JPS6172677A - Dewaxing material for ceramic injection molding - Google Patents

Dewaxing material for ceramic injection molding

Info

Publication number
JPS6172677A
JPS6172677A JP59193142A JP19314284A JPS6172677A JP S6172677 A JPS6172677 A JP S6172677A JP 59193142 A JP59193142 A JP 59193142A JP 19314284 A JP19314284 A JP 19314284A JP S6172677 A JPS6172677 A JP S6172677A
Authority
JP
Japan
Prior art keywords
degreasing
ceramic
ceramic injection
injection molding
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59193142A
Other languages
Japanese (ja)
Inventor
倉田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59193142A priority Critical patent/JPS6172677A/en
Publication of JPS6172677A publication Critical patent/JPS6172677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、有機成分をバインダーとしたセラミック射
出成形体から、その有機成分を流出・飛散させる際に使
用する脱脂材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a degreasing material used to cause organic components to flow out and scatter from a ceramic injection molded body containing organic components as a binder.

従来の技術 セラミック製部品を大量生産する方法として、  。Conventional technology As a method for mass producing ceramic parts.

射出成形が用いられている。この射出成形は元来プラス
チックの成形方法の一種として発達したもので、プラス
チック成形材料を射出成形機の射出シリンダ中で加熱溶
融したのち、流動化された成形材料を射出プランジャに
よって予め固く閉じられた金型キャビティに射出注入し
て完全に充填し、そこで冷却固化ないし硬化させて成形
品とするものである。
Injection molding is used. Injection molding was originally developed as a type of plastic molding method, in which plastic molding material is heated and melted in the injection cylinder of an injection molding machine, and then the fluidized molding material is tightly closed in advance by an injection plunger. It is injected into a mold cavity to completely fill it, and then cooled and solidified or hardened to form a molded product.

セラミック製部品を製造するにたっては、まずセラミッ
ク粉末を有機粘結剤と混合し、これを金型内に射出する
ことにより所定形状のセラミック射出成形体を成形する
。次いで、得られたセラミック射出成形体から有機成分
を流出・飛散させる脱脂処理を行なった後、所定温度に
加熱して焼結を行ない、所望のセラミック製部品を得る
To manufacture ceramic parts, first, ceramic powder is mixed with an organic binder, and the mixture is injected into a mold to form a ceramic injection molded body of a predetermined shape. Next, the obtained ceramic injection molded body is subjected to a degreasing treatment to cause organic components to flow out and scatter, and then heated to a predetermined temperature and sintered to obtain a desired ceramic part.

ところで、上記セラミック製部品の製造工程において、
脱脂処理は重要な工程であり、通常セラミック射出成形
体を脱脂炉に入れ、不活性雰囲気中において、1〜b ことにより行なう。このとき、セラミック射出成形体か
ら樹脂等の有機成分を流出・飛散させる一助として、脱
脂材(パッド材)を用いることがある。この脱脂材は通
常多孔質のセラミック材料からなり、セラミック射出成
形体から有機成分が円滑に除去されることを補助する。
By the way, in the manufacturing process of the above ceramic parts,
Degreasing is an important step, and is usually carried out by placing the ceramic injection molded body in a degreasing furnace and performing steps 1 to b in an inert atmosphere. At this time, a degreasing material (pad material) may be used to help drain and scatter organic components such as resin from the ceramic injection molded body. This degreasing material is usually made of a porous ceramic material and assists in the smooth removal of organic components from the ceramic injection molded body.

従来、上記の脱脂材として、市販の粒径0.1μI11
〜10μmの微粒脱脂材、または粒径10μm〜100
0μ園の粗粒脱脂材が用いられている。
Conventionally, as the above-mentioned degreasing material, commercially available particle size 0.1μI11
~10μm fine degreasing material, or particle size 10μm~100
0μen coarse degreasing material is used.

発明が解決しようとする問題点 ところで、セラミック射出成形体を微粒脱脂材中に埋設
した状態で脱脂を行なった場合、第1図に模式的に示す
ように、セラミック射出成形体1から流出した樹脂等の
有機成分は、セラミック射出成形体1表面近傍に有機成
分に富んだ領域A(有機成分リッチ領域〉を形成し、そ
の周囲に有機成分の少ない領域B(有機成分プア領Te
、)を形成する。この有機成分リッチ領域Aが形成され
ると、セラミック射出成形体1の右目成分が流出しにく
くなり、分圧差等により亀裂、フクレ等が発生すること
がある。この傾向は、セラミック射出成形体1が厚肉の
場合、または複雑形状を有する場合に顕著となる。
Problems to be Solved by the Invention By the way, when degreasing is performed while a ceramic injection molded body is embedded in a fine degreasing material, as schematically shown in FIG. These organic components form a region A rich in organic components (organic component rich region) near the surface of the ceramic injection molded body 1, and a region B rich in organic components (organic component poor region Te) around it.
, ). When this organic component rich region A is formed, it becomes difficult for the right eye component of the ceramic injection molded body 1 to flow out, and cracks, blisters, etc. may occur due to partial pressure differences and the like. This tendency becomes remarkable when the ceramic injection molded body 1 is thick or has a complicated shape.

−他方、セラミック射出成形体1を粗粒脱脂材に埋設し
た状態で脱脂を行なった場合、第2図に模式的に示すよ
うに、セラミック射出成形体1から流出した有機成分が
、有機成分リッチ領域Aと有自成分プアW4域Bとを形
成するが、微粒脱脂材を用いた場合と比較すると、有機
成分リッチ領tii!Aが狭く、かつその密度が高くな
る。この場合も、セラミック射出成形体1内の有機成分
の流出が阻害され、前述した欠陥を生じ易い。
- On the other hand, when degreasing is performed while the ceramic injection molded body 1 is buried in a coarse degreasing material, as schematically shown in FIG. Region A and organic component poor W4 region B are formed, but compared to the case where fine degreasing material is used, the organic component rich region tii! A becomes narrower and its density becomes higher. In this case as well, the outflow of organic components within the ceramic injection molded body 1 is inhibited, and the above-mentioned defects are likely to occur.

したがって、欠陥を生じることなく脱脂を行なうために
は、有機成分リッチ領域Aが形成されないことが必要で
あると解され、かかる条件を満たす脱脂材の開発が望ま
れていた。
Therefore, in order to perform degreasing without producing defects, it is understood that it is necessary that the organic component rich region A not be formed, and it has been desired to develop a degreasing material that satisfies this condition.

この発明は、上記従来技術の問題点を解決するためにな
されたもので、セラミック射出成形体内の有機成分の円
滑な流出・飛散を促進し、欠陥のないセラミック脱脂体
を得ることのできるセラミック射出成形用脱脂材を提供
することを目的とするものである。
This invention was made in order to solve the above-mentioned problems of the prior art, and it is a ceramic injection molded body that promotes smooth outflow and scattering of organic components in a ceramic injection molded body and can obtain a defect-free ceramic degreased body. The purpose of this invention is to provide a degreasing material for molding.

問題点を解決するための手段 この発明は、上記の目的を達成するため、粒径10μI
I以上で、かつ気孔率が0.150C/g〜1.50C
G/gとなるよう内部に微細孔を有する構造とした粉粒
体からなるセラミック射出成形用脱脂材である。
Means for Solving the Problems In order to achieve the above object, the present invention has a particle size of 10μI.
I or more, and the porosity is 0.150C/g to 1.50C
This is a degreasing material for ceramic injection molding that is made of powder and granules with a structure that has micropores inside so that the ratio is G/g.

発明の実施のための具体的な説明 この発明において、セラミック射出成形用脱脂材の材料
としては、窒化珪! (Si3N4 ) 、窒化アルミ
ニウム(ΔQN)、窒化ツ素(BN)等の窒化物、炭化
珪素(SiC)、炭化チタン(Ti C)答炭化物、ア
ルミナ(^1!203) 、ジルコニア(Zr02)、
醸化チ’) ン(Ti O2> 、m (ヒJ< !J
 ラム(8a O)等の酸化物、硼化チタン(TiB2
)、ツ化ジルコニウムRr82)等の1化物、サイアロ
ン等の2M化物、活性炭等を用いることができる。この
とき、セラミック射出成形体を構成するセラミック材料
と同じ材料または類似の材料を用いることが望ましい。
Specific Description for Carrying Out the Invention In this invention, silicon nitride is used as the material for the degreasing material for ceramic injection molding. (Si3N4), nitrides such as aluminum nitride (ΔQN), tsunium nitride (BN), silicon carbide (SiC), titanium carbide (TiC), alumina (^1!203), zirconia (Zr02),
Brewing Ch') N (Ti O2>, m (HiJ<!J
Oxides such as ram (8a O), titanium boride (TiB2)
), 1 compound such as zirconium tsuride Rr82), 2M compound such as Sialon, activated carbon, etc. can be used. At this time, it is desirable to use the same material or similar material to the ceramic material constituting the ceramic injection molded body.

またこの発明におけるセラミック射出成形用脱脂材の気
孔率としては、0.15cc/り〜1.5Qcc/!J
が良く、望ましくは0.3cc、/g〜1゜QCC/!
]である。
In addition, the porosity of the degreasing material for ceramic injection molding in this invention is 0.15cc/l to 1.5Qcc/! J
is good, preferably 0.3cc, /g~1°QCC/!
].

さらに上記の構造を有するセラミック射出成形用脱脂材
の製造方法としては、第3図(a )〜(C)に概要を
示すように、0.1μWA〜10μ園の粒径をもったセ
ラミック粉2を0.1〜0゜3%ポリビニルアルコール
溶液3に入れて充分撹拌した慢、その混練力をスプレー
ドライヤ装置4に投入し、造粒を行なって脱脂材5を得
る所謂スプレードライヤ方式や、第4図に緊要を示すよ
うに、同−粒径のセラミック粉2に水を加えて撹拌・混
合した侵、ふるい6によって回転させながら造粒し、つ
いで乾燥器7によって乾燥させる所謂ふるい方式を採用
することができる。またこれらの方式における気孔率の
1mは、ポリビニルアルコール溶液の濃度およびセラミ
ック粉の粒径およびふるいの回転時間によってv!4整
することが可能である。
Furthermore, as a method for manufacturing a degreasing material for ceramic injection molding having the above structure, as shown in the outline in FIGS. The so-called spray dryer method, in which the degreasing material 5 is obtained by adding 0.1 to 0.3% polyvinyl alcohol solution 3 and sufficiently stirring the mixture, and then inputting the kneading force into the spray dryer device 4 to granulate the degreasing material 5, As shown in Figure 4, a so-called sieve method is adopted in which water is added to ceramic powder 2 of the same particle size, stirred and mixed, granulated while rotating through a sieve 6, and then dried in a drier 7. can do. In addition, the porosity of 1 m in these methods depends on the concentration of the polyvinyl alcohol solution, the particle size of the ceramic powder, and the rotation time of the sieve. It is possible to set 4.

すなわち第5図および第6図は本発明者が上記の各方式
で造粒して得た脱脂材の気孔率を示すq図であって、0
.2%ポリビニルアルコール溶液を用いたスプレードラ
イヤ方式によって造粒した場合には、第5図に示すよう
に、素材とするセラミック粉末の粒径が小さいほど、気
孔率が低下する。また平均粒径1.2μ糊のセラミック
粉末を原料としてふるい方式によって造粒した場合には
、第6図に示すように、ふるいの回転時間が長くなるほ
ど、気孔率が低下する。
That is, FIGS. 5 and 6 are q diagrams showing the porosity of the degreasing materials obtained by the present inventor by granulation using the above-mentioned methods.
.. In the case of granulation using a spray dryer method using a 2% polyvinyl alcohol solution, as shown in FIG. 5, the smaller the particle size of the ceramic powder used as the raw material, the lower the porosity. Further, when ceramic powder having an average particle diameter of 1.2 μm is used as a raw material and granulated by a sieve method, the porosity decreases as the sieve rotation time increases, as shown in FIG.

作   用 この発明のセラミック射出成形用脱脂材によれば、適度
な粒径を有するとともに、内部に多数の微細孔が形成さ
せているため、セラミック射出成形体内部から流出した
有機成分は、セラミック射出成形体表面に滞って有機成
分リッチ領域を形成せずに、流出・飛散する。したがっ
てセラミック射出成形体内部の有機成分は流出を妨げら
れることがなく、円滑な脱脂が行なわれる。
Function: The degreasing material for ceramic injection molding of the present invention has an appropriate particle size and has a large number of micropores formed inside, so that the organic components flowing out from inside the ceramic injection molding can be removed from the ceramic injection molding material. It flows out and scatters without staying on the surface of the molded product and forming an organic component-rich region. Therefore, the organic components inside the ceramic injection molded body are not prevented from flowing out, and smooth degreasing is performed.

実施例 以下、この発明の実施例を、比較例と併せて示す。Example Examples of the present invention will be shown below along with comparative examples.

・・11   実施図工 対象とするセラミック射出成形体は、次のようにして作
成した。まず、平均粒径0.9〜1.0μmの窒化珪素
粉末100部に対し、ポリエチレン10部、エチルビニ
ルアルコール12部、可塑材としてのジオキシフェニレ
ン3部を180部5℃に設定したニーダに投入し、40
分程度撹拌した侵、ニーダから取出してペレタイザーで
粗粉化した。次いで、この粗粉化したベレットを140
部2℃に設定された2軸押し出し顆に投入し、100 
Co/分の供給量で押し出しを行ない、射出成形用ベレ
ン1−を作成した。その後、射出成形礪にて射出温[1
180℃、型温度50℃、射出圧力900 ko/ a
l、射出140 cc/秒で第7図に示す断面形状のプ
ーリを射出成形した。
...11 The ceramic injection molded body to be subjected to the drawing work was created as follows. First, 180 parts of polyethylene, 12 parts of ethyl vinyl alcohol, and 3 parts of dioxyphenylene as a plasticizer were added to 100 parts of silicon nitride powder with an average particle size of 0.9 to 1.0 μm in a kneader set at 5°C. Add, 40
After stirring for about a minute, the mixture was taken out from the kneader and coarsely powdered using a pelletizer. Next, this coarsely powdered pellet was
Place the tube in a twin-screw extrusion chamber set at 2°C, and
Extrusion was carried out at a feed rate of Co/min to produce Belene 1- for injection molding. After that, the injection temperature [1
180℃, mold temperature 50℃, injection pressure 900 ko/a
A pulley having the cross-sectional shape shown in FIG. 7 was injection molded at an injection rate of 140 cc/sec.

また脱脂材として、前述したスプレードライヤ方式によ
り、平均粒径10μm以上で、かつ気孔率を0.5CC
/gおよび1.03cc/gに¥A整したセラミック粉
粒体を使用した。
In addition, as a degreasing material, the above-mentioned spray dryer method is used to produce particles with an average particle size of 10 μm or more and a porosity of 0.5 CC.
Ceramic powder particles adjusted to 1.03 cc/g and 1.03 cc/g were used.

脱脂処理は、前記射出成形体を脱脂炉に入れるとともに
、その周囲に前記の各脱脂材を充填し、次いで、脱脂炉
内を50℃〜500℃まで4℃/hrの昇温速度で昇温
させて脱脂を行なった。その後、1気圧の窒素ガス雰囲
気中にて1750℃で焼成を行なった。
In the degreasing process, the injection molded article is placed in a degreasing furnace, the surroundings thereof are filled with each of the degreasing materials described above, and then the temperature inside the degreasing furnace is raised from 50°C to 500°C at a rate of 4°C/hr. Then, the oil was removed. Thereafter, firing was performed at 1750° C. in a nitrogen gas atmosphere of 1 atm.

こうして得られた窒化珪素からなるブーりの良品率を調
べた。この良品率は、第7図に示すように、外部穴!4
i8、内部欠陥9、内周欠陥10. 総合の4点につい
て調べた。この結果を第1表に実施図工として示す。
The yield rate of the silicon nitride bollies thus obtained was investigated. As shown in Figure 7, this non-defective rate is due to external holes! 4
i8, internal defect 9, inner peripheral defect 10. We investigated four overall points. The results are shown in Table 1 as actual drawings.

実施例■ 前述したふるい方式によって作成した平均粒径10um
以上の脱脂材を使用した。その気孔率は、0、15cc
/IJ、0.31ce/a 、Rヨヒ0.42cc/g
の31であり、各々について上記の実施図工と同様にし
て、脱脂および焼成の各処理を行ない、得られたブーり
の良品率を調べた。その結果を第1表に実施例■として
それぞれ示す。
Example ■ Average particle size 10 um created by the sieve method described above
The above degreasing materials were used. Its porosity is 0.15cc
/IJ, 0.31ce/a, Ryohi 0.42cc/g
No. 31, each of which was subjected to degreasing and firing treatments in the same manner as in the above-mentioned construction work, and the yield rate of the resulting bulges was examined. The results are shown in Table 1 as Example (2).

比較図工 脱脂材として平均粒径300μl!l  (100μ翔
  」〜500μmの粒度分布を示す)の窒化珪素粗粉
を用い、他の条件は前記実施図工と同様にして脱  夛
詣および焼成の各9理を行ない、得られたプーリ  υ
の良品率を調べた。その結果を第1表に比較例IEとし
て示す。
Average particle size is 300 μl as a comparison degreasing material! Using silicon nitride coarse powder (with a particle size distribution of 100 μm to 500 μm), the other conditions were the same as in the above-mentioned drawing process, and the nine processes of removal and firing were performed to obtain a pulley.
We investigated the non-defective product rate. The results are shown in Table 1 as Comparative Example IE.

比較例■ 脱脂材として、平均粒径が0.4μm  (0,3〜0
.5μmの粒度分布を示す)の窒化珪素微粉を13%ポ
リビニリアルコール溶液に混練し、これをふるい方式に
よって造粒し、1.48CC10および1.83CC/
CIの気孔率に調整したものを用いた。他の条件は航記
の実施例■と同様にして覗脂および焼成の各処理を行な
い、得られたプーリの良品率を調べた。その結果を第1
表に比較例■として示す。
Comparative example ■ As a degreasing material, the average particle size is 0.4 μm (0.3 to 0
.. Fine silicon nitride powder (with a particle size distribution of 5 μm) was kneaded in a 13% polyvinylic alcohol solution, and this was granulated by a sieve method to obtain 1.48 CC10 and 1.83 CC/
A material whose porosity was adjusted to that of CI was used. The other conditions were the same as in Example 2 of Kouki, and the treatments of fat removal and firing were carried out, and the yield rate of the resulting pulleys was examined. The result is the first
Comparative example ■ is shown in the table.

第1表 (N=100) 焼成良品率(%) 製 造 法    気孔率  外部欠陥 内部欠陥 内
周欠陥 総合(CC/U )   なし   なし  
 なしミ施例エ スプレードライヤ 0.50   9
8  100   98  981.03   94 
  96   95  930.15   92   
96   95  91:浦例■ ふるい 0.31 
98 99 97 960.42   99  100
   99  99:咬例エ スプレードライヤ 0.
10    3   16   56   1;較例■
 ふるい 1.48 93 83 81 78第1表に
示す結果から明らかなように、この発明の脱脂材によれ
ば、焼成品の良品率が極めて高く、欠陥のないセラミッ
ク脱脂体を得ることができる、 発明の効果 以上の説明から明らかなようにこの発明のセラミック射
出成形用度脂材(よれば、説府材粒子間の空隙、脱脂材
内部の微柘孔率が適最に維持されるため、有閂成分リッ
チ領域の形成がなく、円滑な有1成分の流出・飛散が行
なわれる。したがって、脱脂時に発生IJでいた亀裂、
フクレ等の欠陥が生じなくなり、健全なセラミック脱脂
体を得ることができる。
Table 1 (N=100) Firing good product rate (%) Manufacturing method Porosity External defects Internal defects Inner circumferential defects Overall (CC/U) None None
No example spray dryer 0.50 9
8 100 98 981.03 94
96 95 930.15 92
96 95 91: Ura Example ■ Sieve 0.31
98 99 97 960.42 99 100
99 99: Bite Spray Dryer 0.
10 3 16 56 1; Comparative example■
Sieve 1.48 93 83 81 78 As is clear from the results shown in Table 1, according to the degreasing material of the present invention, the yield rate of fired products is extremely high and it is possible to obtain ceramic degreased bodies without defects. Effects of the Invention As is clear from the above explanation, the degreasing material for ceramic injection molding of the present invention (according to the degreasing material of the present invention, the voids between the particles of the degreasing material and the microporosity inside the degreasing material are maintained optimally, There is no formation of a barred component-rich region, and smooth outflow and scattering of the barbed component occurs.Therefore, cracks that occur in the IJ during degreasing,
Defects such as blisters do not occur, and a healthy ceramic degreased body can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は往来の微粒n脂材を用いて脱脂した場合の有機
成分の霞度割合を模式的に示す阿略構成図、第2図は従
来のPI誼説脂材を用いて脱脂した1合の有1成分の!
f!!刈合を模式的に示す厩略情成■、第3図<a )
〜(C)はこの発明に係るセラミック射出成形用脱脂材
の製造過程を概略的に示す工程図、第4図(a)〜(d
 >はこの発明に係るセラミック射出成形用脱脂材の他
の製造過程を概略的に示す工程図、第5図はスプレード
ライヤ方式による気孔率と素材とするセラミック粉末粒
径との関係を示す線図、第6図はふるい方式による気孔
率とふるいの回転時間との関係を示す縮図、第7図は供
試材であるブーりの断面形状および欠陥を示す略解図で
ある。 1・・・セラミック射出成形体、 5・・・脱脂材。
Figure 1 is a schematic diagram schematically showing the haze ratio of organic components when degreased using conventional fine-grain n-greasing material, and Figure 2 is a diagram schematically showing the haze ratio of organic components when degreased using conventional PI degreasing material. The presence of one component in combination!
f! ! Figure 3 <a)
~(C) are process diagrams schematically showing the manufacturing process of the degreasing material for ceramic injection molding according to the present invention, and FIGS. 4(a) to (d)
> is a process diagram schematically showing another manufacturing process of the degreasing material for ceramic injection molding according to the present invention, and FIG. 5 is a diagram showing the relationship between the porosity of the spray dryer method and the particle size of the ceramic powder used as the raw material. , FIG. 6 is a scale diagram showing the relationship between the porosity and the rotation time of the sieve according to the sieving method, and FIG. 7 is a schematic diagram showing the cross-sectional shape and defects of the bore, which is the test material. 1... Ceramic injection molded body, 5... Degreasing material.

Claims (1)

【特許請求の範囲】[Claims] 平均粒径が10μm以上で、かつ気孔率が0.15cc
/g〜1.50cc/gの多孔質粉粒体からなるセラミ
ック射出成形用脱脂材。
Average particle size is 10μm or more and porosity is 0.15cc
A degreasing material for ceramic injection molding consisting of porous granular material of /g to 1.50cc/g.
JP59193142A 1984-09-13 1984-09-13 Dewaxing material for ceramic injection molding Pending JPS6172677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193142A JPS6172677A (en) 1984-09-13 1984-09-13 Dewaxing material for ceramic injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193142A JPS6172677A (en) 1984-09-13 1984-09-13 Dewaxing material for ceramic injection molding

Publications (1)

Publication Number Publication Date
JPS6172677A true JPS6172677A (en) 1986-04-14

Family

ID=16302979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193142A Pending JPS6172677A (en) 1984-09-13 1984-09-13 Dewaxing material for ceramic injection molding

Country Status (1)

Country Link
JP (1) JPS6172677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247504A (en) * 1988-03-30 1989-10-03 Tokin Corp Method for degreasing green compact
JPH0450176A (en) * 1990-06-18 1992-02-19 Ngk Spark Plug Co Ltd Method for defatting ceramic molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247504A (en) * 1988-03-30 1989-10-03 Tokin Corp Method for degreasing green compact
JPH0450176A (en) * 1990-06-18 1992-02-19 Ngk Spark Plug Co Ltd Method for defatting ceramic molding

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
JPH0218308B2 (en)
JPH064502B2 (en) Ceramics manufacturing method
JPS6172677A (en) Dewaxing material for ceramic injection molding
JPS60118664A (en) Dewaxing agent for ceramic injection formation
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JP2788182B2 (en) Ceramic raw materials
JPH06287055A (en) Production of sintered article of ceramic
JPH08108415A (en) Ceramic molding method
JP3175455B2 (en) Ceramics molding method
JP3224645B2 (en) Ceramics molding method
TW200936530A (en) Method for forming a ceramic
JPH05345304A (en) Forming method for ceramic formed body
JPS62197166A (en) Production of crushing and mixing media
JPH064504B2 (en) Method for manufacturing ceramics sintered body
JPH0222165A (en) Ceramic binder
JPH02172853A (en) Production of ceramic sintered body
JPS61106464A (en) Process for dewaxing ceramic injection molded body
JPS6121960A (en) Ceramic injection moldings
JP2004010373A (en) Sintered product and its manufacturing process
JPS62226852A (en) Manufacture of raw material for ceramic forming body
JPH01239071A (en) Production of ceramic porous material
JPH02221146A (en) Production of ceramic sintered body
JPS6174803A (en) Manufacture of injection-molded ceramic member
JPH04275101A (en) Preparation of sintered ceramic compact