JPS6174376A - Thin-film photovoltaic element - Google Patents

Thin-film photovoltaic element

Info

Publication number
JPS6174376A
JPS6174376A JP59195989A JP19598984A JPS6174376A JP S6174376 A JPS6174376 A JP S6174376A JP 59195989 A JP59195989 A JP 59195989A JP 19598984 A JP19598984 A JP 19598984A JP S6174376 A JPS6174376 A JP S6174376A
Authority
JP
Japan
Prior art keywords
layer
electrodes
regions
semiconductor thin
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195989A
Other languages
Japanese (ja)
Other versions
JPH0531315B2 (en
Inventor
Yoshiyuki Uchida
内田 喜之
Shinji Nishiura
西浦 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59195989A priority Critical patent/JPS6174376A/en
Publication of JPS6174376A publication Critical patent/JPS6174376A/en
Publication of JPH0531315B2 publication Critical patent/JPH0531315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To protect lower layers from damage in a process of isolating upper layers by a method wherein the isolating regions for semiconductor thin films and second electrodes are positioned, respectively, on the regions of first electrodes and semiconductor thin films that are located just under them, in a plurality of photovoltaic regions composed of first electrodes, semiconductor thin films, and second electrodes, deposited in that order. CONSTITUTION:When an a-Si layer is patterned on metal electrodes 21, 22, 23, 24, isolating regions 71, 72 between a-Si layer regions 31, 32, 33 are positioned just over the electrodes 22, 23 of solar battery cells 20, 30. Isolating regions 73, 74 between transparent electrodes 41, 42, 43 formed by the patterning of a transparent electrode layer are also caused to be positioned over the layers 32, 33 of the solar battery cells 20, 30. Consequently, the process of laser beam application is accomplished only on the metal electrodes and semiconductor thin films that are free of steps, protecting the substrate 1 and metal electrode layers.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は同一基板上に相互にyCII!Eされる複数の
光起電力発生領域を存する薄膜光起電力素子、例えばア
モルファスシリコン(以下a−S+と記す)太陽i池に
関する。
In the present invention, yCII! The present invention relates to a thin film photovoltaic device, such as an amorphous silicon (hereinafter referred to as a-S+) solar cell, which has a plurality of photovoltaic power generating regions.

【従来技術とその問題点】[Prior art and its problems]

