JPH1064580A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH1064580A
JPH1064580A JP8218812A JP21881296A JPH1064580A JP H1064580 A JPH1064580 A JP H1064580A JP 8218812 A JP8218812 A JP 8218812A JP 21881296 A JP21881296 A JP 21881296A JP H1064580 A JPH1064580 A JP H1064580A
Authority
JP
Japan
Prior art keywords
sodium
solid electrolyte
container
battery
electrolyte tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8218812A
Other languages
Japanese (ja)
Inventor
Akihiro Bito
章博 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8218812A priority Critical patent/JPH1064580A/en
Publication of JPH1064580A publication Critical patent/JPH1064580A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sodium-sulfur battery which can stop the feeding of sodium to a solid electrolyte pipe rapidly when the battery is made at an abnormal high temperature, and can manufacture a member necessary for the above purpose, having little unevenness of the form and at a low cost. SOLUTION: This battery is composed by housing a sulphur S in a positive electrode chamber R2; providing a cylindrical partition 8 with bottom inside a solid electrolyte pipe 4 to be a negative electrode chamber R1, at a prescribed interval between the solid electrolyte pipe 4; and a sodium container 5 housing a sodium Na at the inside of the partition 8, at a prescribed interval between the partition 8. To the outer periphery of the upper end (the opening) of the partition 8, a ring form member 9 comprising a material with the thermal expansion coefficient smaller than that of the sodium container 5 is fitted, so as to block a gap g between the upper part of the partition 8 and the sodium container 5, when the battery is made at an abnormal high temperature, and the feeding of the sodium Na to the solid electrolyte pipe 4 is to be stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵用などの
二次電池として好適に利用されるナトリウム−硫黄電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery suitably used as a secondary battery for storing electric power.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、一方に陰極活
物質である溶融金属ナトリウム、他方には陽極活物質で
ある溶融硫黄を配し、両者をナトリウムイオンに対して
選択的な透過性を有するβ−アルミナ固体電解質で隔離
し、290〜350℃で動作させる高温二次電池であ
る。
2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. This is a high-temperature secondary battery that is operated at 290 to 350 ° C. isolated by a β-alumina solid electrolyte.

【0003】このようなナトリウム−硫黄電池の一例と
して、特開平2−112168号公報には、図3示すよ
うな構造のものが記載されている。図中、4は有底円筒
状の固体電解質管で、これが陽極容器1内に配設される
ことにより、固体電解質管4の外側に陽極室R2が形成
されている。陽極室R2には、陽極活物質としてカーボ
ンマット等よりなる陽極用導電材7に含浸された溶融硫
黄Sが収容されている。
As an example of such a sodium-sulfur battery, Japanese Patent Application Laid-Open No. 2-112168 describes a battery having a structure as shown in FIG. In the drawing, reference numeral 4 denotes a bottomed cylindrical solid electrolyte tube, which is disposed in the anode container 1 to form an anode chamber R2 outside the solid electrolyte tube 4. The anode chamber R2 contains molten sulfur S impregnated in the anode conductive material 7 made of carbon mat or the like as an anode active material.

【0004】一方、固体電解質管4の内側には、陰極室
R1が形成され、陰極活物質として溶融金属ナトリウム
Naを収容したナトリウム容器5が配置されている。陽
極容器1と固体電解質管4とは、絶縁リング2を介して
結合されており、絶縁リング2の上端面には陰極蓋3が
接合されている。ナトリウム容器5の上部空間には、窒
素ガスやアルゴンガス等の不活性ガスGが所定の圧力で
封入され、この不活性ガスGにより、ナトリウム容器5
内のナトリウムNaがナトリウム容器5底部に設けられ
た小孔6から流出する方向へ加圧される。
On the other hand, a cathode chamber R1 is formed inside the solid electrolyte tube 4, and a sodium container 5 containing molten metal sodium Na as a cathode active material is arranged. The anode container 1 and the solid electrolyte tube 4 are connected via an insulating ring 2, and a cathode lid 3 is joined to an upper end surface of the insulating ring 2. An inert gas G such as nitrogen gas or argon gas is sealed at a predetermined pressure in the upper space of the sodium container 5.
The internal sodium Na is pressurized in a direction of flowing out of a small hole 6 provided at the bottom of the sodium container 5.

