JP3243232B2 - Thin film solar cell module - Google Patents
Thin film solar cell moduleInfo
- Publication number
- JP3243232B2 JP3243232B2 JP15746599A JP15746599A JP3243232B2 JP 3243232 B2 JP3243232 B2 JP 3243232B2 JP 15746599 A JP15746599 A JP 15746599A JP 15746599 A JP15746599 A JP 15746599A JP 3243232 B2 JP3243232 B2 JP 3243232B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- region
- cell module
- filler
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title claims description 17
- 239000000758 substrate Substances 0.000 claims description 41
- 239000000945 filler Substances 0.000 claims description 28
- 239000000853 adhesive Substances 0.000 claims description 22
- 230000001070 adhesive effect Effects 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 9
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229920002367 Polyisobutene Polymers 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 239000010408 film Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 238000010248 power generation Methods 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009413 insulation Methods 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
- H01L31/02008—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は太陽光発電に用いら
れる薄膜太陽電池モジュールに関する。The present invention relates to a thin-film solar cell module used for photovoltaic power generation.
【0002】[0002]
【従来の技術】薄膜太陽電池モジュールは、透光性基板
上に透明導電性酸化物からなる第1電極層の成膜とレー
ザースクライビング、アモルファスシリコンなどからな
る半導体層の成膜とレーザースクライビング、金属など
からなる第2電極層(裏面電極)などの薄膜の成膜とレ
ーザースクライビングを行い、これらの各層の全面を樹
脂充填材および保護フィルムまたは保護材料で封止する
ことにより製造される。2. Description of the Related Art Thin-film solar cell modules include a first electrode layer made of a transparent conductive oxide and a laser scribing on a light-transmitting substrate, a semiconductor layer made of an amorphous silicon and the like, a laser scribing, and a metal. It is manufactured by forming a thin film such as a second electrode layer (backside electrode) and laser scribing, and sealing the entire surface of each layer with a resin filler and a protective film or a protective material.
【0003】上記の各層の成膜はCVD法やスパッタ法
などの気相反応により行うため、各層は透光性基板の全
面に形成される。また、各層のレーザースクライビング
は、各層を個々の太陽電池セルに分離し、かつ隣り合う
太陽電池セルを直列(または並列)に接続するために行
う。Since the above-mentioned layers are formed by a gas phase reaction such as a CVD method or a sputtering method, each layer is formed on the entire surface of the light-transmitting substrate. The laser scribing of each layer is performed to separate each layer into individual solar cells and to connect adjacent solar cells in series (or in parallel).
【0004】このような薄膜太陽電池モジュールでは、
屋外での使用時に外部からの水分などの侵入により太陽
電池セルの活性部(発電領域)が変質さらには腐食し、
発電特性が劣化することが問題になる。この原因の1つ
として太陽電池モジュール端部の基板と充填材との間か
ら水分が侵入することが挙げられる。したがって、太陽
電池モジュール端部からの水分の侵入を防止して耐候性
を向上させることが要求されている。In such a thin film solar cell module,
When used outdoors, the active part (power generation area) of the solar cell is deteriorated and corroded by the intrusion of moisture from the outside,
The problem is that the power generation characteristics deteriorate. One of the causes is that moisture invades from between the substrate at the end of the solar cell module and the filler. Therefore, it is required to prevent the intrusion of moisture from the end of the solar cell module to improve the weather resistance.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、充填
材などによって封止された状態で水分などによる腐食に
基づく発電特性の劣化が発生せず、かつ高い生産性で製
造できる薄膜太陽電池モジュールを提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film solar cell which can be manufactured with high productivity without deterioration of power generation characteristics due to corrosion due to moisture or the like in a state sealed with a filler or the like. To provide modules.
【0006】[0006]
【課題を解決するための手段】本発明の薄膜太陽電池モ
ジュールは、基板上にそれぞれ成膜およびパターン加工
された第1電極層、半導体層および第2電極層を積層し
て複数の太陽電池セルを集積化し、充填材で封止した太
陽電池モジュールにおいて、前記太陽電池セル領域の周
囲が、太陽電池セル領域よりも充填材に対する接着力の
大きい領域で囲繞されていることを特徴とする。A thin-film solar cell module according to the present invention comprises a plurality of solar cell units formed by laminating a first electrode layer, a semiconductor layer, and a second electrode layer, each of which is formed and patterned on a substrate. Are integrated and sealed with a filler, wherein the periphery of the solar cell region is surrounded by a region having a larger adhesive force to the filler than the solar cell region.
【0007】本発明において、太陽電池セル領域よりも
充填材に対する接着力の大きい領域とは、具体的には充
填材との接着力が垂直引き剥がしピール強度で3kgf
/cm以上である領域を意味する。In the present invention, a region having a larger adhesive force to the filler than the solar cell region specifically means that the adhesive force to the filler is 3 kgf in vertical peel strength.
/ Cm or more.
【0008】本発明において、このような接着力の大き
い領域は、例えば(1)透明導電性酸化物からなる第1
電極層の露出部、(2)基板の露出部、または(3)C
r、W、MoおよびTiからなる群より選択される金属
層、によって構成される。In the present invention, such a region having a large adhesive force is, for example, (1) a first region made of a transparent conductive oxide.