第2図は従来のa −5l太陽電池の一例を示し、ボリ
ミイド膜などの高分子膜、耐熱性樹脂被覆のステンレス
鋼板、あるいはセラミック板のような絶a基板lの上に
三つの金属電!21,22.23が被着され、さらにそ
れぞれの上にa −5tall 31.32133、透
明電@41,42.43が積層されることにより、三つ
の短冊吠の太陽電池セル10.20.30が構成されて
いる。各セルは透明電Pi41の延長部が金属電極22
と、透明電極42の延長部が金属電極23と接触するこ
とにより直列に接続され、出力は金属電極21と透明を
極43の延長部から取り出すことができる。このような
太陽電池は第3図に示す工程で製造される。 基板1の上に金属M2を約1μ−の厚さに形成する。金
属層はA1.↑s * Cr + !1 o +ステン
レス鋼の単一層あろいは^l/T1.^L/ステンレス
鋼などの2N膜からなり、蒸着法あるいはスパッタリン
グ法により堆積される(a図)0次に、例えば約IWの
YAGレーザビームを照射して金属層2の不要なところ
を蒸発させて除去し、金属電521,22.23を形成
する(b図)、つづいてシラン(SiH#)とジボラン
(B*I1m)の混合ガスを用いて約100人の厚さの
p型a −5k層、シランを用いて約o、 s ’tr
−の厚さのノンドープミー5t層、シランとフォスフイ
ン(PTIff)を用いて約500人のn型a −st
mをグロー放電分解により積層し、a−5t層3を形成
する(0図)0次いでArレーザ(0,48μ纏)を用
い、約1.5Wの照射パワーによりa−3IJi3のバ
ターニングを行ってa−31層3を三つの領域31.3
2.81に分離する(d図)。 最後にITO,Sn0g等からなる透明電極層4を約7
00人の厚さに電子と−L無蒸着。パッタリングにより
被着する(0図)、さらに照射パワー約2.5WのAr
レーザビームを照射、シテバター二ングを行って透明電
極41.42.43を形成する(f図)。 しかしこの製造工程においてレーザビームの照射により
バターニングすべき層よりも下側の層が損傷を受けろこ
とがある0例えばArレーザでa−3
Figure 2 shows an example of a conventional A-5L solar cell, in which three metal electrodes are mounted on an absolute substrate such as a polymer film such as a borimide film, a stainless steel plate coated with a heat-resistant resin, or a ceramic plate. 21, 22.23 are deposited, and a-5tall 31.32133 and transparent electrode@41, 42.43 are further laminated on top of each other, thereby forming three tanzakubo solar cells 10.20.30. is configured. In each cell, an extension of the transparent electrode Pi 41 is a metal electrode 22.
The extension of the transparent electrode 42 contacts the metal electrode 23 to connect them in series, and the output can be taken out from the extension of the metal electrode 21 and the transparent electrode 43. Such a solar cell is manufactured through the steps shown in FIG. A metal M2 is formed on the substrate 1 to a thickness of about 1 μm. The metal layer is A1. ↑s * Cr +! 1 o + Single layer stainless steel alloy is ^l/T1. ^L/It consists of a 2N film made of stainless steel, etc., and is deposited by vapor deposition or sputtering (Figure a).Next, unnecessary parts of the metal layer 2 are evaporated by irradiation with a YAG laser beam of approximately IW, for example. Then, using a mixed gas of silane (SiH#) and diborane (B*I1m), a p-type a- 5k layer, about o,s'tr using silane
- about 500 n-type a-st using silane and phosphine (PTIff) undoped 5T layer of thickness
m is laminated by glow discharge decomposition to form a-5t layer 3 (Figure 0).Next, a-3IJi3 is patterned using an Ar laser (0.48μ) with an irradiation power of about 1.5W. a-31 layer 3 into three areas 31.3
2. Separate into 81 parts (Figure d). Finally, a transparent electrode layer 4 made of ITO, Sn0g, etc.
No electron and -L vapor deposition to a thickness of 0.00 people. Deposited by sputtering (Fig. 0), and Ar
Transparent electrodes 41, 42, and 43 are formed by irradiating with a laser beam and performing sheet buttering (Fig. f). However, in this manufacturing process, layers below the layer to be patterned may be damaged by laser beam irradiation.

【層3のバターニ
ングを行う場合、基[1はレーザビーム照射に弱いので
a −51層が直接基板の上に設けられている部分、す
なわち金属電極21,22゜23の分離部に被着してい
る部分を加工する場合にはビーム出力を下げる必要があ
るが、そのためパターニング速度が@端に落ちる。しか
もこの出力調整もa−5L層31,32.33の間隔が
0.51程度で狭いため実原上は困難で、a −5t層
31と金属電極22の間あるいはa −S1層32と金
属電極23の間で既に金属電極J112のバターニング
の際にレーザにより照射された基板1が再びレーザによ
り照射されることによってdV!Jに示すような傷51
.52が入る。 このような傷は太陽電池の使用時の基板lの機械的、熱
的弱点となり、特にセラミックまたはガラスなどの脆な
い材料を基仮に用いるときは基板の破壊の原因になるこ
ともある。開襟に透明電極層4のバターニングの際に金
属電極部にf図に示すように傷61.62ができること
が多く、これによってセルのシリーズ抵抗が増加する問
題がある。 このような問題はレーザによる分離加工に限らず、プラ
ズマエツチングあるいは化学的反応によるエツチングの
際にも生ずろ。 【発明の目的] 本発明は、上述の問題を解決し、上層の分離加工の際に
下層面が損傷されに(い薄膜光起電力素子を提供するこ
とを目的とす4゜ ■発明の要点] 本発明は、同一絶縁基板上に順に積層された第−is、
半導体fit膜、第二電極からなる複数・の光起電力発
生領域を有し、各領域が相互に接続されるものにおいて
、半導体薄膜および第二電極の分離部がそれぞれ第一電
極および半導体薄膜の領域の上にのみ位置することによ
り上記の目的を達成する6分離部が直下の層の上のみに
形成されることにより、加工はその直下層の上に右いて
のみ行われ、加工の強さの微11な調整の必要がなく、
さらに下側にあろ層の面に作用することがないので損傷
が生じない。 【発明の実施例】 第1図は第2図および第3図に示した場合と同一の構成
のa −51太陽電池における本発明の実施例を示し、
第2.第3図と共通の部分には同一の符号が付されてい
る。この場合は、金属電極層のパターニングにより金属
電極21,22,23.24 カ形成され、その上に積
層したa−5t層のパターニングのfQ a −5iJ
i tit域31.32.33(D間の分離部71.7
2が太陽電池セル20.30の金属電極22.23の上
に来るようになっている。このため約1.5Wのパワー
のArレーザビームの照射による加工は段差のない金属
電極上のみで行われ、基板1にビームが達することがな
いので基板を傷つけることがない1次に透明電極層のパ
ターニングによりて形成される透明電極41.42.4
3の間の分離部73.74もセル20.30のa−5,
i層32.33.の上にくるようにされ、このため金5
tainに傷がつくことがなく、セル特性においてシリ
ーズ抵抗増加による曲線因子(フィルファクタ)の低下
も起こらない、この原加工すべき分離部71゜?2.7
3.7441段差のない面上に形成されるため、バター
ニングの加工櫂度が向上し間隙を0.3msまて縮めろ
ことがで7きる。なり二透明電極層のパターニングに引
続き照射バワニを低くして分離部73.74と同一パタ
ーンでa−5i層に点線で示す分離帯81.82を形成
すれば、容易にリーク電流を低下させる効果が!られる
。この太陽、電池の出力は金属電極層21および24の
露出部から取り出すことができる。 第4図は別の実施例を示し、前出の図と共通の部分には
同一の符号が付されている。この場合は、ガラス基板1
1の上に形成した直列接続型太陽電池である。この太陽
電池の構成は、基板ll上に透明電極層41,42.4
3、a−5l’1131,32.33および35、金属
電極層21.22.23および25が順に積層されてい
る。 a−5i層31.32.33の分離部71.72がセル
20.30の透明電極層42.43の上に、透明電極層
21,22.23の間の分離部75.76がセル20.
30の1−31層32.33の上に来るようになってい
て、a−3i層のパターンの隙にガラス基板11が傷つ
(ことな(、金属電極層のパターンの際に透明電極層が
傷つ(ことがない、なお、出力取り出し端子のための金
属電極層25、a−3i層35形成のため、金属電極層
およびa−81層にそれぞれ分離部78.77を形成す
る。この場合も、金属電極層の加工に引き続いてa −
5i層の分離帯81.82.83を加工することにより
セル特性のリーク電流を低下させることができる。 【発明の効果] 本発明は、絶縁基板上に両側に電極層を備えた半導体y
I膜によって形成される光起電力発生領域が複数設けら
れるものにおいて、領域間の各層の分離部を直下の層の
面上のみに存在するように形成するもので、分離加工面
に段差がないため加工精度が向上すると共に直下以外の
層に加工の影響が及ぶことがなく、また加工条件の決定
が容易であるため直下の層にも傷を付けることが避けら
れ、分離加工によって素子の特性を害することがない。 加工方法としては上述のレーザ加工に限らず、化学的反
応を用いろ加工、プラズマエツチング法による加工の場
合にも本発明は適用でき、エッチャント、プラズマ発生
条件の選定が容易になるなど本発明の効果は極めて大き
い。
[When patterning layer 3, since the base layer 1 is sensitive to laser beam irradiation, the a-51 layer is directly attached to the part provided on the substrate, that is, the separated part of the metal electrodes 21, 22, and 23. In order to process a part that has been removed, it is necessary to lower the beam output, but this causes the patterning speed to drop to the @ end. Moreover, this output adjustment is difficult in actual practice because the spacing between the a-5L layers 31, 32, and 33 is narrow at about 0.51. Between the electrodes 23, the substrate 1, which has already been irradiated with the laser during the patterning of the metal electrode J112, is irradiated again with the laser, so that the dV! Scratch 51 as shown in J
.. 52 enters. Such scratches become mechanical and thermal weaknesses of the substrate 1 when the solar cell is used, and may cause destruction of the substrate, especially when a brittle material such as ceramic or glass is used. When the transparent electrode layer 4 is patterned on the open collar, scratches 61 and 62 are often formed on the metal electrode portion as shown in figure f, which poses a problem of increasing the series resistance of the cell. Such problems occur not only in laser separation processing but also in plasma etching or chemical reaction etching. [Object of the Invention] The present invention aims to solve the above-mentioned problems and provide a thin film photovoltaic device in which the lower layer surface is not damaged during separation processing of the upper layer. ] The present invention is directed to the -is layer stacked in order on the same insulating substrate,
In a device that has a plurality of photovoltaic force generation regions consisting of a semiconductor fit film and a second electrode, and each region is interconnected, the separation portion of the semiconductor thin film and the second electrode is connected to the first electrode and the semiconductor thin film, respectively. Achieving the above objective by being located only on top of the area 6. The isolation part is formed only on the layer directly below, so that processing can only be carried out on top of the layer directly below it, increasing the strength of processing. There is no need for minute adjustments,
Furthermore, since it does not act on the surface of the outer layer on the lower side, no damage occurs. Embodiment of the Invention FIG. 1 shows an embodiment of the present invention in an a-51 solar cell having the same configuration as shown in FIGS. 2 and 3,
Second. Components common to those in FIG. 3 are given the same reference numerals. In this case, metal electrodes 21, 22, 23.24 are formed by patterning the metal electrode layer, and fQ a -5iJ of the patterning of the a-5t layer laminated thereon.
i tit area 31.32.33 (separation part between D 71.7
2 is placed above the metal electrode 22.23 of the solar cell 20.30. For this reason, processing by Ar laser beam irradiation with a power of about 1.5 W is performed only on the metal electrode with no steps, and since the beam does not reach the substrate 1, the primary transparent electrode layer does not damage the substrate. Transparent electrodes 41.42.4 formed by patterning
Separation portion 73.74 between cell 20.30 and a-5,
i-layer 32.33. It was made to be on top of the gold 5
This separation part 71° to be originally processed will not cause any damage to the stain and will not cause a decrease in fill factor due to an increase in series resistance in cell characteristics. 2.7
3.7441 Since it is formed on a surface with no steps, the processing speed of patterning is improved and the gap can be reduced by 0.3 ms. If, following the patterning of the second transparent electrode layer, the irradiation bar is lowered and separation bands 81.82 shown by dotted lines are formed on the a-5i layer in the same pattern as the separation parts 73.74, the leakage current can be easily reduced. but! It will be done. The output of this solar battery can be taken out from the exposed portions of the metal electrode layers 21 and 24. FIG. 4 shows another embodiment, in which parts common to the previous figures are given the same reference numerals. In this case, glass substrate 1
This is a series-connected solar cell formed on 1. The structure of this solar cell is that transparent electrode layers 41, 42, 4 and 4 are provided on substrate 11.
3, a-5l' 1131, 32, 33 and 35, and metal electrode layers 21, 22, 23 and 25 are laminated in this order. The separation part 71.72 of the a-5i layer 31.32.33 is on the transparent electrode layer 42.43 of the cell 20.30, and the separation part 75.76 between the transparent electrode layers 21, 22.23 is on the cell 20. ..
The glass substrate 11 is scratched in the gap between the patterns of the a-3i layers, and the transparent electrode layer is placed on top of the layers 32 and 33 of the metal electrode layer. Note that in order to form the metal electrode layer 25 and the a-3i layer 35 for the output extraction terminal, separation parts 78 and 77 are formed in the metal electrode layer and the a-81 layer, respectively. In this case, following the processing of the metal electrode layer, a −
By processing the separation bands 81, 82, and 83 of the 5i layer, the leakage current of the cell characteristics can be reduced. Effects of the Invention The present invention provides a semiconductor y
In a device with multiple photovoltaic power generating regions formed by an I film, the separation part of each layer between the regions is formed only on the surface of the layer directly below, and there is no step on the separation processing surface. As a result, processing accuracy is improved, and the processing does not affect layers other than those directly below it. Also, since it is easy to determine the processing conditions, it is possible to avoid damaging the layers immediately below, and separation processing improves the characteristics of the element. will not cause any harm. The processing method of the present invention is not limited to the above-mentioned laser processing, but can also be applied to processing using a chemical reaction or plasma etching method. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のa −3i太陽電池の断面
図、第2図は第1図と同一の構成を有するセルからなる
太陽電池の従来例の断面図、第3図は第2図の太陽電池
の製造工程を示す断面図、第4図は別の実施例の断面図
である。 l、11:絶縁基板、21,22,23:金属電極、3
1゜32.33  : a−51層、41.42.43
 :透明電極層、71゜72.73.74.75.76
 +分離部、10.20.30 :太陽電池セル。 第1図 第2図
FIG. 1 is a cross-sectional view of an a-3i solar cell according to an embodiment of the present invention, FIG. FIG. 2 is a sectional view showing the solar cell manufacturing process, and FIG. 4 is a sectional view of another embodiment. l, 11: Insulating substrate, 21, 22, 23: Metal electrode, 3
1°32.33: a-51 layer, 41.42.43
:Transparent electrode layer, 71°72.73.74.75.76
+ Separation section, 10.20.30: Solar cell. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)同一絶縁基板上に順に積層された第一電極、半導体
薄膜、第二電極からなる複数の光起電力発生領域を有し
、各領域が相互に接続されるものにおいて、半導体薄膜
および第二電極の分離部がそれぞれ第一電極および半導
体薄膜の領域の上にのみ位置することを特徴とする薄膜
光起電力素子。 2)特許請求の範囲第1項記載の素子において、第二電
極の分離部の直下の半導体薄膜が除去されたことを特徴
とする薄膜光起電力素子。
[Scope of Claims] 1) A device having a plurality of photovoltaic power generating regions consisting of a first electrode, a semiconductor thin film, and a second electrode stacked in order on the same insulating substrate, and each region is interconnected. , a thin film photovoltaic device characterized in that the separation portions of the semiconductor thin film and the second electrode are located only on the regions of the first electrode and the semiconductor thin film, respectively. 2) A thin film photovoltaic device according to claim 1, characterized in that the semiconductor thin film immediately below the separation portion of the second electrode is removed.
JP59195989A 1984-09-19 1984-09-19 Thin-film photovoltaic element Granted JPS6174376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195989A JPS6174376A (en) 1984-09-19 1984-09-19 Thin-film photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195989A JPS6174376A (en) 1984-09-19 1984-09-19 Thin-film photovoltaic element

Publications (2)

Publication Number Publication Date
JPS6174376A true JPS6174376A (en) 1986-04-16
JPH0531315B2 JPH0531315B2 (en) 1993-05-12

Family

ID=16350362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195989A Granted JPS6174376A (en) 1984-09-19 1984-09-19 Thin-film photovoltaic element

Country Status (1)

Country Link
JP (1) JPS6174376A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115372A (en) * 1979-02-27 1980-09-05 Sanyo Electric Co Ltd Photovoltaic device
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5935489A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device
JPS5996778A (en) * 1982-11-24 1984-06-04 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115372A (en) * 1979-02-27 1980-09-05 Sanyo Electric Co Ltd Photovoltaic device
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5935489A (en) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd Manufacture of photo semiconductor device
JPS5996778A (en) * 1982-11-24 1984-06-04 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device

Also Published As

Publication number Publication date
JPH0531315B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
US8846419B2 (en) Thin layer solar cell module and method for producing it
US6271053B1 (en) Method of manufacturing a thin film solar battery module
US4542578A (en) Method of manufacturing photovoltaic device
US4668840A (en) Photovoltaic device
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
JP3243232B2 (en) Thin film solar cell module
JP2000150944A (en) Solar cell module
JPS616828A (en) Manufacture of semiconductor device
JPH1079522A (en) Thin-film photoelectric conversion device and its manufacturing method
JPS622713B2 (en)
JPS6174376A (en) Thin-film photovoltaic element
JP3243229B2 (en) Solar cell module
JP3085180B2 (en) Field effect solar cell
JP2003101048A (en) Method for manufacturing photovoltaic device
JP2000261019A (en) Solar battery module
JPS6265480A (en) Thin film solar battery
JPS63157484A (en) Semiconductor device
JP4052782B2 (en) Integrated photovoltaic device and method for manufacturing the same
JPH053150B2 (en)
JP2664377B2 (en) Manufacturing method of light receiving device
JPH0370184A (en) Photovoltaic device
JPS6188569A (en) Solar cell device
JPH08222749A (en) Method of manufacturing thin film solar battery
JPS62142369A (en) Manufacture of solar battery
JPS63161681A (en) Amorphous photovoltaic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees