JPH08171931A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH08171931A
JPH08171931A JP6315071A JP31507194A JPH08171931A JP H08171931 A JPH08171931 A JP H08171931A JP 6315071 A JP6315071 A JP 6315071A JP 31507194 A JP31507194 A JP 31507194A JP H08171931 A JPH08171931 A JP H08171931A
Authority
JP
Japan
Prior art keywords
sodium
cathode
melting point
solid electrolyte
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6315071A
Other languages
Japanese (ja)
Inventor
Teki Chiyou
荻 張
Eiichi Nomura
栄一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP6315071A priority Critical patent/JPH08171931A/en
Publication of JPH08171931A publication Critical patent/JPH08171931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To minimize direct reaction between sodium and sulfur in the case of damage of a solid electrolyte tube so as to improve its safety. CONSTITUTION: A safe tube 6A which has an exit 6B of negative electrode activated substance in bottom surface, contains sodium 8 as the negative electrode activated substance in its inside, and positions a spherical body 6D surrounded by metal of low melting point or metal alloy of low melting point in star-shaped, pyramid-shaped or radially in the vicinity of the exit 6B of the negative activated substance is inserted into a negative electrode chamber in a solid electrolyte tube 1. Further, textile fabric or non-textile fabric of metal fiber 7 is inserted between outer periphery surface of the safe tube 6A and inner periphery of the solid electrolyte tube 1, and also upper end of this safe tube 6A is connected to a negative electrode terminal 5. Therefore, in the case of damage of the solid electrolyte tube, the exit of negative electrode activated substance can be closed by the spherical body so that direct reaction between sodium and sulfur can be minimized thereby to improve safety of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄電池に
関するもので、さらに詳しく言えば、固体電解質管の破
損時にナトリウムと硫黄との直接反応を最小限にし、そ
の安全性が向上できる構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly to a structure capable of minimizing the direct reaction between sodium and sulfur when the solid electrolyte tube is broken and improving its safety. Is.

【0002】[0002]

【従来の技術】ナトリウムイオン伝導性の固体電解質管
の内部に陰極室を、外部に陽極室を形成してなるナトリ
ウム−硫黄電池は、陰極蓋と該陰極蓋に溶接された陰極
端子によって陰極室が密閉されるとともに、陽極蓋と該
陽極蓋に溶接された電槽によって陽極室が密閉されてな
り、前記陰極室内には陰極活物質としてのナトリウムが
充填され、前記陽極室内には陽極活物質としての硫黄が
収納されてなる。
2. Description of the Related Art A sodium-sulfur battery in which a cathode chamber is formed inside a sodium ion conductive solid electrolyte tube and an anode chamber is formed outside is formed by a cathode lid and a cathode terminal welded to the cathode lid. Is sealed, and the anode chamber is sealed by an anode lid and a battery case welded to the anode lid. Sodium as the cathode active material is filled in the cathode chamber, and the anode active material is placed in the anode chamber. Sulfur is stored as.

【0003】このようなナトリウム−硫黄電池は、陰極
室内に金属繊維が充填され、この金属繊維によって陰極
活物質としての溶融ナトリウムが保持され、この溶融ナ
トリウムが固体電解質管の内周面に均一に接触するよう
にしている。
In such a sodium-sulfur battery, metal fibers are filled in the cathode chamber, the molten sodium as a cathode active material is retained by the metal fibers, and the molten sodium is evenly distributed on the inner peripheral surface of the solid electrolyte tube. I try to make contact.

【0004】また、上記したナトリウム−硫黄電池で
は、固体電解質管の破損によって陰極活物質としての溶
融ナトリウムと陽極活物質としての溶融硫黄とが直接反
応した場合、その反応熱によって固体電解質管の破損が
拡大したり、前記直接反応の領域が拡大しないように種
々の安全対策が講じられている。
Further, in the above-mentioned sodium-sulfur battery, when the molten sodium as the cathode active material and the molten sulfur as the anode active material directly react due to the breakage of the solid electrolyte tube, the heat of the reaction breaks the solid electrolyte tube. Various safety measures have been taken to prevent the expansion of the direct reaction area and the area of the direct reaction.