Exposed portion of electrode layer, (2) exposed portion of substrate, or (3) C
a metal layer selected from the group consisting of r, W, Mo and Ti.
【0009】[0009]
【発明の実施の形態】以下、本発明をより詳細に説明す
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0010】本発明の薄膜太陽電池モジュールに用いら
れる材料について説明する。基板としては、ガラスなど
の透光性基板が用いられる。第1電極層(透明電極層)
の材料としては、たとえばSnO2、ZnO、ITOな
どの透明導電性酸化物が用いられる。半導体層の材料と
してはシリコンを主成分とする層、例えばp型a−S
i:H層、i型a−Si:H層、およびn型微結晶S
i:H層の積層構造が用いられる。また、pin接合を
形成する多結晶シリコン層の積層構造を用いてもよい。
第2電極層(裏面電極層)の材料としては、Ag、A
l、CrおよびTi、ならびにこれらの金属と金属酸化
物との積層体などが用いられる。The materials used for the thin-film solar cell module of the present invention will be described. As the substrate, a light-transmitting substrate such as glass is used. First electrode layer (transparent electrode layer)
As a material for the material, for example, a transparent conductive oxide such as SnO 2 , ZnO, or ITO is used. As a material of the semiconductor layer, a layer containing silicon as a main component, for example, p-type a-S
i: H layer, i-type a-Si: H layer, and n-type microcrystal S
A stacked structure of i: H layers is used. Further, a stacked structure of a polycrystalline silicon layer forming a pin junction may be used.
As a material of the second electrode layer (backside electrode layer), Ag, A
l, Cr and Ti, and a laminate of these metals and metal oxides are used.
【0011】これらの各層は、CVD法またはスパッタ
法により成膜した後に所定の幅でレーザースクライビン
グすることにより個々の太陽電池セルに分離され、かつ
隣り合う太陽電池セルが直列(または並列)に接続され
る。Each of these layers is separated into individual solar cells by laser scribing with a predetermined width after being formed by a CVD method or a sputtering method, and adjacent solar cells are connected in series (or in parallel). Is done.
【0012】充填材の材料としては、エチレン−酢酸ビ
ニル共重合体(EVA)、ポリイソブチレン、ポリビニ
ルブチラールおよびシリコーンなどが用いられる。ま
た、保護フィルムとして、ふっ化ビニルフィルム、また
はふっ化ビニルフィルムとアルミニウム箔との積層体な
どが用いられる。その他の保護材料として、金属板やガ
ラス織布などが用いられることもある。As the material of the filler, ethylene-vinyl acetate copolymer (EVA), polyisobutylene, polyvinyl butyral, silicone and the like are used. Further, as the protective film, a vinyl fluoride film or a laminate of a vinyl fluoride film and an aluminum foil is used. As another protective material, a metal plate, a glass woven fabric, or the like may be used.
【0013】本発明は、太陽電池セル領域(活性部、発
電領域)の周囲を充填材に対して接着力の大きい領域で
取り囲み、周縁部において基板と充填材とを強固に接着
することにより、太陽電池モジュール端部の水密性を向
上させようとするものである。According to the present invention, by enclosing the periphery of the solar cell region (active portion, power generation region) with a region having a large adhesive force to the filler, and by firmly bonding the substrate and the filler at the peripheral portion, The purpose is to improve the watertightness of the end of the solar cell module.
【0014】ここで、下地材料と充填材との接着力は、
たとえば垂直引き剥がしピール強度(JIS K685
4)によって評価できる。そこで、下地材料がガラス基
板、第1電極層を構成するSnO2などの透明導電性酸
化物、半導体、または第2電極層を構成する金属である
場合に、これらの下地材料上に充填材として接着された
EVAの垂直引き剥がしピール強度を測定した。その結
果、EVAのピール強度は、下地がガラス基板である場
合に15kgf/cm以上と最も大きく、下地が透明導
電性酸化物である場合にも上記と同等の14kgf/c
mであり、下地が半導体や金属である場合の0.5〜4
kg/cmと比べて著しく大きいことが判明した。ま
た、金属の種類、表面状態によりピール強度は著しく変
化しており、Cr、Mo、W、Tiなどの高融点金属の
場合は比較的変化が少ないものの、Ag、Alなど通常
の電極材料では3kgf/cm未満になる場合が多い。Here, the adhesive force between the base material and the filler is:
For example, vertical peel strength (JIS K685
4) can be evaluated. Therefore, when the base material is a glass substrate, a transparent conductive oxide such as SnO 2 forming the first electrode layer, a semiconductor, or a metal forming the second electrode layer, a filler is formed on these base materials as a filler. The vertical peel strength of the adhered EVA was measured. As a result, the peel strength of EVA was the largest of 15 kgf / cm or more when the base was a glass substrate, and was 14 kgf / c equivalent to the above even when the base was a transparent conductive oxide.
m, and 0.5 to 4 when the underlying material is a semiconductor or metal.
It was found to be significantly larger than kg / cm. Further, the peel strength changes remarkably depending on the type and surface condition of the metal. In the case of a high melting point metal such as Cr, Mo, W, and Ti, the change is relatively small. / Cm in many cases.
【0015】したがって、太陽電池セル領域の周囲を太
陽電池セル領域よりも充填材に対する接着力の大きい領
域、具体的には充填材との接着力が垂直引き剥がしピー
ル強度で3kgf/cm、より好ましくは10kgf/
cm以上である領域で囲繞することにより、太陽電池モ
ジュール端部の水密性を良好にして耐候性を向上させる
ことができる。Therefore, the periphery of the solar cell area has a larger adhesive strength to the filler than the solar cell area, specifically, the adhesive strength to the filler is preferably 3 kgf / cm in vertical peel strength. Is 10kgf /
cm, the watertightness at the end of the solar cell module can be improved and the weather resistance can be improved.
【0016】本発明において、このような接着力の大き
い領域は、例えば(1)透明導電性酸化物からなる第1
電極層の露出部、(2)基板の露出部、または(3)C
r、W、MoおよびTiからなる群より選択される金属
層、によって構成される。In the present invention, such a region having a large adhesive strength is, for example, (1) a first region made of a transparent conductive oxide.
Exposed portion of electrode layer, (2) exposed portion of substrate, or (3) C
a metal layer selected from the group consisting of r, W, Mo and Ti.
【0017】接着力の大きい領域を透明導電性酸化物か
らなる第1電極層の露出部で構成するには、たとえばC
VD法またはスパッタ法により基板の周縁部に積層され
ている第2電極層および半導体層を機械的に除去する方
法が用いられる。具体的には、表面研磨法または微粒子
の吹き付けによるブラスト法が挙げられる。後者の方法
においては、粒径が100μm以下の微粒子を用いるこ
とが好ましい。また、第2電極層および半導体層をビー
ム径を拡げたレーザービームを照射することにより除去
してもよい。In order to form a region having a large adhesive force by an exposed portion of the first electrode layer made of a transparent conductive oxide, for example, C
A method of mechanically removing the second electrode layer and the semiconductor layer laminated on the peripheral portion of the substrate by a VD method or a sputtering method is used. Specific examples include a surface polishing method and a blast method by spraying fine particles. In the latter method, it is preferable to use fine particles having a particle size of 100 μm or less. Further, the second electrode layer and the semiconductor layer may be removed by irradiating a laser beam having an enlarged beam diameter.
【0018】接着力の大きい領域を基板の露出部で構成
するには、基板の周縁部において第2電極層、半導体
層、第1電極層および基板自体を機械的に除去する方法
が用いられる。この場合、第2電極層、半導体層、第1
電極層および基板の合計の厚さは、5〜100μm、さ
らに10〜25μmであることが好ましい。In order to form the region having a large adhesive force by the exposed portion of the substrate, a method of mechanically removing the second electrode layer, the semiconductor layer, the first electrode layer and the substrate itself from the peripheral portion of the substrate is used. In this case, the second electrode layer, the semiconductor layer, the first
The total thickness of the electrode layer and the substrate is preferably 5 to 100 μm, more preferably 10 to 25 μm.
【0019】なお、上記のように第1電極層または基板
を露出させた後、さらにシランカップリング剤で表面処
理してもよい。After the first electrode layer or the substrate is exposed as described above, the surface may be further treated with a silane coupling agent.
【0020】接着力の大きい領域をCr、W、Moおよ
びTiからなる群より選択される金属層で構成するに
は、これらの金属成分を含む処理液を用いてプライマー
処理する方法が用いられる。また、太陽電池セルの活性
部にマスクを形成し、Cr、W、MoまたはTiからな
る金属を蒸着またはスパッタする方法を用いてもよい。
いずれの場合も下地材料は特に限定されず、第2電極層
上にCr、W、MoまたはTiからなる金属を形成して
もよい。In order to form a region having a large adhesive strength with a metal layer selected from the group consisting of Cr, W, Mo and Ti, a method of performing a primer treatment using a treatment liquid containing these metal components is used. Alternatively, a method may be used in which a mask is formed on the active portion of the solar cell and a metal made of Cr, W, Mo or Ti is deposited or sputtered.
In any case, the underlying material is not particularly limited, and a metal made of Cr, W, Mo, or Ti may be formed on the second electrode layer.
【0021】基板の周縁部における充填材との接着力の
大きい領域の幅は十分な接着力が得られるように決定さ
れ、0.5mm以上、好ましくは0.5mm〜1cm、
より好ましくは1〜5mmである。The width of the region having a large adhesive strength with the filler at the peripheral edge of the substrate is determined so as to obtain a sufficient adhesive strength, and is 0.5 mm or more, preferably 0.5 mm to 1 cm,
More preferably, it is 1 to 5 mm.
【0022】以上のような構成を有する本発明の薄膜太
陽電池モジュールは、太陽電池セル領域の周囲が全周に
わたって充填材に対する接着力の大きい領域で取り囲ま
れているので充填材との高い接着性を維持することがで
き、水分などの侵入による腐食に基づく発電特性の劣化
がなく耐候性を改善できる。In the thin-film solar cell module of the present invention having the above-described structure, the periphery of the solar cell region is surrounded by a region having a large adhesive force with respect to the filler over the entire periphery, so that the adhesiveness with the filler is high. Can be maintained, and the weather resistance can be improved without deterioration of power generation characteristics due to corrosion due to penetration of moisture or the like.
