal fiber, such as stainless steel fiber, which is arranged in a compressed state between the cathode structure and the cathode lid 23 and impregnated with sodium to provide good electrical contact;
6 is an inner container filled with sodium and made of stainless steel with a wall thickness of 600 to 900μ, and 27 is a wall thickness of 60 to 500μ.
The inner container 26 and the outer container 27 are completely isolated from each other, and the mA is sealed between them.

28は耐ナトリウム性金属、例えばステンレス管からな
るナトリウム連通路で、内容器26内で逆U字状の形状
からなり、一端が底部29より陰極構成体と導通し、他
端が底蓋29の内面より約0.5〜1.5+*離れて位
置している。又、間mAに°は不活性ガス又は減圧下で
熱分解して不活性ガスを発生するガス化物質が溶接前に
充填されている。
Reference numeral 28 denotes a sodium communication path made of a sodium-resistant metal, such as a stainless steel tube, which has an inverted U-shape inside the inner container 26, and has one end connected to the cathode structure from the bottom 29, and the other end connected to the bottom cover 29. Located approximately 0.5-1.5+* away from the inner surface. Further, the mA is filled with an inert gas or a gasified substance that is thermally decomposed under reduced pressure to generate an inert gas before welding.

上記の構造からなる本発明電池について、電池作動温度
約350°Cに昇温し、放電した後に充電する際、充電
末電圧約6vを越えた過電圧を印加するなどして固体電
解質管21にクラックを発生させ、破壊させた。尚、外
容器27と内容器26との間隙人のガス圧P1は、内容
器26内のガス圧最大値P2に対し、PI>P2となる
よう険極借成体作成時にガス圧又は空間容積等を調整す
る。上記の破壊にいたるまでの@極動作は、固体電解質
管21にクラックが発生することによりナトリウムと硫
黄が直接反応をおこし、膨大な熱量を発生する。この発
生熱量がクラック部近傍の外容器27に穴をあけるなど
して破壊する。この外容器27破壊と共に外容器27と
内容器26の間隙にあった不活性ガスが固体電解質管2
1と陰極構成体(外容器27外面)との間隙に放出され
る。このガス圧は内容器26のガス圧よりも高圧である
ため、内容器26内からナトリウム連通路28を通して
のナトリウム供給は停止すると共に、逆に間@Aの溶融
ナトリウムを押出すようにナトリウム連通路28を経て
内容器26内に流入させ、間@Aの溶融ナトリウムを排
出し、溶融硫黄と直接反応するナトリウム量を激減させ
破壊規模を小さくするものであった。
Regarding the battery of the present invention having the above structure, when the battery operating temperature is raised to approximately 350°C, discharged, and then charged, the solid electrolyte tube 21 cracks due to application of an overvoltage that exceeds the charging end voltage of approximately 6V. was generated and destroyed. The gas pressure P1 in the gap between the outer container 27 and the inner container 26 is determined by adjusting the gas pressure or space volume, etc. at the time of creating the rigid structure so that PI>P2 with respect to the maximum gas pressure P2 in the inner container 26. Adjust. In the @polar operation leading to the above-mentioned destruction, cracks occur in the solid electrolyte tube 21, causing a direct reaction between sodium and sulfur, and generating an enormous amount of heat. This amount of heat generated damages the outer container 27 by making a hole in the vicinity of the crack. When the outer container 27 is destroyed, the inert gas in the gap between the outer container 27 and the inner container 26 is released into the solid electrolyte tube 2.
1 and the cathode structure (the outer surface of the outer container 27). Since this gas pressure is higher than the gas pressure in the inner container 26, the sodium supply from the inner container 26 through the sodium communication passage 28 is stopped, and conversely, the sodium communication is carried out so as to push out the molten sodium in the interval @A. The molten sodium was caused to flow into the inner container 26 through the passage 28, and the molten sodium between A and A was discharged to drastically reduce the amount of sodium that directly reacts with the molten sulfur, thereby reducing the scale of destruction.

すなわち、この電池を充電試験により過電圧印加の破壊
をおこなったところ、電池電圧約7Vで電圧変動があり
約15.4Vで電池電圧はOVとなった。電圧Ovにな
った時点より約60分後に通電を打ち切ったが、電池温
度は電池容器側面でわずか50°Cの上昇(最大温度4
01°c)であった。更に350°C保温24Hr後冷
却をおこない、電池を解体調査したところ、電池容器表
面はほとんど変色していなかった。また、固体電解質管
21内にはクラック発生箇所より約10麿下方の域にナ
トリウムが残存していたが、クランク箇所及び外容器9
′破損箇所より上方の城のナトリウムはほとんどなく内
容器8′内に充満されていた。
That is, when this battery was destroyed by applying overvoltage in a charging test, there was a voltage fluctuation at the battery voltage of about 7V, and the battery voltage became OV at about 15.4V. Power was cut off approximately 60 minutes after the voltage reached Ov, but the battery temperature rose by only 50°C on the side of the battery container (maximum temperature 4
01°C). After further cooling at 350° C. for 24 hours, the battery was disassembled and inspected, and the surface of the battery container was found to have hardly any discoloration. In addition, sodium remained in the solid electrolyte tube 21 in an area approximately 10 meters below the crack occurrence point, but at the crank point and the outer container 9.
There was almost no sodium in the castle above the damaged area, and the inner container 8' was filled with it.

更に、本発明におけるナトリウム連通路28が逆U字状
であることから、底蓋29の上面近傍のナトリウム連通
路28の内部開口部より溶融ナトリウムが入り、ナトリ
ウム連通路28中を移動し、外部開口部分より一度流出
するとサイホンの原理より内容器26内のガス圧がわず
かでも継続して溶融ナトリウムが移動する。よって内容
器26内のガス圧をも小さくできることから、電池破損
時の陰極室内の圧力を例えば1気圧以下とすることもで
き、内圧による電池破損を防止できるものである。
Furthermore, since the sodium communication passage 28 in the present invention has an inverted U-shape, molten sodium enters from the internal opening of the sodium communication passage 28 near the top surface of the bottom cover 29, moves in the sodium communication passage 28, and is transferred to the outside. Once the molten sodium flows out from the opening, the gas pressure within the inner container 26 continues, even if slightly, due to the siphon principle, causing the molten sodium to move. Therefore, since the gas pressure inside the inner container 26 can also be reduced, the pressure inside the cathode chamber at the time of battery damage can be reduced to, for example, 1 atmosphere or less, and battery damage due to internal pressure can be prevented.

本発明は上記した如く、陰極構成体である内容器と外容
器との間に間隙を設けて、間隙内に不活性ガス又は熱分
解によりガス化する物質を充填すると共に、陰極構成体
と陰極室とを連通ずるナトリウム連通路を内容器内で逆
U字状として底蓋に設けることにより、内容器破壊時の
ナトリウム流出をガス圧と逆U字状のナトリウム連通路
により制限し、電池の安釡性を向上させたものであり、
その工業的価値は大である。
As described above, the present invention provides a gap between the inner container and the outer container, which are cathode components, and fills the gap with an inert gas or a substance that is gasified by thermal decomposition. By providing an inverted U-shaped sodium communication path in the bottom cover that communicates with the chamber, the outflow of sodium when the inner container is destroyed is restricted by the gas pressure and the inverted U-shaped sodium communication path, and the battery It has improved potability,
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のナトリウム−硫黄電池縦断面図、第2図
は本発明による実施例のナトリウム−硫黄電池縦断面図
である。 1.21・・・固体電解質管、 8,26・・・内容器
、9.27・・・外容器、10,28・・・す)IJウ
ム連通路。 出願人 湯浅電池株式会社 第1図 第 2 図
FIG. 1 is a longitudinal sectional view of a conventional sodium-sulfur battery, and FIG. 2 is a longitudinal sectional view of a sodium-sulfur battery according to an embodiment of the present invention. 1.21...Solid electrolyte tube, 8,26...Inner container, 9.27...Outer container, 10,28...IJum communication path. Applicant Yuasa Battery Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)ナトリウムを充填した内容器を外容器で覆い、内容
器と陰極室を導通する逆U字状のナトリウム連通路の端
部を設けた底蓋にて一体溶接することにより内容器と外
容器との間隙を密閉し、間隙内に不活性ガスを封入、又
は電池作動温度以下あるいは以上の温度で熱分解して不
活性ガスを放出するガス化物質を充填する+A極構成体
を、固体電解質管内に挿入してなるナトリウム−硫黄電
池。 2)間隙内のガス圧を内容器内のガス圧より高くした特
許請求の範囲第1項記載のす) IJウムー硫黄電池。
[Claims] 1) An inner container filled with sodium is covered with an outer container and integrally welded with a bottom cover provided with an end of an inverted U-shaped sodium communication path that connects the inner container and the cathode chamber. The +A electrode is used to seal the gap between the inner container and the outer container, and fill the gap with an inert gas, or to fill it with a gasified substance that thermally decomposes at a temperature below or above the battery operating temperature to release an inert gas. A sodium-sulfur battery in which a component is inserted into a solid electrolyte tube. 2) An IJ Umu sulfur battery according to claim 1, in which the gas pressure in the gap is higher than the gas pressure in the inner container.
JP58067579A 1983-04-16 1983-04-16 Sodium-sulfur battery Pending JPS59194366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067579A JPS59194366A (en) 1983-04-16 1983-04-16 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067579A JPS59194366A (en) 1983-04-16 1983-04-16 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS59194366A true JPS59194366A (en) 1984-11-05

Family

ID=13348975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067579A Pending JPS59194366A (en) 1983-04-16 1983-04-16 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS59194366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194864A (en) * 1989-12-22 1991-08-26 Ngk Insulators Ltd Sodium-sulfur battery
JPH03203171A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd Sodium-sulfur battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194864A (en) * 1989-12-22 1991-08-26 Ngk Insulators Ltd Sodium-sulfur battery
JPH03203171A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd Sodium-sulfur battery

Similar Documents

Publication Publication Date Title
KR101737644B1 (en) Method and design for externally applied laser welding of internal connections in a high power electrochemical cell
US7274551B1 (en) Hermetically sealed electrolytic capacitor
US3946751A (en) Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell
US4419418A (en) Individual rechargeable electric cell
US4508797A (en) Hermetically sealed electrical feedthrough for high temperature secondary cells
KR20000009696A (en) Cap assembly of secondary battery
KR101147791B1 (en) Secondary battery having vent hole
US9059484B2 (en) Rechargeable electrochemical cell and method of manufacturing a rechargeable electrochemical cell
US4104448A (en) Alkali metal-sulphur cells
US3736190A (en) Hermetically sealed structures for organic electrolyte systems
US4207386A (en) Electrochemical storage cell
JPS59194366A (en) Sodium-sulfur battery
CN109742451B (en) Liquid injection method of cylindrical lithium ion battery
JP2002184456A (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JPS6020475A (en) Sodium-sulfur battery
WO2017090636A1 (en) Molten sodium battery and partition wall for molten sodium battery
JPS59146170A (en) Sodium-sulfur battery
RU2106726C1 (en) Metal-gas storage cell and its assembly process
JPS5973863A (en) Sodium-sulfur battery
JPH10302830A (en) Sodium/molten salt secondary battery and its assembly method
JPH11329488A (en) Sodium-sulfur battery
JPH07226227A (en) Electrochemical storage battery
JP4167032B2 (en) Sodium secondary battery
JPH04341755A (en) Closed battery