【0005】また、固体電解質管4とナトリウム容器5
との間には、有底筒状の隔壁(安全管)8が配置されて
いる。隔壁8は、固体電解質管4及びナトリウム容器5
と所定の間隙をもって配置されており、電池の放電時に
は、ナトリウム容器5底部の小孔6から流出したナトリ
ウムNaが、まずナトリウム容器5と隔壁8との間隙を
上方に移動し、更に隔壁8の上端縁を乗り越えて、固体
電解質管4と隔壁8との間隙を下方に移動して、この間
隙に滞留する。
A solid electrolyte tube 4 and a sodium container 5
A bottomed cylindrical partition (safety tube) 8 is disposed between the two. The partition 8 is composed of the solid electrolyte tube 4 and the sodium container 5
When the battery is discharged, the sodium Na flowing out of the small hole 6 at the bottom of the sodium container 5 first moves upward in the gap between the sodium container 5 and the partition 8, and After moving over the upper edge, it moves downward in the gap between the solid electrolyte tube 4 and the partition 8 and stays in this gap.

【0006】ここでナトリウムNaは電子を放出してナ
トリウムイオンとなり、固体電解質管4を透過して陽極
室R2に移動し、陽極室R2の硫黄S及び外部回路を通
ってきた電子と反応して多硫化ナトリウムを生成すると
ともに電圧を発生する。また、充電時には、放電時とは
逆にナトリウムNa及び硫黄Sの生成反応が起こる。
Here, sodium Na releases electrons to become sodium ions, passes through the solid electrolyte tube 4, moves to the anode chamber R2, and reacts with sulfur S in the anode chamber R2 and electrons that have passed through the external circuit. Generates sodium polysulfide and generates voltage. At the time of charging, a reaction of forming sodium Na and sulfur S occurs in reverse to the discharging.

【0007】上記のように、固体電解質管4とナトリウ
ム容器5との間に隔壁8を配置することにより、ナトリ
ウム容器5底部の小孔6から固体電解質管4までの距離
を長くして固体電解質管4表面でのナトリウム圧力を低
減するとともに、固体電解質管4の内側に滞留するナト
リウム量を少なくすることができるので、固体電解質管
4が例えば劣化や熱応力を受けてクラックが発生した場
合に、陰極室R1内のナトリウムNaと陽極室R2内の
硫黄Sとが多量かつ急激に反応して異常高熱を発生し、
電池全体が破壊されるという事態を防ぐことができる。
As described above, by disposing the partition wall 8 between the solid electrolyte tube 4 and the sodium container 5, the distance from the small hole 6 at the bottom of the sodium container 5 to the solid electrolyte tube 4 is increased, and Since the sodium pressure on the surface of the tube 4 can be reduced and the amount of sodium staying inside the solid electrolyte tube 4 can be reduced, when the solid electrolyte tube 4 is cracked due to deterioration or thermal stress, for example, The sodium Na in the cathode chamber R1 and the sulfur S in the anode chamber R2 react in large quantities and suddenly to generate abnormally high heat,
The situation where the whole battery is destroyed can be prevented.

【0008】しかし、このような構造のナトリウム−硫
黄電池においては、固体電解質管4と隔壁8との間に、
常に所定の間隙が形成されるようになっているため、固
体電解質管4が破損した場合にも、ナトリウムNaの供
給が続行されて、ナトリウムNaと硫黄Sとの直接反応
を抑制することができず、十分な安全性を確保すること
ができない。
However, in the sodium-sulfur battery having such a structure, the space between the solid electrolyte tube 4 and the partition 8 is
Since the predetermined gap is always formed, even when the solid electrolyte tube 4 is broken, the supply of sodium Na is continued, and the direct reaction between sodium Na and sulfur S can be suppressed. Therefore, sufficient security cannot be secured.

【0009】そこで、本願出願人は先に、固体電解質管
と隔壁との間隙が、電池動作温度では所定値となり、電
池の異常高温度では閉塞するように、固体電解質管の熱
膨張率よりも大きな熱膨張率を有する隔壁を備えたナト
リウム−硫黄電池を提案した(特開平6−208854
号)。この電池では、固体電解質管の破損により電池が
異常高温度になると、固体電解質管と隔壁との間隙が、
両者の熱膨張差により閉塞して、その後の当該間隙への
ナトリウムの供給が停止されるので、ナトリウムと硫黄
との直接反応を速やかに収束抑制できる。
Accordingly, the applicant of the present application has first set the gap between the solid electrolyte tube and the partition wall to a predetermined value at the battery operating temperature and closed at an abnormally high temperature of the battery. A sodium-sulfur battery provided with a partition having a large coefficient of thermal expansion has been proposed (JP-A-6-208854).
issue). In this battery, when the battery becomes abnormally high temperature due to breakage of the solid electrolyte tube, the gap between the solid electrolyte tube and the partition wall becomes
Since the blockage is caused by the difference in thermal expansion between the two and the subsequent supply of sodium to the gap is stopped, the direct reaction between sodium and sulfur can be promptly converged and suppressed.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記特開平
6−208854号公報記載のナトリウム−硫黄電池に
おいては、電池の異常高温度時のナトリウム供給停止を
確実になしうるため、固体電解質管と隔壁との間隙を精
密に制御する必要がある。しかしながら、固体電解質管
はセラミックスの一種であるβ−アルミナで形成されて
おり、形状にばらつきが生じやすいため、固体電解質管
と隔壁との間隙を所定値に制御するのが困難で、結果的
に電池のコストも高価になるという問題があった。
In the sodium-sulfur battery described in Japanese Patent Application Laid-Open No. 6-208854, the supply of sodium at an abnormally high temperature of the battery can be reliably stopped. It is necessary to precisely control the gap between them. However, since the solid electrolyte tube is formed of β-alumina, which is a kind of ceramics, and the shape tends to vary, it is difficult to control the gap between the solid electrolyte tube and the partition wall to a predetermined value. There was a problem that the cost of the battery also became expensive.

【0011】本発明は、このような事情に鑑みてなされ
たものであり、電池が異常高温度になったときに、固体
電解質管へのナトリウムの供給を速やかに停止でき、か
つ、そのために必要な部材の形状のばらつきが少なく、
より安価に作製できるナトリウム−硫黄電池を提供する
ことを目的とする。
The present invention has been made in view of such circumstances, and when the battery temperature becomes abnormally high, the supply of sodium to the solid electrolyte tube can be stopped promptly, and necessary for that purpose. There is little variation in the shape of the
It is an object to provide a sodium-sulfur battery that can be manufactured at lower cost.

【0012】[0012]

【課題を解決するための手段】本発明によれば、有底筒
状の固体電解質管の内側と外側に陰極室及び陽極室を形
成し、陽極室内には硫黄を収容し、陰極室となる固体電
解質管の内側には、有底筒状の隔壁を、固体電解質管と
の間に所定の間隙をもって配置し、更に隔壁の内側に、
ナトリウムを収容したナトリウム容器を、隔壁との間に
所定の間隙をもって配置してなるナトリウム−硫黄電池
において、隔壁の上端(開口端)の外周部に、ナトリウ
ム容器より小さな熱膨張係数を持った材料からなるリン
グ状部材をはめ込み、電池の異常高温度時に隔壁の上部
とナトリウム容器との間隙を閉塞させて、ナトリウムの
固体電解質管への供給を停止するようにしたことを特徴
とするナトリウム−硫黄電池、が提供される。なお、本
発明において、電池の異常高温度とは、電池の動作温度
(290〜350℃)を超えるような高温度をいい、例
えば370℃以上の温度をいう。
According to the present invention, a cathode chamber and an anode chamber are formed inside and outside a bottomed solid electrolyte tube, and sulfur is contained in the anode chamber to form a cathode chamber. On the inside of the solid electrolyte tube, a bottomed cylindrical partition is arranged with a predetermined gap between the bottom and the solid electrolyte tube, and further inside the partition,
In a sodium-sulfur battery in which a sodium container accommodating sodium is disposed with a predetermined gap between the sodium container and the partition wall, a material having a smaller thermal expansion coefficient than the sodium container is provided on the outer peripheral portion of the upper end (opening end) of the partition wall. Sodium-sulfur, characterized by closing the gap between the upper part of the partition and the sodium container at abnormally high temperature of the battery to stop the supply of sodium to the solid electrolyte tube. A battery is provided. In the present invention, the abnormally high temperature of the battery refers to a high temperature exceeding the operating temperature (290 to 350 ° C.) of the battery, for example, a temperature of 370 ° C. or higher.

【0013】[0013]

【発明の実施の形態】図1は本発明の一実施例を示す断
面図、図2はその要部拡大図で、(a)は電池の動作温度
時における状態を示し、(b)は異常高温度時における状
態を示している。図中、4はナトリウムイオンを選択的
に透過させる機能を有する有底筒状の固体電解質管であ
る。この固体電解質管4は陽極容器1内に配置され、こ
れにより固体電解質管4の外側に陽極室R2が形成され
る。陽極室R2には、陽極活物質としてカーボンマット
等よりなる陽極用導電材7に含浸された溶融硫黄Sが収
容されている。固体電解質管4はβ−アルミナやβ”−
アルミナ等からなり、陽極容器1はアルミニウムやステ
ンレス鋼等からなる。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged view of a main part thereof, (a) shows a state at the time of operating temperature of a battery, and (b) shows an abnormal state. The state at the time of high temperature is shown. In the figure, reference numeral 4 denotes a bottomed solid electrolyte tube having a function of selectively transmitting sodium ions. This solid electrolyte tube 4 is disposed in the anode container 1, whereby an anode chamber R 2 is formed outside the solid electrolyte tube 4. The anode chamber R2 contains molten sulfur S impregnated in the anode conductive material 7 made of carbon mat or the like as an anode active material. The solid electrolyte tube 4 is made of β-alumina or β ″-
The anode container 1 is made of aluminum, stainless steel or the like.

【0014】一方、固体電解質管4の内側には、陰極室
R1が形成され、アルミニウム、アルミニウム合金、ス
テンレス鋼等のナトリウムに対する耐食性に優れた金属
材料よりなる有底筒状の隔壁8が、固体電解質管4との
間に所定の間隙をもって配置され、更に、隔壁8の内側
に、陰極活物質である溶融金属ナトリウムNaを収容し
た有蓋・有底筒状のナトリウム容器5が、隔壁8との間
に所定の間隙をもって配置されている。
On the other hand, inside the solid electrolyte tube 4, a cathode chamber R1 is formed, and a bottomed cylindrical partition wall 8 made of a metal material having excellent corrosion resistance to sodium, such as aluminum, aluminum alloy, and stainless steel, is formed as a solid. A closed / bottomed cylindrical sodium container 5 containing a molten metal sodium Na serving as a cathode active material is disposed inside the partition 8 with a predetermined gap between the partition 8 and the electrolyte tube 4. They are arranged with a predetermined gap between them.

【0015】陽極容器1と固体電解質管4とは、絶縁リ
ング2を介して結合されており、絶縁リング2の上端面
には陰極蓋3が接合されている。絶縁リング2は、陽極
室R2と陰極室R1との電気的絶縁性を保持する必要か
ら、絶縁性を有するセラミックスからなるものが好まし
く、強度、コスト等に鑑みるとα−アルミナなどが好適
に使用される。ナトリウム容器5の底部には、小孔6が
透設されており、また、ナトリウム容器5の上部空間に
は、窒素ガスやアルゴンガス等の不活性ガスGが所定の
圧力で封入され、この不活性ガスGにより、ナトリウム
容器5内のナトリウムNaが小孔6から流出する方向へ
加圧される。
The anode container 1 and the solid electrolyte tube 4 are connected via an insulating ring 2, and a cathode lid 3 is joined to an upper end surface of the insulating ring 2. The insulating ring 2 is preferably made of an insulating ceramic because it is necessary to maintain electrical insulation between the anode chamber R2 and the cathode chamber R1, and α-alumina is preferably used in view of strength, cost, and the like. Is done. A small hole 6 is provided at the bottom of the sodium container 5, and an inert gas G such as nitrogen gas or argon gas is sealed at a predetermined pressure in the upper space of the sodium container 5. The sodium Na in the sodium container 5 is pressurized by the active gas G in a direction of flowing out of the small holes 6.

【0016】以上説明した、電池の基本構造は、前述の
特開平2−112168号公報記載のものと同様である
が、本発明のナトリウム−硫黄電池では、その特徴的な
構造として、隔壁8の上端(開口端)の外周部に、ナト
リウム容器5より小さな熱膨張係数を持った材料からな
るリング状部材9がはめ込まれている。
The basic structure of the battery described above is the same as that described in the above-mentioned JP-A-2-112168. However, in the sodium-sulfur battery of the present invention, the characteristic structure of the partition wall 8 is as follows. A ring-shaped member 9 made of a material having a smaller thermal expansion coefficient than that of the sodium container 5 is fitted in the outer peripheral portion of the upper end (open end).

【0017】本発明の電池は、電池の動作温度において
は、図2(a)のように、隔壁8とナトリウム容器5の間
に所定の値の間隙gが形成された状態となっている。そ
して、固体電解質管4の破損により、ナトリウムNaと
硫黄Sが直接反応を開始し、その反応熱で電池が動作温
度を超える異常高温度になると、図2(b)のように、リ
ング状部材9がはめ込まれた隔壁8の上部とナトリウム
容器5との間隙が閉塞する。
In the battery of the present invention, at the operating temperature of the battery, a gap g having a predetermined value is formed between the partition 8 and the sodium container 5 as shown in FIG. Then, due to the breakage of the solid electrolyte tube 4, sodium Na and sulfur S start a direct reaction, and when the heat of the reaction causes the battery to reach an abnormally high temperature exceeding the operating temperature, as shown in FIG. The gap between the upper part of the partition 8 in which the 9 is fitted and the sodium container 5 is closed.

【0018】すなわち、ナトリウムNaと硫黄Sとの直
接反応により高温の多硫化ナトリウムが生成されると、
ナトリウム容器5はその発熱によりナトリウム容器材料
の熱膨張係数に応じて熱膨張するが、隔壁8の上部は、
ナトリウム容器5より小さな熱膨張係数を持った材料か
らなるリング状部材9により、自由な熱膨張が抑えら
れ、リング状部材9の熱膨張係数に応じた、ナトリウム
容器5よりも小さな熱膨張しかできないため、隔壁8の
上部とナトリウム容器5との間隙gは、ナトリウム容器
5とリング状部材9との熱膨張差によって閉塞する。こ
の間隙gの閉塞により、ナトリウムNaの固体電解質管
4への供給が断たれ、その後のナトリウムNaと硫黄S
との直接反応は速やかに収束抑制される。
That is, when a high-temperature sodium polysulfide is produced by a direct reaction between sodium Na and sulfur S,
The sodium container 5 thermally expands according to the heat expansion coefficient of the sodium container material due to the heat generation.
The ring-shaped member 9 made of a material having a smaller thermal expansion coefficient than that of the sodium container 5 suppresses free thermal expansion, and allows only a smaller thermal expansion than the sodium container 5 according to the thermal expansion coefficient of the ring-shaped member 9. Therefore, the gap g between the upper portion of the partition 8 and the sodium container 5 is closed by the difference in thermal expansion between the sodium container 5 and the ring-shaped member 9. Due to the closing of the gap g, the supply of sodium Na to the solid electrolyte tube 4 is cut off, and the subsequent sodium Na and sulfur S
Direct convergence is quickly suppressed.

【0019】隔壁8上部の熱膨張を抑制し、ナトリウム
容器5との間隙gを閉塞するために用いられるリング状
部材9は、単純な形状の小型部材で、また、その材質も
必ずしもセラミックスに限定されるものではないので、
固体電解質管のような薄肉で細長形状のβ−アルミナか
らなる部材に比べ、形状のばらつきが生じにくく、前記
従来技術(特開平6−208854号)のように固体電
解質管と隔壁との間隙を閉塞させてナトリウムの供給を
停止する構造のものよりも、電池全体の製作コストを安
価にできる。
The ring-shaped member 9 used for suppressing the thermal expansion of the upper part of the partition 8 and closing the gap g with the sodium container 5 is a small member having a simple shape, and the material is not necessarily limited to ceramics. Because it is not
Compared with a member made of β-alumina having a thin and elongated shape such as a solid electrolyte tube, variations in shape are less likely to occur. The manufacturing cost of the whole battery can be lower than that of the structure in which the supply of sodium is stopped by closing the battery.

【0020】本発明のナトリウム−硫黄電池に用いられ
るリング状部材9は、ナトリウム容器5よりも小さな熱
膨張係数を持った材料からなる。また、リング状部材9
及びナトリウム容器5は、ともにナトリウムに対する耐
食性に優れた材料からなることが望まれる。このような
観点から、リング状部材9とナトリウム容器5の構成材
料の好ましい組み合わせの例として、下記(1)〜(3)が挙
げられる。
The ring-shaped member 9 used in the sodium-sulfur battery of the present invention is made of a material having a smaller coefficient of thermal expansion than the sodium container 5. Also, the ring-shaped member 9
It is desirable that both the sodium container 5 and the sodium container 5 be made of a material having excellent corrosion resistance to sodium. From such a viewpoint, examples of preferable combinations of the constituent materials of the ring-shaped member 9 and the sodium container 5 include the following (1) to (3).

【0021】(1) ナトリウム容器をアルミニウム又はA
3003等のアルミニウム合金とし、リング状部材をα
−アルミナ等のセラミックスとする。 (2) ナトリウム容器をアルミニウム又はA3003等の
アルミニウム合金とし、リング状部材をSUS430等
のフェライト系ステンレス鋼又はSUS410等のマル
テンサイト系ステンレス鋼とする。 (3) ナトリウム容器をSUS304等のオーステナイト
系ステンレス鋼とし、リング状部材をSUS430等の
フェライト系ステンレス鋼、SUS410等のマルテン
サイト系ステンレス鋼又はα−アルミナ等のセラミック
スとする。
(1) The sodium container is made of aluminum or A
Aluminum alloy such as 3003, and the ring-shaped member is α
-Ceramics such as alumina. (2) The sodium container is made of aluminum or aluminum alloy such as A3003, and the ring-shaped member is made of ferritic stainless steel such as SUS430 or martensitic stainless steel such as SUS410. (3) The sodium container is made of austenitic stainless steel such as SUS304, and the ring-shaped member is made of ferritic stainless steel such as SUS430, martensitic stainless steel such as SUS410, or ceramics such as α-alumina.

【0022】下式は、本発明におけるナトリウム容器と
隔壁との間隙の計算例を示している。異常高温度時にナ
トリウム容器と隔壁上部との間隙を閉塞させるために
は、室温時(電池組立時)における間隙を、下式が成り
立つように設定すればよい。
The following equation shows a calculation example of the gap between the sodium container and the partition in the present invention. In order to close the gap between the sodium container and the upper part of the partition at an abnormally high temperature, the gap at room temperature (at the time of assembling the battery) may be set so that the following equation is satisfied.

【0023】[0023]

【数1】D1×(1+α1×(T2−T0))=D2×(1
+α2×(T2−T0)) D1:隔壁の内径 D2:ナトリウム容器の外径 α1:リング状部材の熱膨張係数 α2:ナトリウム容器の熱膨張係数 T2:異常高温度 T0:室温(組み立て時の温度)
D 1 × (1 + α 1 × (T 2 −T 0 )) = D 2 × (1
+ Α 2 × (T 2 −T 0 )) D 1 : inner diameter of partition wall D 2 : outer diameter of sodium container α 1 : thermal expansion coefficient of ring-shaped member α 2 : thermal expansion coefficient of sodium container T 2 : abnormally high temperature T 0 : room temperature (temperature at the time of assembly)

【0024】例えば、ナトリウム容器をアルミニウム
(熱膨張係数α2:24×10-6)、リング状部材をα
−アルミナ(熱膨張係数α1:7.2×10-6)で構成
する場合において、隔壁の内径D1を35.60mmと
し、室温T0を20℃、異常高温度T2を420℃とし
て、上記式よりナトリウム容器の外径D2を求めると、
2は35.36mmとなる。D1とD2との差は0.2
4mmだから、この場合の室温時におけるナトリウム容
器と隔壁との間隙は0.12mmとなる。
For example, the sodium container is made of aluminum (coefficient of thermal expansion α 2 : 24 × 10 −6 ), and the ring-shaped member is made of α.
-In the case of using alumina (coefficient of thermal expansion α 1 : 7.2 × 10 −6 ), the inner diameter D 1 of the partition wall is 35.60 mm, the room temperature T 0 is 20 ° C., and the abnormal high temperature T 2 is 420 ° C. When the outer diameter D 2 of the sodium container is obtained from the above equation,
D 2 will be 35.36mm. The difference between D 1 and D 2 is 0.2
Since it is 4 mm, the gap between the sodium container and the partition at room temperature in this case is 0.12 mm.

【0025】[0025]

【発明の効果】以上説明したように、本発明のナトリウ
ム−硫黄電池においては、隔壁の上端(開口端)の外周
部に、ナトリウム容器より小さな熱膨張係数を持った材
料からなるリング状部材がはめ込まれているため、固体
電解質管の破損により電池が異常高温度になると、ナト
リウム容器とリング状部材との熱膨張差により、隔壁の
上部とナトリウム容器との間隙が閉塞して、その後の固
体電解質管へのナトリウムの供給が停止され、ナトリウ
ムと硫黄との直接反応を速やかに収束抑制できる。ま
た、本発明において、上記間隙閉塞のために用いられる
リング状部材は、固体電解質管に比べ、高い形状精度で
の作製が容易で、形状のばらつきが生じにくいので、隔
壁と固体電解質管との間隙を閉塞させるようにした従来
の電池よりも安価に製造できる。更に、上記間隙閉塞の
ためのリング状部材を用いた上で、従来技術である、固
体電解質管と隔壁との間隙を精密に制御し、固体電解質
管の破損により電池が異常高温度になったときに、固体
電解質管と隔壁との間隙を閉塞させることを組み合わせ
ることにより、安全性を更に向上させることができる。
As described above, in the sodium-sulfur battery of the present invention, a ring-shaped member made of a material having a smaller thermal expansion coefficient than that of the sodium container is provided on the outer peripheral portion of the upper end (opening end) of the partition wall. When the battery is heated to an abnormally high temperature due to the breakage of the solid electrolyte tube, the gap between the upper part of the partition and the sodium container is closed due to the difference in thermal expansion between the sodium container and the ring-shaped member. The supply of sodium to the electrolyte tube is stopped, and the direct reaction between sodium and sulfur can be quickly suppressed. Further, in the present invention, the ring-shaped member used for closing the gap is easier to produce with high shape accuracy than the solid electrolyte tube, and is less likely to vary in shape. It can be manufactured at lower cost than a conventional battery in which the gap is closed. Furthermore, using the ring-shaped member for closing the gap, the gap between the solid electrolyte tube and the partition wall, which is the prior art, was precisely controlled, and the battery became abnormally high due to the breakage of the solid electrolyte tube. At times, the safety can be further improved by combining the closing of the gap between the solid electrolyte tube and the partition wall.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るナトリウム−硫黄電池の一実施例
を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of a sodium-sulfur battery according to the present invention.

【図2】本発明に係るナトリウム−硫黄電池の一実施例
を示す要部拡大断面図で、(a)が電池の動作温度時にお
ける状態を示し、(b)が異常高温度時における状態を示
す。
FIGS. 2A and 2B are enlarged cross-sectional views of essential parts showing one embodiment of a sodium-sulfur battery according to the present invention, wherein FIG. 2A shows a state at an operating temperature of the battery, and FIG. Show.

【図3】従来のナトリウム−硫黄電池の一例を示す断面
図である。
FIG. 3 is a sectional view showing an example of a conventional sodium-sulfur battery.

【符号の説明】[Explanation of symbols]

1…陽極容器、2…絶縁リング、3…陰極蓋、4…固体
電解質管、5…ナトリウム容器、6…小孔、7…陽極用
導電材、8…隔壁、9…リング状部材、R1…陰極室、
R2…陽極室、Na…ナトリウム、S…硫黄、G…不活
性ガス
DESCRIPTION OF SYMBOLS 1 ... Anode container, 2 ... Insulation ring, 3 ... Cathode lid, 4 ... Solid electrolyte tube, 5 ... Sodium container, 6 ... Small hole, 7 ... Conductive material for anode, 8 ... Partition wall, 9 ... Ring-shaped member, R1 ... Cathode room,
R2: anode chamber, Na: sodium, S: sulfur, G: inert gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状の固体電解質管の内側と外側に
陰極室及び陽極室を形成し、陽極室内には硫黄を収容
し、陰極室となる固体電解質管の内側には、有底筒状の
隔壁を、固体電解質管との間に所定の間隙をもって配置
し、更に隔壁の内側に、ナトリウムを収容したナトリウ
ム容器を、隔壁との間に所定の間隙をもって配置してな
るナトリウム−硫黄電池において、隔壁の上端(開口
端)の外周部に、ナトリウム容器より小さな熱膨張係数
を持った材料からなるリング状部材をはめ込み、電池の
異常高温度時に隔壁の上部とナトリウム容器との間隙を
閉塞させて、ナトリウムの固体電解質管への供給を停止
するようにしたことを特徴とするナトリウム−硫黄電
池。
A cathode chamber and an anode chamber are formed inside and outside a bottomed solid electrolyte tube, sulfur is contained in the anode chamber, and a bottomed solid electrolyte tube is provided inside the solid electrolyte tube serving as a cathode chamber. A sodium-sulfur having a cylindrical partition wall arranged with a predetermined gap between the solid electrolyte tube and a sodium container containing sodium inside the partition wall with a predetermined gap between the partition wall and the solid electrolyte tube. In the battery, a ring-shaped member made of a material having a smaller thermal expansion coefficient than that of the sodium container is fitted into the outer peripheral portion of the upper end (opening end) of the partition, and the gap between the upper portion of the partition and the sodium container at abnormally high temperature of the battery. A sodium-sulfur battery, wherein the sodium-sulfur battery is closed to stop supplying sodium to the solid electrolyte tube.
【請求項2】 ナトリウム容器がアルミニウム又はアル
ミニウム合金からなり、リング状部材がセラミックスか
らなる請求項1記載のナトリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the sodium container is made of aluminum or an aluminum alloy, and the ring-shaped member is made of ceramic.
【請求項3】 ナトリウム容器がアルミニウム又はアル
ミニウム合金からなり、リング状部材がフェライト系ス
テンレス鋼又はマルテンサイト系ステンレス鋼からなる
請求項1記載のナトリウム−硫黄電池。
3. The sodium-sulfur battery according to claim 1, wherein the sodium container is made of aluminum or an aluminum alloy, and the ring-shaped member is made of ferritic stainless steel or martensitic stainless steel.
【請求項4】 ナトリウム容器がオーステナイト系ステ
ンレス鋼からなり、リング状部材がフェライト系ステン
レス鋼、マルテンサイト系ステンレス鋼又はセラミック
スからなる請求項1記載のナトリウム−硫黄電池。
4. The sodium-sulfur battery according to claim 1, wherein the sodium container is made of austenitic stainless steel, and the ring-shaped member is made of ferritic stainless steel, martensitic stainless steel or ceramics.
JP8218812A 1996-08-20 1996-08-20 Sodium-sulfur battery Withdrawn JPH1064580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218812A JPH1064580A (en) 1996-08-20 1996-08-20 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218812A JPH1064580A (en) 1996-08-20 1996-08-20 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH1064580A true JPH1064580A (en) 1998-03-06

Family

ID=16725736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218812A Withdrawn JPH1064580A (en) 1996-08-20 1996-08-20 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH1064580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353602B1 (en) * 2011-12-28 2014-01-23 주식회사 포스코 sodium sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353602B1 (en) * 2011-12-28 2014-01-23 주식회사 포스코 sodium sulfur battery

Similar Documents

Publication Publication Date Title
US3946751A (en) Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell
US3959013A (en) Cathode cell casing portion, a cell casing, and a hermetically sealed sodium-sulfur cell
GB2083686A (en) Electrochemical storage cell
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
US4084040A (en) Cell casing and a hermetically sealed sodium-sulfur cell
JP3193319B2 (en) Sodium-sulfur battery
JP2017073250A (en) Sodium-sulfur battery
JPH1064580A (en) Sodium-sulfur battery
US4087591A (en) Pyrotechnically activated lithium-chlorine cell having a lithium vapor barrier
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JP3085910B2 (en) Sodium-sulfur battery
JP2895991B2 (en) Sodium-sulfur battery
JPS6012680A (en) Sodium-sulfur battery
JP3539620B2 (en) Rechargeable battery
JPH0735303Y2 (en) Battery safety device
JP3049151B2 (en) Sodium-sulfur battery
US3972730A (en) Pyrotechnically activated lithium-chlorine cell
JP2561764B2 (en) Sodium-sulfur battery
JPH02199777A (en) Sodium-sulfur battery
JP3281580B2 (en) Sodium-sulfur cell
JP2001338624A (en) Anode container for sodium-sulfur cell
JP2003223928A (en) Sodium-sulfur battery
JP3253827B2 (en) Cathode structure of sodium-sulfur battery and sodium-sulfur battery using the same
JPH02126571A (en) Sodium-sulphur cell
JP2003217651A (en) Sodium - sulfur battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104