【0023】[0023]
【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.
【0024】実施例1 図1は本発明の一実施例に係る太陽電池モジュールを示
す断面図である。なお、図1では太陽電池モジュールの
端部に近い領域を拡大して示している。図2は図1の平
面図である。これらの図に示される太陽電池モジュール
は以下のようにして製造される。Embodiment 1 FIG. 1 is a sectional view showing a solar cell module according to one embodiment of the present invention. In FIG. 1, a region near the end of the solar cell module is shown in an enlarged manner. FIG. 2 is a plan view of FIG. The solar cell modules shown in these figures are manufactured as follows.
【0025】面積92cm×46cm、厚さ4mmのソ
ーダライムガラスからなるガラス基板1上に、熱CVD
法により厚さ8000ÅのSnO2膜からなる透明電極
2を形成した。Thermal CVD is performed on a glass substrate 1 made of soda lime glass having an area of 92 cm × 46 cm and a thickness of 4 mm.
A transparent electrode 2 made of a SnO 2 film having a thickness of 8000 ° was formed by the method.
【0026】この基板1をX−Yテーブル上にセット
し、レーザースクライバーからQスイッチYAGレーザ
ーの第2高調波(波長532nm)を発振周波数3kH
z、平均出力500mW、パルス幅10nsecで照射
して透明電極2をスクライブした。図1に透明電極スク
ライブ線3を示す。このとき、基板1の長さ方向に沿う
ストリング(個別太陽電池)の幅を約10mm、分離幅
(透明電極スクライブ線3の幅)を50μmとした。The substrate 1 is set on an XY table, and the second harmonic (wavelength: 532 nm) of the Q-switched YAG laser is radiated from a laser scriber at an oscillation frequency of 3 kHz.
The transparent electrode 2 was scribed by irradiating at z, an average output of 500 mW, and a pulse width of 10 nsec. FIG. 1 shows a transparent electrode scribe line 3. At this time, the width of the string (individual solar cell) along the length direction of the substrate 1 was about 10 mm, and the separation width (the width of the transparent electrode scribe line 3) was 50 μm.
【0027】また、基板1の周縁部と太陽電池セルの活
性部とを電気的に分離するために、基板1の外周から5
mmの位置に全周にわたってレーザースクライブを施し
た。図1に絶縁分離線8を示す。Further, in order to electrically separate the peripheral portion of the substrate 1 from the active portion of the solar cell, a distance from the outer periphery of the substrate 1
The laser scribe was applied to the position of mm over the entire circumference. FIG. 1 shows an insulation separation line 8.
【0028】次に、この基板1を分離形成型のプラズマ
CVD装置に設置し、p型a−Si:H層、i型a−S
i:H層、およびn型微結晶Si:H層を順次堆積し
て、pin接合を構成するa−Si層4を形成した。上
記のいずれのSi:H層も成膜温度200℃で成膜し
た。このとき、p型a−Si:H層は、SiH4を10
0sccm、水素希釈B2H6(1000ppm)を20
00sccm、CH4を30sccmの流量で供給して
反応圧力を1torrに設定し、200Wのパワーを投
入して形成した。CH4は炭素合金化のために混入して
いる。成膜時間を調整して膜厚を約150Åとした。i
型a−Si:H層は、SiH4を500sccmの流量
で供給して反応圧力を0.5torrに設定し、500
Wのパワーを投入して形成した。成膜時間を調整して膜
厚を約3200Åとした。n型微結晶Si:H層は、S
iH4を100sccm、水素希釈PH3(1000pp
m)を2000sccmの流量で供給して反応圧力を1
torrに設定し、3kWのパワーを投入して形成し
た。成膜時間を調整して膜厚を約300Åとした。Next, the substrate 1 is set in a separation type plasma CVD apparatus, and a p-type a-Si: H layer and an i-type aS
An i: H layer and an n-type microcrystalline Si: H layer were sequentially deposited to form an a-Si layer 4 constituting a pin junction. Each of the above Si: H layers was formed at a film formation temperature of 200 ° C. At this time, the p-type a-Si: H layer contains 10% of SiH 4 .
0 sccm, hydrogen diluted B 2 H 6 (1000 ppm)
The reaction pressure was set to 1 torr by supplying 00 sccm and CH 4 at a flow rate of 30 sccm, and 200 W power was applied to form the film. CH 4 is included for carbon alloying. The film thickness was adjusted to about 150 ° by adjusting the film forming time. i
For the type a-Si: H layer, the reaction pressure was set to 0.5 torr by supplying SiH 4 at a flow rate of 500 sccm, and
It was formed by applying a power of W. The film thickness was adjusted to about 3200 ° by adjusting the film formation time. The n-type microcrystalline Si: H layer is made of S
iH 4 at 100 sccm, hydrogen diluted PH 3 (1000 pp
m) at a flow rate of 2000 sccm to increase the reaction pressure to 1
The pressure was set to torr and a power of 3 kW was applied to form the film. The film thickness was adjusted to about 300 ° by adjusting the film forming time.
【0029】この基板1をX−Yテーブル上にセットし
て、レーザースクライバーからQスイッチYAGレーザ
ーの第2高調波を発振周波数3kHz、平均出力500
mW、パルス幅10nsecで透明電極2のスクライビ
ング位置から100μmずらした位置に照射し、a−S
i層4をスクライブした。図1に半導体スクライブ線5
を示す。このとき、レーザービームの焦点位置をずらす
ことにより分離幅(半導体スクライブ線5の幅)を10
0μmとした。This substrate 1 is set on an XY table, and the second harmonic of a Q-switched YAG laser is oscillated at a frequency of 3 kHz and an average output of 500 from a laser scriber.
Irradiate at a position shifted by 100 μm from the scribing position of the transparent electrode 2 with mW and pulse width of 10 nsec.
The i-layer 4 was scribed. FIG. 1 shows a semiconductor scribe line 5.
Is shown. At this time, the separation width (the width of the semiconductor scribe line 5) is set to 10 by shifting the focal position of the laser beam.
It was set to 0 μm.
【0030】次いで、マグネトロンスパッタ装置に上記
の基板とZnOターゲットおよびAgターゲットをセッ
トした。まず、アルゴンガス圧力を2mtorr、成膜
温度を200℃に設定し、放電パワー200WでRF放
電してZnOターゲットをスパッタすることにより、1
000Å厚のZnO層を形成した。次に、アルゴンガス
圧力2mtorr、成膜温度を室温に設定し、放電パワ
ー200Wで直流放電してAgターゲットをスパッタす
ることにより、2000Å厚のAg層を形成した。こう
して、ZnO層とAg層を積層した裏面電極6を形成し
た。Next, the above substrate, a ZnO target and an Ag target were set in a magnetron sputtering apparatus. First, an argon gas pressure was set to 2 mtorr, a film formation temperature was set to 200 ° C., and RF discharge was performed at a discharge power of 200 W to sputter a ZnO target, thereby obtaining 1
A 000 mm thick ZnO layer was formed. Next, an Ag gas pressure was set to 2 mtorr, a film formation temperature was set to room temperature, and a direct current discharge was performed at a discharge power of 200 W to sputter an Ag target, thereby forming a 2000 mm thick Ag layer. Thus, the back electrode 6 in which the ZnO layer and the Ag layer were laminated was formed.
【0031】この基板1をX−Yテーブル上にセット
し、レーザースクライバーからQスイッチYAGレーザ
ーの第2高調波を発振周波数3kHz、平均出力500
mW、パルス幅10nsecでa−Si層4のスクライ
ビング位置から100μmずらした位置に照射し、裏面
電極6およびa−Si層4をスクライブした。図1に裏
面電極スクライブ線7を示す。このとき、分離幅(裏面
電極スクライブ線7の幅)を70μmとした。The substrate 1 is set on an XY table, and the second harmonic of a Q-switched YAG laser is oscillated at a frequency of 3 kHz and an average output of 500 from a laser scriber.
Irradiation was performed at a position shifted by 100 μm from the scribing position of the a-Si layer 4 with mW and a pulse width of 10 nsec to scribe the back electrode 6 and the a-Si layer 4. FIG. 1 shows a back electrode scribe line 7. At this time, the separation width (width of the back electrode scribe line 7) was set to 70 μm.
【0032】その後、両端のストリング11a,11b
の外側に幅3.5mmのバスバー電極形成領域を確保し
た。また、基板1の周縁部と太陽電池セルの活性部とを
電気的に分離するために、基板の外周から5mmの位置
に全周にわたりレーザースクライブを施した。このと
き、レーザービームの焦点位置をずらすことにより分離
幅を150μmとして、透明電極2の絶縁分離線8を包
含するように加工した。Thereafter, the strings 11a and 11b at both ends are formed.
, A bus bar electrode formation region having a width of 3.5 mm was secured. Further, in order to electrically separate the peripheral portion of the substrate 1 from the active portion of the solar cell, laser scribe was applied to a position 5 mm from the outer periphery of the substrate over the entire periphery. At this time, the separation width was set to 150 μm by shifting the focal position of the laser beam, and processing was performed so as to include the insulating separation line 8 of the transparent electrode 2.
【0033】この基板1をX−Yステージ上にセット
し、独自に開発したZ軸方向の微小調整が可能な平面回
転歯を有する研磨機を用いて、基板1周縁部(絶縁分離
線8よりも外側の領域)にある裏面電極6およびa−S
i層4を研磨し、基板1周縁部の透明電極2を露出させ
た。The substrate 1 is set on an XY stage, and the peripheral portion of the substrate 1 (from the insulating separation line 8) is set by using a uniquely-developed polishing machine having plane rotating teeth capable of fine adjustment in the Z-axis direction. Back electrode 6 and a-S
The i-layer 4 was polished to expose the transparent electrode 2 on the periphery of the substrate 1.
【0034】さらに、バスバー電極形成領域に半田層9
とメッキ銅箔10からなるバスバー電極12を形成し
て、電極取り出しのための配線(図示せず)を接続し
た。このバスバー電極12はストリングに平行となって
いる。Further, a solder layer 9 is formed in the busbar electrode forming region.
And a bus bar electrode 12 made of a plated copper foil 10 were formed, and wiring (not shown) for taking out the electrode was connected. This bus bar electrode 12 is parallel to the string.
【0035】以上のように構成されるモジュールの裏面
に充填材21としてEVAシートおよび保護フィルム2
2としてふっ化ビニルフィルム(デュポン社製、商品名
テドラー)を被覆し、真空ラミネータを用いてEVAシ
ートを加熱溶融することにより封止した。その後、端子
を形成し、フレームへの取り付けを行った。The EVA sheet and the protective film 2 are used as the filler 21 on the back surface of the module configured as described above.
As No. 2, a vinyl fluoride film (manufactured by DuPont, trade name: Tedlar) was covered, and the EVA sheet was sealed by heating and melting using a vacuum laminator. After that, terminals were formed and mounted on a frame.
【0036】このようにして得た太陽電池モジュールに
ついて、100mW/cm2のAM1.5ソーラーシミ
ュレーターを用いて、電流電圧特性を測定した。その結
果、太陽電池の特性は、短絡電流1240mA、開放電
圧44.2V、曲線因子0.68、最大出力37.3W
であった。次に、取り出し端子のプラスマイナス両極を
電気的に短絡させ、端子とフレーム間に1500Vを印
加して抵抗値を測定した結果、100MΩ以上であり良
好に絶縁されていることが確認された。さらに、この太
陽電池モジュールを水中に15分間浸漬した後、上記と
同様にして抵抗値を測定した結果、やはり100MΩ以
上であり良好に絶縁されていることが確認された。The current-voltage characteristics of the solar cell module thus obtained were measured using an AM1.5 solar simulator of 100 mW / cm 2 . As a result, the characteristics of the solar cell were as follows: short-circuit current 1240 mA, open-circuit voltage 44.2 V, fill factor 0.68, maximum output 37.3 W
Met. Next, both the plus and minus electrodes of the extraction terminal were electrically short-circuited, and 1500 V was applied between the terminal and the frame, and the resistance was measured. As a result, it was confirmed that the insulation was 100 MΩ or more and the insulation was good. Furthermore, after this solar cell module was immersed in water for 15 minutes, the resistance was measured in the same manner as described above. As a result, it was confirmed that the solar cell module was also 100 MΩ or more and was well insulated.
【0037】実施例2 実施例1と同様に、裏面電極6およびa−Si層6のレ
ーザースクライブまでの工程を実施した。その後、太陽
電池セルの活性部上にSUS板からなるマスクを設け、
ブラスト洗浄機から平均粒径約40μmの研磨材を吹き
付けて、基板1周縁部の裏面電極6、a−Si層4、透
明電極2、および基板1の表面を機械的に除去して面取
りした。以下、実施例1と同様にして、図3に示す太陽
電池モジュールを製造した。この太陽電池モジュールに
ついて、実施例1と同様の測定を行った。その結果、太
陽電池の特性は実施例1とほぼ同じであり、短絡電流1
240mA、開放電圧44.2V、曲線因子0.68、
最大出力37.3Wであった。また、取り出し端子とフ
レーム間の抵抗値は、水への浸漬前および水への浸漬後
でいずれも100MΩ以上であった。Example 2 In the same manner as in Example 1, the steps up to laser scribing of the back electrode 6 and the a-Si layer 6 were performed. After that, a mask made of a SUS plate is provided on the active portion of the solar cell,
An abrasive having an average particle size of about 40 μm was sprayed from a blast cleaner to mechanically remove the chamfered surface of the back electrode 6, the a-Si layer 4, the transparent electrode 2, and the surface of the substrate 1 at the peripheral edge of the substrate 1. Hereinafter, the solar cell module shown in FIG. 3 was manufactured in the same manner as in Example 1. The same measurement as in Example 1 was performed for this solar cell module. As a result, the characteristics of the solar cell were almost the same as those in Example 1, and the short-circuit current 1
240 mA, open circuit voltage 44.2 V, fill factor 0.68,
The maximum output was 37.3W. Further, the resistance value between the take-out terminal and the frame was 100 MΩ or more before and after immersion in water.
【0038】比較例 基板1周縁部の機械的な除去処理を行わなかった以外は
実施例1と同様にして太陽電池モジュールを製造した。
この太陽電池モジュールについて、実施例1と同様の測
定を行った。その結果、太陽電池の特性は、短絡電流1
240mA、開放電圧43.1V、曲線因子0.68、
最大出力36.3Wであり、実施例1、2とそれほど変
らなかった。しかし、取り出し端子とフレーム間の抵抗
値は、水への浸漬前で800kΩ、水への浸漬後で15
kΩであり、実施例1、2と比べてかなり低い値であっ
た。これは、基板1周縁部での充填材の接着力が小さ
く、基板1端部の充填材接着界面から水が侵入したため
である。Comparative Example A solar cell module was manufactured in the same manner as in Example 1, except that the peripheral portion of the substrate 1 was not mechanically removed.
The same measurement as in Example 1 was performed for this solar cell module. As a result, the characteristics of the solar cell are as follows:
240 mA, open-circuit voltage 43.1 V, fill factor 0.68,
The maximum output was 36.3 W, which was not much different from Examples 1 and 2. However, the resistance between the extraction terminal and the frame is 800 kΩ before immersion in water, and 15 kΩ after immersion in water.
kΩ, which was considerably lower than those of Examples 1 and 2. This is because the adhesive strength of the filler at the peripheral portion of the substrate 1 is small, and water has entered from the filler bonding interface at the edge of the substrate 1.
【0039】[0039]
【発明の効果】以上詳述したように本発明によれば、充
填材などによって封止された状態で水分などによる腐食
に基づく発電特性の劣化が発生せず、かつ高い生産性で
製造できる薄膜太陽電池モジュールを提供することがで
きる。As described above in detail, according to the present invention, a thin film that can be manufactured with high productivity without deterioration of power generation characteristics due to corrosion due to moisture or the like in a state sealed with a filler or the like. A solar cell module can be provided.
【図1】実施例1における薄膜太陽電池モジュールの断
面図。FIG. 1 is a cross-sectional view of a thin-film solar cell module according to a first embodiment.
【図2】図1の薄膜太陽電池モジュールの平面図。FIG. 2 is a plan view of the thin-film solar cell module of FIG.
【図3】実施例2における薄膜太陽電池モジュールの断
面図。FIG. 3 is a cross-sectional view of a thin-film solar cell module according to a second embodiment.
1…ガラス基板 2…透明電極 3…透明電極スクライブ線 4…a−Si層 5…半導体スクライブ線 6…裏面電極 7…裏面電極スクライブ線 8…絶縁分離線 9…半田層 10…メッキ銅箔 11a,11b…両端のストリング 12…バスバー電極 21…充填材 22…保護フィルム DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Transparent electrode 3 ... Transparent electrode scribe line 4 ... a-Si layer 5 ... Semiconductor scribe line 6 ... Backside electrode 7 ... Backside electrode scribe line 8 ... Insulation separation line 9 ... Solder layer 10 ... Plated copper foil 11a , 11b ... strings at both ends 12 ... busbar electrode 21 ... filler 22 ... protective film
Claims (4)
パターン加工された第1電極層、半導体層および第2電
極層を積層して複数の太陽電池セルを集積化し、充填材
で封止した太陽電池モジュールにおいて、前記太陽電池
セル領域の周囲全域が、前記透光性ガラス基板の周端部
の主面周縁から0.5mm以上の幅を有する、前記第1
電極層または前記透光性ガラス基板の露出面からなる、
太陽電池セル領域よりも充填材に対する接着力の大きい
領域で囲繞され、この接着力の大きい領域には充填材が
設けられているとともに、その接着力の大きい領域の内
側には、光ビームにより、太陽電池セル領域と前記周端
部とを電気的に分離する絶縁分離線が形成されているこ
とを特徴とする薄膜太陽電池モジュール。1. A plurality of solar cells are integrated by laminating a first electrode layer, a semiconductor layer, and a second electrode layer formed and patterned on a translucent glass substrate, respectively, and sealed with a filler. In the solar cell module described above, the entire area around the solar cell area has a width of 0.5 mm or more from a peripheral edge of a main surface of a peripheral end of the translucent glass substrate.
Comprising an electrode layer or an exposed surface of the translucent glass substrate,
Surrounded by a region having a larger adhesive force to the filler than the solar cell region, the filler is provided in the region having a larger adhesive force, and a light beam is provided inside the region having a larger adhesive force by a light beam. A thin-film solar cell module, wherein an insulating separation line for electrically separating a solar cell region from the peripheral end is formed.
力が、垂直引き剥がしピール強度で3kg/cm囲繞で
あることを特徴とする請求項1に記載の薄膜太陽電池モ
ジュール。2. The thin-film solar cell module according to claim 1, wherein the adhesive strength between the region having a large adhesive strength and the filler is around 3 kg / cm in vertical peel strength.
oおよびTiからなる群より選択される金属層からなる
ことを特徴とする請求項1または2に記載の薄膜太陽電
池モジュール。3. The region having a large adhesive force is Cr, W, M
3. The thin-film solar cell module according to claim 1, comprising a metal layer selected from the group consisting of o and Ti.