【0005】たとえば、特開平5−198314号公報
には、陰極室内に陰極活物質容器を配し、固体電解質管
の内面に供給される陰極活物質としての溶融ナトリウム
の量を制限し、固体電解質管の破損時におけるナトリウ
ムと硫黄との瞬時反応量を最小限にするようにしたもの
が記載されている。
For example, in Japanese Unexamined Patent Publication No. 5-198314, a cathode active material container is arranged in a cathode chamber to limit the amount of molten sodium as a cathode active material supplied to the inner surface of a solid electrolyte tube. It is described that the amount of instantaneous reaction between sodium and sulfur when a pipe is broken is minimized.

【0006】また、特開平6−208854号公報に
は、固体電解質管の内部に熱膨張率の大きい安全管を設
けるとともに、この安全管と固体電解質管との隙間が
0.01mm〜0.1mmになるように精密に組み立
て、固体電解質管の破損時にナトリウムと硫黄との直接
反応の熱によって安全管が熱膨脹し、それによって安全
管と固体電解質管との隙間を閉塞するようにしたものが
記載されている。
Further, in JP-A-6-208854, a safety tube having a large coefficient of thermal expansion is provided inside the solid electrolyte tube, and the clearance between the safety tube and the solid electrolyte tube is 0.01 mm to 0.1 mm. As described above, the safety tube thermally expands due to the heat of the direct reaction between sodium and sulfur when the solid electrolyte tube breaks, thereby closing the gap between the safety tube and the solid electrolyte tube. Has been done.

【0007】さらに、特開昭59−23475号公報に
は、出口を有するアルカリ金属を収容した挿入物体を固
体電解質管内に配し、この挿入物体の内部に溶融可能な
合金を配設し、かつ前記出口に前記合金の融点を高める
材料を配設するようにしたものが記載されている。
Further, in JP-A-59-23475, an insert body containing an alkali metal having an outlet is arranged in a solid electrolyte tube, and a meltable alloy is arranged inside the insert body, and It is described that a material for increasing the melting point of the alloy is arranged at the outlet.

【0008】[0008]

【発明が解決しようとする課題】上記した、特開平5−
198314号公報に記載されたものでは、ナトリウム
と硫黄の直接反応を最小限に抑制することはできるが、
それを完全に遮断することができないという問題があっ
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method described in Japanese Patent Publication No. 198314, the direct reaction between sodium and sulfur can be suppressed to a minimum,
There was a problem that it could not be cut off completely.

【0009】また、上記した、特開平6−208854
号公報に記載されたものでは、一時的には安全管と固体
電解質管との熱膨脹率の差によってナトリウムと硫黄の
直接反応を遮断することはできるが、一旦ナトリウムと
硫黄との直接反応が遮断されてナトリウム−硫黄電池の
作動温度まで低下すると再びナトリウムと硫黄との直接
反応が開始されることが考えられるという問題や、安全
管と固体電解質管との隙間の形成が困難であるという問
題があった。
The above-mentioned Japanese Patent Laid-Open No. 6-208854.
In the one described in the publication, the direct reaction between sodium and sulfur can be temporarily blocked by the difference in the coefficient of thermal expansion between the safety tube and the solid electrolyte tube, but once the direct reaction between sodium and sulfur is blocked. When the sodium-sulfur battery is cooled to the operating temperature, the direct reaction between sodium and sulfur may be initiated again, and it is difficult to form a gap between the safety tube and the solid electrolyte tube. there were.

【0010】さらに、上記した、特開昭59−2347
5号公報に記載されたものでは、溶融した合金によって
出口に設けられた合金の融点を高める材料が溶解し、こ
の溶解物によって前記合金の融点が高められてそれが固
化して出口が閉塞されるまでに時間がかかるため、早期
にナトリウムと硫黄との直接反応を遮断することができ
ないという問題があった。
Further, the above-mentioned Japanese Patent Laid-Open No. 59-2347.
In the one described in Japanese Patent Publication No. 5, the material that raises the melting point of the alloy provided at the outlet is melted by the molten alloy, and the melting point raises the melting point of the alloy and solidifies it to block the outlet. Since it takes a long time to recover, there is a problem that the direct reaction between sodium and sulfur cannot be blocked early.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、開口部にα−アルミナリングが接合され
たナトリウムイオン伝導性の固体電解質管の内部に陰極
室を、外部に陽極室を形成し、前記α−アルミナリング
の一方の面に接合した陰極蓋と該陰極蓋に溶接した陰極
端子で前記陰極室を密閉するとともに、前記α−アルミ
ナリングの一方の面または他方の面に接合した陽極蓋と
該陽極蓋に溶接した電槽で前記陽極室を密閉してなるナ
トリウム−硫黄電池において、底面に陰極活物質出口を
有し、内部に陰極活物質を収納した安全管を前記陰極室
内に挿入して上端を前記陰極端子に接続するとともに、
前記安全管の外周面と固体電解質管の内周面との間に金
属繊維の織布または不織布を配し、かつ前記陰極活物質
出口の近傍に低融点金属または低融点金属合金によって
星状、角錐状、円錐状、放射状に被包された球体を位置
せしめたことを特徴とするものである。
In order to solve the above problems, the present invention relates to a sodium ion conductive solid electrolyte tube having an opening to which an α-alumina ring is bonded, the cathode chamber being inside and the anode chamber being outside. And sealing the cathode chamber with a cathode lid joined to one surface of the α-alumina ring and a cathode terminal welded to the cathode lid, and on one surface or the other surface of the α-alumina ring. In a sodium-sulfur battery in which the positive electrode chamber is sealed with a joined positive electrode lid and a battery case welded to the positive electrode lid, a safety tube having a negative electrode active material outlet on the bottom surface and containing the negative electrode active material therein is provided. While inserting into the cathode chamber and connecting the upper end to the cathode terminal,
Disposing a woven or non-woven metal fiber between the outer peripheral surface of the safety tube and the inner peripheral surface of the solid electrolyte tube, and star-shaped by a low melting point metal or low melting point metal alloy in the vicinity of the cathode active material outlet, It is characterized by locating spherical bodies that are pyramidal, conical, or radially encapsulated.

【0012】[0012]

【作用】本発明によれば、安全管の陰極活物質出口の近
傍に、低融点金属または低融点金属合金によって星状、
角錐状、円錐状、放射状に被包した球体を位置させるこ
とにより、ナトリウム−硫黄電池の作動温度下では低融
点金属または低融点金属合金によって星状、角錐状、円
錐状、放射状に被包した球体によって陰極活物質出口に
隙間が生じ、陰極活物質出口から陰極室にナトリウムを
供給することができる。
According to the present invention, a star-shaped member made of a low melting point metal or a low melting point metal alloy is provided in the vicinity of the cathode active material outlet of the safety tube.
By positioning the pyramidal, conical, and radially encapsulated spheres, they were star-shaped, pyramidal, conical, and radially encapsulated by a low-melting point metal or a low-melting point metal alloy at the operating temperature of a sodium-sulfur battery. A sphere forms a gap at the cathode active material outlet, so that sodium can be supplied to the cathode chamber from the cathode active material outlet.

【0013】また、本発明によれば、固体電解質管が何
らかの原因で破損した場合には陽極活物質としての硫黄
は安全管と固体電解質管との隙間にあるナトリウムと直
接反応し、その反応熱で電池内部の温度が400℃以上
になると、星状、角錐状、円錐状、放射状に被包した低
融点金属または低融点金属合金が溶解して球体が露出
し、安全管の底面にある陰極活物質出口を閉塞するの
で、ナトリウムの供給を停止させることができる。
Further, according to the present invention, when the solid electrolyte tube is damaged for some reason, the sulfur as the anode active material directly reacts with sodium in the gap between the safety tube and the solid electrolyte tube, and the reaction heat When the temperature inside the battery rises above 400 ° C, the low melting point metal or low melting point metal alloy that is star-shaped, pyramid-shaped, conical-shaped, or radially melts to expose the sphere, and the cathode on the bottom of the safety tube is exposed. Since the active material outlet is closed, the supply of sodium can be stopped.

【0014】[0014]

【実施例】図1は本発明の実施例に係るナトリウム−硫
黄電池の断面図である。
EXAMPLE FIG. 1 is a sectional view of a sodium-sulfur battery according to an example of the present invention.

【0015】本発明のナトリウム−硫黄電池の特徴は、
固体電解質管1の開口部にα−アルミナリング2をガラ
ス半田接合し、このα−アルミナリング2の上面にはア
ルミニウムを介して陰極蓋3を、下面にはアルミニウム
を介して陽極蓋4を熱圧接合するとともに、前記陰極蓋
3には陰極端子5を溶接し、この陰極端子5の中央部に
は内部に低融点金属または低融点金属合金6Cによって
星状、角錐状、円錐状、放射状に被包した球体6Dを配
した安全管6Aを下方に溶接した陰極パイプ6を貫通さ
せて溶接し、かつ前記安全管6Aは底面に陰極活物質出
口6Bを有し、その外周面と固体電解質管1の内周面と
の間隙に金属繊維7を配したものであり、約150℃の
保温下において前記陰極パイプ6より前記安全管6A内
を排気した後、同温度で溶融させたナトリウム8を真空
充填し、その後前記陰極パイプ6の上端を封止して陰極
室構成体とし、この陰極室構成体を円筒形の硫黄成形体
10が内挿された電槽9内に挿入し、その上端を前記陽
極蓋4と真空溶接してなるものである。
The characteristics of the sodium-sulfur battery of the present invention are as follows:
The α-alumina ring 2 is glass-soldered to the opening of the solid electrolyte tube 1, and the upper surface of the α-alumina ring 2 is heated with a cathode lid 3 via aluminum, and the lower surface is heated with an anode lid 4 via aluminum. Along with being pressure-bonded, a cathode terminal 5 is welded to the cathode cover 3, and a low melting point metal or low melting point metal alloy 6C is formed inside the cathode terminal 5 in a star shape, a pyramid shape, a conical shape, or a radial shape. A safety tube 6A having an encapsulated sphere 6D is welded by passing through a cathode pipe 6 welded downward, and the safety tube 6A has a cathode active material outlet 6B on its bottom surface and its outer peripheral surface and a solid electrolyte tube. 1 is a metal fiber 7 arranged in a gap between the inner peripheral surface of the No. 1 and the inside of the safety pipe 6A is exhausted from the cathode pipe 6 under a temperature of about 150 ° C., and sodium 8 melted at the same temperature is then discharged. Vacuum fill, then The upper end of the cathode pipe 6 is sealed to form a cathode chamber constituting body, and this cathode chamber constituting body is inserted into a battery case 9 in which a cylindrical sulfur molded body 10 is inserted, and its upper end is connected to the anode lid 4. It is made by vacuum welding.

【0016】前記安全管6Aとしては、電気抵抗が小さ
く、ナトリウムと硫黄との直接反応時の反応熱によって
溶融せず、耐多硫化ナトリウム性のステンレス、ニッケ
ル、タングステン、モリブデンまたはこれらの金属から
選択された金属の合金であることが好ましい。
The safety pipe 6A is selected from stainless steel, nickel, tungsten, molybdenum or a metal thereof which has a low electric resistance, does not melt due to the reaction heat during the direct reaction of sodium and sulfur, and is resistant to sodium polysulfide. Preferably, it is an alloy of the specified metals.

【0017】また、前記安全管6Aの底面に設けた陰極
活物質出口6Bは、その付近に低融点金属または低融点
金属合金6Cによって図2(a)に示されたような星
状、図2(b)に示されたような角錐状、図2(c)に
示されたような円錐状、図2(d)に示されたような放
射状に被包した球体6Dが位置しやすいように陰極活物
質出口6Bに向かって漏斗状に形成しておき、しかもナ
トリウム−硫黄電池を均一に放電させることができるだ
けのナトリウム8を供給することができ、しかも固体電
解質管の破損時に初期のナトリウムと硫黄との直接反応
をできるだけ抑制することができるように、その口径を
0.5〜2.0mm程度にすることが好ましい。
Further, the cathode active material outlet 6B provided on the bottom surface of the safety tube 6A has a star shape as shown in FIG. 2 (a) by a low melting point metal or a low melting point metal alloy 6C in the vicinity thereof. The pyramidal shape as shown in (b), the conical shape as shown in FIG. 2 (c), and the radially encapsulated sphere 6D as shown in FIG. It is formed in a funnel shape toward the cathode active material outlet 6B, and it is possible to supply sodium 8 which is capable of uniformly discharging the sodium-sulfur battery. The diameter is preferably 0.5 to 2.0 mm so that the direct reaction with sulfur can be suppressed as much as possible.

【0018】また、前記低融点金属または低融点金属合
金6Cとしては、耐溶融ナトリウム性で、その融点が4
00〜450℃であるものがよく、アルミニウムまたは
亜鉛などの金属やアルミニウム−マグネシウム合金、ア
ルミニウム−珪素合金、アルミニウム−亜鉛合金などの
合金が好ましい。
The low melting point metal or low melting point metal alloy 6C has a melting sodium resistance and a melting point of 4C.
The temperature is preferably from 0 to 450 ° C., and a metal such as aluminum or zinc or an alloy such as an aluminum-magnesium alloy, an aluminum-silicon alloy, or an aluminum-zinc alloy is preferable.

【0019】また、前記低融点金属または低融点金属合
金6Cによって星状、角錐状、円錐状、放射状に被包し
た球体6Dとしては、ナトリウムと硫黄との直接反応時
の反応熱によって溶融せず、耐溶融ナトリウム性、耐多
硫化ナトリウム性のステンレスまたはセラミックスなど
がよく、その直径が3〜12mm程度のものが好まし
い。
The sphere 6D which is star-shaped, pyramidal-shaped, conical-shaped, or radially encapsulated by the low-melting-point metal or the low-melting-point metal alloy 6C is not melted by the reaction heat during the direct reaction between sodium and sulfur. , Stainless steel or ceramics having resistance to molten sodium and sodium polysulfide, and those having a diameter of about 3 to 12 mm are preferable.

【0020】また、前記金属繊維7はステンレス製の織
布または不織布からなり、前記安全管6Aの外周面に張
り付け等によって形成し、安全管6Aの外周面と固体電
解質管1の内周面との間に形成される0.2〜1.5m
m程度の間隙に充填されるようにしたものである。
The metal fibers 7 are made of stainless woven cloth or non-woven cloth, and are formed on the outer peripheral surface of the safety tube 6A by pasting or the like. The outer peripheral surface of the safety tube 6A and the inner peripheral surface of the solid electrolyte tube 1 are 0.2-1.5m formed between
It is designed such that it is filled in a gap of about m.

【0021】このような構成のナトリウム−硫黄電池
を、電池の作動温度である350℃程度まで昇温させる
と、安全管6Aと固体電解質管1との間隙にある金属繊
維7の織布または不織布は毛細管現象によって安全管6
A内部に充填されたナトリウム8を安全管の底面の陰極
活物質出口6Bから吸い上げ、固体電解質管の内周面に
均一にナトリウムを供給して固体電解質の内周面の全域
で均一に充放電させることができ、電池の内部抵抗を低
下させることができ、充放電効率を向上させることがで
きる。
When the sodium-sulfur battery having such a structure is heated to about 350 ° C., which is the operating temperature of the battery, the woven or non-woven fabric of the metal fibers 7 in the gap between the safety tube 6A and the solid electrolyte tube 1 is produced. Is a safety tube 6 due to the capillary phenomenon.
Sodium 8 filled in A is sucked up from the cathode active material outlet 6B on the bottom surface of the safety tube, and sodium is uniformly supplied to the inner peripheral surface of the solid electrolyte tube to uniformly charge and discharge the entire inner peripheral surface of the solid electrolyte. Therefore, the internal resistance of the battery can be reduced, and the charge / discharge efficiency can be improved.

【0022】そして、上記したナトリウム−硫黄電池で
は、固体電解質管1の破損時にナトリウム8と硫黄とが
直接反応しても、安全管6Aの底面の陰極活物質出口6
Bから供給されるナトリウムの量が制限され、しかもこ
のナトリウムと硫黄の直接反応に伴って発生した熱がす
ばやく安全管6Aに沿って球体6Dに伝わり、その表面
温度が400℃以上になると、球体6Dを星状、角錐
状、円錐状、放射状に被包している低融点金属または低
融点金属合金6Cが溶融し、該球体6Dが安全管6Aの
底面の陰極活物質出口6Bに自重で降下して該出口6B
を閉塞するので、ナトリウムと硫黄との直接反応を最小
限に抑えることができる。
In the sodium-sulfur battery described above, even if sodium 8 and sulfur directly react with each other when the solid electrolyte tube 1 is damaged, the cathode active material outlet 6 on the bottom surface of the safety tube 6A can be used.
When the amount of sodium supplied from B is limited, and the heat generated by the direct reaction between sodium and sulfur is quickly transferred to the sphere 6D along the safety pipe 6A, and the surface temperature becomes 400 ° C or more, the sphere The low melting point metal or low melting point metal alloy 6C enclosing 6D in a star shape, a pyramid shape, a conical shape, or a radial shape is melted, and the sphere 6D descends by its own weight to the cathode active material outlet 6B on the bottom surface of the safety tube 6A. Then exit 6B
The direct reaction between sodium and sulfur can be minimized since it is blocked.

【0023】次に、上記した本発明電池として、底面に
直径が1.0mmの陰極活物質出口6Bを有し、内部に
低融点金属合金6Cとしての亜鉛−3%アルミニウムで
図2(d)のように放射状に被包した直径が10.0m
mのステンレス製の球体6Dを配した安全管6Aを固体
電解質管1内に挿入し、前記安全管6Aの外周面と固体
電解質管1の内周面との間に1mmの間隙を有するよう
にし、この間隙に厚みが0.8mmの金属繊維の織布を
挿入したものを製作し、従来電池として、固体電解質管
1内の陰極室に金属繊維のみを配し、安全管6Aを挿入
しないものを製作し、350℃でそれぞれの放電特性を
調査したところ、表1のような結果が得られた。
Next, as the above-mentioned battery of the present invention, a cathode active material outlet 6B having a diameter of 1.0 mm is provided on the bottom surface, and zinc-3% aluminum as a low melting point metal alloy 6C is provided inside the battery as shown in FIG. 2 (d). Radially encapsulated like 10.0m in diameter
A safety tube 6A having m spherical spheres 6D made of stainless steel is inserted into the solid electrolyte tube 1 so that there is a 1 mm gap between the outer circumferential surface of the safety tube 6A and the inner circumferential surface of the solid electrolyte tube 1. A woven fabric of metal fibers having a thickness of 0.8 mm is inserted into this gap, and as a conventional battery, only metal fibers are arranged in the cathode chamber of the solid electrolyte tube 1 and the safety tube 6A is not inserted. Were manufactured and their discharge characteristics were examined at 350 ° C., and the results shown in Table 1 were obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から、本発明電池はどのような放電率
においても40Ah以上の容量が得られることがわか
る。
It can be seen from Table 1 that the battery of the present invention can obtain a capacity of 40 Ah or more at any discharge rate.

【0026】次に、上記した本発明電池と従来電池とに
ついて、固体電解質管1が破損するまで充電電流を流
し、破損してからの各電池の温度変化を調査したとこ
ろ、図3のような結果が得られた。
Next, regarding the above-described battery of the present invention and the conventional battery, a charging current was applied until the solid electrolyte tube 1 was damaged, and the temperature change of each battery after the damage was investigated. As shown in FIG. Results were obtained.

【0027】図3から、本発明電池は固体電解質管が破
損しても、安全管6Aの底面に設けた陰極活物質出口6
Bが閉塞されるため、極端な温度上昇は認められないこ
とがわかった。
From FIG. 3, in the battery of the present invention, even if the solid electrolyte tube is damaged, the cathode active material outlet 6 provided on the bottom surface of the safety tube 6A.
It was found that no extreme temperature rise was observed because B was blocked.

【0028】[0028]

【発明の効果】上記したとおりであるから、本発明のナ
トリウム−硫黄電池は、固体電解質管1の破損時に安全
管6Aの底面に設けた陰極活物質出口6Bを閉塞するこ
とにより、ナトリウムと硫黄との直接反応を最小限にす
ることができるので、その安全性を向上させることで
き、また固体電解質管の内周面と安全管の外周面に金属
繊維の織布または不織布を設けることにより、ナトリウ
ム−硫黄電池の放電性能を向上させることができる。
As described above, according to the sodium-sulfur battery of the present invention, when the solid electrolyte tube 1 is broken, the cathode active material outlet 6B provided on the bottom surface of the safety tube 6A is closed so that sodium and sulfur can be removed. Since the direct reaction with the can be minimized, its safety can be improved, and by providing a woven or non-woven fabric of metal fibers on the inner peripheral surface of the solid electrolyte tube and the outer peripheral surface of the safety tube, The discharge performance of the sodium-sulfur battery can be improved.

【0029】また、本発明のナトリウム−硫黄電池は、
電池の組み立て時に容易に安全管6Aの内部に低融点金
属または低融点金属合金6Cで星状、角錐状、円錐状、
放射状に被包した球体6Dを配することができ、しかも
該球体6Dが星状、角錐状、円錐状、放射状に被包され
ているため、電池の作動時は円滑にナトリウムを供給す
ることができる。
Further, the sodium-sulfur battery of the present invention is
A low melting point metal or low melting point metal alloy 6C can be easily formed inside the safety tube 6A when the battery is assembled into a star shape, a pyramid shape, a conical shape,
It is possible to arrange the spheres 6D that are radially encapsulated, and since the spheres 6D are encapsulated in a star shape, a pyramidal shape, a conical shape, and a radial shape, it is possible to smoothly supply sodium during the operation of the battery. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のナトリウム−硫黄電池の縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a sodium-sulfur battery of the present invention.

【図2】本発明のナトリウム−硫黄電池に用いる低融点
金属または低融点金属合金で被包した球体の斜視図であ
る。
FIG. 2 is a perspective view of a sphere encapsulated with a low melting point metal or a low melting point metal alloy used in the sodium-sulfur battery of the present invention.

【図3】固体電解質管の破損時における本発明電池と従
来電池の温度変化を比較した図である。
FIG. 3 is a diagram comparing the temperature changes of the battery of the present invention and the conventional battery when the solid electrolyte tube is broken.

【符号の説明】[Explanation of symbols]

1 固体電解質管 2 α−アルミナリング 3 陰極蓋 4 陽極蓋 5 陰極端子 6 陰極パイプ 6A 安全管 6B 陰極活物質出口 6C 低融点金属または低融点金属合金 6D 球体 7 金属繊維 8 ナトリウム 9 電槽 10 硫黄成形体 1 Solid Electrolyte Tube 2 α-Alumina Ring 3 Cathode Lid 4 Anode Lid 5 Cathode Terminal 6 Cathode Pipe 6A Safety Tube 6B Cathode Active Material Outlet 6C Low Melting Point Metal or Low Melting Point Metal Alloy 6D Sphere 7 Metal Fiber 8 Sodium 9 Battery Case 10 Sulfur Molded body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 開口部にα−アルミナリングが接合され
たナトリウムイオン伝導性の固体電解質管の内部に陰極
室を、外部に陽極室を形成し、前記α−アルミナリング
の一方の面に接合した陰極蓋と該陰極蓋に溶接した陰極
端子で前記陰極室を密閉するとともに、前記α−アルミ
ナリングの一方の面または他方の面に接合した陽極蓋と
該陽極蓋に溶接した電槽で前記陽極室を密閉してなるナ
トリウム−硫黄電池において、底面に陰極活物質出口を
有し、内部に陰極活物質を収納した安全管を前記陰極室
内に挿入して上端を前記陰極端子に接続するとともに、
前記安全管の外周面と固体電解質管の内周面との間に金
属繊維の織布または不織布を配し、かつ前記陰極活物質
出口の近傍に低融点金属または低融点金属合金によって
星状、角錐状、円錐状、放射状に被包された球体を位置
せしめたことを特徴とするナトリウム−硫黄電池。
1. A cathode chamber is formed inside a sodium ion conductive solid electrolyte tube having an α-alumina ring joined to its opening, and an anode chamber is formed outside the same, and is joined to one surface of the α-alumina ring. While sealing the cathode chamber with the cathode lid and the cathode terminal welded to the cathode lid, the anode lid joined to one surface or the other surface of the α-alumina ring and the battery case welded to the anode lid In a sodium-sulfur battery in which the anode chamber is sealed, a bottom surface has a cathode active material outlet, and a safety tube containing the cathode active material inside is inserted into the cathode chamber and the upper end is connected to the cathode terminal. ,
Disposing a woven or non-woven metal fiber between the outer peripheral surface of the safety tube and the inner peripheral surface of the solid electrolyte tube, and star-shaped by a low melting point metal or low melting point metal alloy in the vicinity of the cathode active material outlet, A sodium-sulfur battery characterized in that spheres that are pyramidal, conical, and radially encapsulated are positioned.
【請求項2】 請求項1記載のナトリウム−硫黄電池に
おいて、球体はステンレスまたはセラミックスなどの耐
溶融ナトリウム性、耐多硫化ナトリウム性のものからな
ることを特徴とするナトリウム−硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the sphere is made of stainless steel, ceramics or the like having resistance to molten sodium or sodium polysulfide.
【請求項3】 請求項1記載のナトリウム−硫黄電池に
おいて、低融点金属または低融点金属合金は融点が40
0℃〜450℃の金属またはこれらの金属を主体とする
合金からなることを特徴とするナトリウム−硫黄電池。
3. The sodium-sulfur battery according to claim 1, wherein the low melting point metal or the low melting point metal alloy has a melting point of 40.
A sodium-sulfur battery comprising a metal at 0 ° C. to 450 ° C. or an alloy mainly containing these metals.
JP6315071A 1994-12-19 1994-12-19 Sodium-sulfur battery Pending JPH08171931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315071A JPH08171931A (en) 1994-12-19 1994-12-19 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315071A JPH08171931A (en) 1994-12-19 1994-12-19 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH08171931A true JPH08171931A (en) 1996-07-02

Family

ID=18061077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315071A Pending JPH08171931A (en) 1994-12-19 1994-12-19 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH08171931A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419475B1 (en) * 2012-12-21 2014-07-16 재단법인 포항산업과학연구원 Sodium sulfur rechargeable battery
KR101460278B1 (en) * 2012-12-24 2014-11-11 주식회사 포스코 sodium sulfur battery
KR101460280B1 (en) * 2012-10-22 2014-11-11 주식회사 포스코 Sodium sulfur rechargeable battery
KR101507946B1 (en) * 2012-12-24 2015-04-08 주식회사 포스코 sodium sulfur battery
KR101635951B1 (en) * 2014-12-29 2016-07-04 포스코에너지 주식회사 sodium sulfur battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460280B1 (en) * 2012-10-22 2014-11-11 주식회사 포스코 Sodium sulfur rechargeable battery
KR101419475B1 (en) * 2012-12-21 2014-07-16 재단법인 포항산업과학연구원 Sodium sulfur rechargeable battery
KR101460278B1 (en) * 2012-12-24 2014-11-11 주식회사 포스코 sodium sulfur battery
KR101507946B1 (en) * 2012-12-24 2015-04-08 주식회사 포스코 sodium sulfur battery
KR101635951B1 (en) * 2014-12-29 2016-07-04 포스코에너지 주식회사 sodium sulfur battery

Similar Documents

Publication Publication Date Title
JPH07335252A (en) Electrochemical battery
JP2000505588A (en) Electrochemical cell
JPH08171931A (en) Sodium-sulfur battery
JPS5951482A (en) Sodium-sulfur battery
JPH06223872A (en) Negative electrode chamber of sodium-sulfur battery
JPH03501545A (en) Improved alkal metal battery
US5354628A (en) Hermetically sealed cell comprising liquid active material
JPS6012680A (en) Sodium-sulfur battery
JPH02257576A (en) Sodium-sulfur cell
JPH06223873A (en) Negative electrode chamber of sodium-sulfur battery
JPH03203171A (en) Sodium-sulfur battery
JPS6199278A (en) Metal-hydrogen alkaline storage battery
JPH02144858A (en) Sodium-sulfur battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JPH02172161A (en) Sodium-sulfur battery
JP2000040522A (en) Sodium-sulfur battery
JPH034459A (en) Sodium-sulfur battery and its manufacture
JPH07320776A (en) Sodium-sulfur battery
JPH0554908A (en) Sodium-sulfur battery
JPH02103869A (en) Sodium-sulphur battery
JPH0298068A (en) Sodium-sulfur battery
JPH06243895A (en) Negative electrode chamber of sodium-sulfur battery
JPS6039774A (en) Sodium-sulfur battery
JPS5829563Y2 (en) Sodium - Sulfur Denthi
JPH06243893A (en) Negative electrode chamber of sodium-sulphur battery