体、ポリイソブチレン、ポリビニルブチラールおよびシ
リコーンからなる群より選択されることを特徴とする請
求項1から3のいずれかの項に記載の薄膜太陽電池モジ
ュール。4. A thin film according to claim 1, wherein said filler is selected from the group consisting of ethylene-vinyl acetate copolymer, polyisobutylene, polyvinyl butyral and silicone. Solar cell module.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15746599A JP3243232B2 (en) | 1999-06-04 | 1999-06-04 | Thin film solar cell module |
AU47332/99A AU731869B2 (en) | 1998-11-12 | 1999-09-02 | Solar cell module |
AT99117561T ATE438929T1 (en) | 1998-11-12 | 1999-09-06 | PRODUCTION PROCESS FOR SOLAR CELL MODULE |
EP99117561A EP1005096B1 (en) | 1998-11-12 | 1999-09-06 | Method of making a solar cell module |
DE69941207T DE69941207D1 (en) | 1998-11-12 | 1999-09-06 | Production process for solar cell module |
ES99117561T ES2329203T3 (en) | 1998-11-12 | 1999-09-06 | MANUFACTURING PROCEDURE OF A SOLAR CELL MODULE. |
US09/392,083 US6300556B1 (en) | 1998-11-12 | 1999-09-08 | Solar cell module |
US09/927,562 US6384315B1 (en) | 1998-11-12 | 2001-08-10 | Solar cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15746599A JP3243232B2 (en) | 1999-06-04 | 1999-06-04 | Thin film solar cell module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000349325A JP2000349325A (en) | 2000-12-15 |
JP3243232B2 true JP3243232B2 (en) | 2002-01-07 |
Family
ID=15650273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15746599A Expired - Lifetime JP3243232B2 (en) | 1998-11-12 | 1999-06-04 | Thin film solar cell module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3243232B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029476A1 (en) | 2006-09-08 | 2008-03-13 | Mitsubishi Heavy Industries, Ltd. | Solar battery panel and method for manufacturing solar battery panel |
US8445315B2 (en) | 2008-05-15 | 2013-05-21 | Ulvac, Inc. | Thin-film solar battery module manufacturing method |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5100971B2 (en) * | 2005-03-10 | 2012-12-19 | 三菱重工業株式会社 | Manufacturing method of solar cell panel |
JP4948865B2 (en) * | 2006-03-27 | 2012-06-06 | 京セラ株式会社 | Frameless solar cell module |
WO2009051122A1 (en) * | 2007-10-19 | 2009-04-23 | Kaneka Corporation | Thin film solar cell module |
JPWO2009139390A1 (en) * | 2008-05-15 | 2011-09-22 | 株式会社アルバック | Thin film solar cell module and manufacturing method thereof |
JP2010027972A (en) * | 2008-07-23 | 2010-02-04 | Sharp Corp | Solar battery module, and manufacturing method thereof |
KR101091475B1 (en) * | 2009-06-30 | 2011-12-07 | 엘지이노텍 주식회사 | Solar cell and method of fabircating the same |
JP5077408B2 (en) * | 2010-09-03 | 2012-11-21 | 大日本印刷株式会社 | Solar cell and solar cell module |
JP5077407B2 (en) * | 2010-09-03 | 2012-11-21 | 大日本印刷株式会社 | Solar cell and solar cell module |
JP5209017B2 (en) * | 2010-09-30 | 2013-06-12 | シャープ株式会社 | Thin film solar cell and method for manufacturing thin film solar cell |
JP2011086960A (en) * | 2011-01-24 | 2011-04-28 | Mitsubishi Heavy Ind Ltd | Solar cell panel |
JP2016033932A (en) * | 2012-12-28 | 2016-03-10 | シャープ株式会社 | Solar cell module and manufacturing method of the same |
-
1999
- 1999-06-04 JP JP15746599A patent/JP3243232B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029476A1 (en) | 2006-09-08 | 2008-03-13 | Mitsubishi Heavy Industries, Ltd. | Solar battery panel and method for manufacturing solar battery panel |
US8445315B2 (en) | 2008-05-15 | 2013-05-21 | Ulvac, Inc. | Thin-film solar battery module manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2000349325A (en) | 2000-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6384315B1 (en) | Solar cell module | |
US6271053B1 (en) | Method of manufacturing a thin film solar battery module | |
EP0631328B1 (en) | Solar cell module having heat-fused portion to improve moisture resistance | |
US6294722B1 (en) | Integrated thin-film solar battery | |
US20150194552A1 (en) | Solar cell module and method for manufacturing the solar cell module | |
JP3243232B2 (en) | Thin film solar cell module | |
JP3653800B2 (en) | Method for manufacturing integrated thin film solar cell | |
JP2000150944A (en) | Solar cell module | |
JP4987191B2 (en) | Method for manufacturing integrated thin film solar cell | |
JPH06140651A (en) | Solar cell module | |
JP5022341B2 (en) | Photoelectric conversion device | |
WO2019195804A1 (en) | Laser assisted metallization process for solar cell circuit formation | |
JP2002252362A (en) | Solar battery module | |
JP3243229B2 (en) | Solar cell module | |
JPH0864850A (en) | Thin film solar battery and fabrication thereof | |
JP3243227B2 (en) | Solar cell module | |
JP4440389B2 (en) | Method for manufacturing thin film solar cell module | |
JP5030745B2 (en) | Method for manufacturing photoelectric conversion device | |
JP4077456B2 (en) | Integrated thin film solar cell | |
JP4162373B2 (en) | Photovoltaic device manufacturing method | |
JP2011109011A (en) | Photoelectric conversion device | |
JP4681581B2 (en) | Solar cell module | |
JP2001085720A (en) | Thin-film photoelectric conversion module and manufacturing method of the same | |
JP2001111079A (en) | Manufacturing method of photoelectric conversion device | |
JP4476227B2 (en) | Manufacturing method of solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3243232 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071019 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081019 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091019 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |