JPS60118663A - Manufacture of dewaxing agent for ceramic injection formation - Google Patents

Manufacture of dewaxing agent for ceramic injection formation

Info

Publication number
JPS60118663A
JPS60118663A JP58226443A JP22644383A JPS60118663A JP S60118663 A JPS60118663 A JP S60118663A JP 58226443 A JP58226443 A JP 58226443A JP 22644383 A JP22644383 A JP 22644383A JP S60118663 A JPS60118663 A JP S60118663A
Authority
JP
Japan
Prior art keywords
ceramic
degreasing
particle size
degreasing material
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58226443A
Other languages
Japanese (ja)
Inventor
倉田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58226443A priority Critical patent/JPS60118663A/en
Publication of JPS60118663A publication Critical patent/JPS60118663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、セラミック射出成形用脱脂材の作製方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a degreasing material for ceramic injection molding.

〔従来技術〕[Prior art]

セラミック構造物を大量生産する方法として、射出成形
が用いられている。この射出成形は元来プラスチックの
成形方法の一種として発達したもので、成形材料を射出
成形機の射出シリンダ中で加熱溶融したのち、流動化さ
れた成形材料を射出プランジャによって予め固く閉じら
れた金型キャビティに射出注入して完全に充填し、そこ
で冷却固化ないし硬化させて成形品とするものである。
Injection molding is used as a method for mass producing ceramic structures. This injection molding was originally developed as a type of plastic molding method, in which the molding material is heated and melted in the injection cylinder of an injection molding machine, and then the fluidized molding material is inserted into a mold that is tightly closed in advance by an injection plunger. It is injected into the mold cavity to completely fill it, and then cooled and solidified or hardened to form a molded product.

セラミック構造物を製造するにあたっては、まずセラミ
ック粉末を有機結合剤と混合し、これを上記射出成形に
より所定形状のセラミック射出成形体を成形する。次い
で、セラミック射出成形体から有機成分を流出・飛散さ
せる脱脂処理を行った後、所定温度に加熱して焼結を行
い、所望のセラミック構造物を得る。
In manufacturing a ceramic structure, first, ceramic powder is mixed with an organic binder, and the mixture is injection molded to form a ceramic injection molded body of a predetermined shape. Next, a degreasing treatment is performed to cause organic components to flow out and scatter from the ceramic injection molded body, and then the ceramic injection molded body is heated to a predetermined temperature and sintered to obtain a desired ceramic structure.

ところで、上記セラミック構造物の製造工程において、
脱脂処理は重要な工程であり、通常セラミック射出成形
体を脱脂炉に入れ、不活性雰囲気中1〜5°C/hrの
昇温速度で加熱することにより行われる。このとき、セ
ラミック射出成形体から脱脂等の有機成分を流出・飛散
させる一助として、脱脂材(パッド材)を用いることが
ある。この脱脂材は通常多孔質のセラミック材料からな
り、セラミック射出成形体から有機成分が円滑に除去さ
れるを補助する。
By the way, in the manufacturing process of the above ceramic structure,
Degreasing is an important step and is usually carried out by placing the ceramic injection molded body in a degreasing furnace and heating it in an inert atmosphere at a temperature increase rate of 1 to 5°C/hr. At this time, a degreasing material (pad material) may be used to help drain and scatter organic components such as degreased from the ceramic injection molded body. This degreasing material is usually made of a porous ceramic material and assists in the smooth removal of organic components from the ceramic injection molded body.

従来、かかる脱脂材として、市販の粒iM 0.1μ〜
10μの微粒脱脂材、または粒径10μ〜1000 p
の粗粒脱脂材が用いられている。しかしながら、こQ脱
脂材は十分なものではなく、本発明者によれば粒径0.
1μ〜100μの細粒が寄り集まった団粒構造を有する
粒径50μ〜2000μの脱脂材が脱脂処理に好適なこ
とが確かめられた。
Conventionally, as such a degreasing material, commercially available particles iM 0.1μ~
10μ fine particle degreasing material, or particle size 10μ~1000p
A coarse degreasing material is used. However, this Q degreasing material is not sufficient, and according to the present inventor, the particle size is 0.
It was confirmed that a degreasing material having a particle size of 50 μ to 2000 μ and having an aggregate structure in which fine particles of 1 μ to 100 μ are gathered together is suitable for degreasing treatment.

そして、かかる脱脂材の製造方法として、当初は0.1
μ〜10011の一次粒子を0.1〜0.3%のポリビ
ニルアルコール溶液に入れ、十分攪拌した後、スプレー
ドライヤ装置に投入し造粒を行うスプレードライヤ方式
、0.177〜100μの一次粒子に水を加えて回転さ
せながら造粒し、ふるいで5071〜2000.、uの
範囲のものを取り出し、乾燥器1’[’100〜200
℃で10〜20時間乾燥するふるいよりわけ方式を採用
していた。
As a manufacturing method for such a degreasing material, initially 0.1
A spray dryer method is used in which primary particles of μ~10011 are placed in a 0.1~0.3% polyvinyl alcohol solution, stirred thoroughly, and then put into a spray dryer for granulation. Add water, granulate while rotating, and sieve to a grain size of 5,071 to 2,000. , u, and dry it in a dryer 1'['100~200
A sieve-separation method was used to dry at ℃ for 10 to 20 hours.

しかしながら、かかる製造方法により製造された脱脂材
は、熱に対し十分な強度を有しておらす一度使用すると
熱劣化により再利用が困難になるという問題がある。
However, the degreasing material manufactured by such a manufacturing method has a problem that, although it has sufficient strength against heat, once it is used, it becomes difficult to reuse due to thermal deterioration.

また、粒径制御が離しく、歩留りが悪(なるという問題
がある。
Further, there is a problem that particle size control is difficult and the yield is poor.

さらに、脱脂材の充填密度の制御が順しく、空隙率、強
度等にバラツキが生じ昌いという問題がある。
Furthermore, there is a problem in that the packing density of the degreasing material is not properly controlled, resulting in variations in porosity, strength, etc.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の問題を解決するためになされ
たもので所望の粒径、充填密度を介する耐熱性に優れた
セラミック射出成形用脱脂材の作製方法を提供すること
を目的とする。
The present invention was made to solve the problems of the prior art described above, and an object of the present invention is to provide a method for producing a degreasing material for ceramic injection molding that has excellent heat resistance through desired particle size and packing density.

〔発明の構成〕[Structure of the invention]

かかる目的は、本発明によれば、粒径0.1μ〜100
μのセラミックからからなる一次粒子から粒径50μ〜
2000μの団粒構造を有するセラミック射出成形用脱
脂材の作製する方法であって、(イ)−粒径0.17Z
〜100μのセラミ・ツクからなる一次粒子を準備する
工程、 (ロ)この−次粒子を、有機結合剤1重量部に対し1重
量部以上混合し混合物を得る工程、(ハ)この混合物を
径50μ〜2000μの範囲のうちで適当な径の大きさ
に押し出す工程、(ニ)次いで、押し出された成形物を
かさ50μ〜2000μの大きさに切断する工程、(ホ
)切断された成形物を加熱して有機成分を除去する工程
、 (へ)次に、800℃〜1400℃の範囲において、有
機成分を除去した脱脂材を仮焼する工程、によって達成
される。
Such purpose, according to the invention, is achieved by reducing the particle size from 0.1μ to 100μ
Particle size of 50μ~ from primary particles made of μ ceramic
A method for producing a degreasing material for ceramic injection molding having a particle size of 2000μ, the method comprising: (a)-particle size of 0.17Z;
A step of preparing primary particles consisting of ceramic particles of ~100μ, (b) a step of mixing at least 1 part by weight of these primary particles with 1 part by weight of an organic binder to obtain a mixture, (c) a step of obtaining a mixture of A step of extruding the extruded molded product to a suitable diameter size within the range of 50μ to 2000μ, (d) a step of cutting the extruded molded product into a size with a bulk of 50μ to 2000μ, and (e) a step of cutting the cut molded product This is accomplished by a step of heating to remove organic components, and then a step of calcining the degreased material from which the organic components have been removed at a temperature in the range of 800°C to 1400°C.

本発明において、セラミック射出成形用脱脂材の作製方
法の材料としては、窒化珪素(Si、N4)、窒化アル
ミニウム(A7!N)、窒化1iII+素(BN)等の
窒化物、炭化珪素(SiC)、炭化チタン(T i C
)等の炭化物、アルミナ(Al2O2)、ジルコニア(
ZrO2)、酸化チタン(Ti O,) 、酸化バリウ
ム(B a O)等の酸化物、硼化チタン(T i B
z ) RE化リジルコニウムZrB2)等の硼化物、
サイアロン等の酸窒化物、活性炭等を用いることができ
る。このとき、セラミック射出成形用脱脂材を構成する
セラミック材料と同し材1’lまたは類似の材料を用い
ることが望ましい。
In the present invention, the materials used in the method for producing a degreasing material for ceramic injection molding include nitrides such as silicon nitride (Si, N4), aluminum nitride (A7!N), and 1iII+ element nitride (BN), and silicon carbide (SiC). , titanium carbide (T i C
), alumina (Al2O2), zirconia (
Oxides such as ZrO2), titanium oxide (TiO, ), barium oxide (BaO), titanium boride (T i B
z) Borides such as RE-modified lysirconium ZrB2),
Oxynitrides such as Sialon, activated carbon, etc. can be used. At this time, it is desirable to use the same material 1'l as the ceramic material constituting the degreasing material for ceramic injection molding or a similar material.

本発明において、セラミック射出成形用脱脂材のtN¥
とじては5011〜2000μのものが望ましく、10
0〜300 メtのものが、Lり望ましい。
In the present invention, tN¥ of degreasing material for ceramic injection molding
It is preferable that the binding has a thickness of 5011 to 2000μ, and 10
0 to 300 metres is preferable.

また、この粒径50μ〜2000μのセラミック射出成
形用脱脂材は、その粒1¥より(Jるかに小さい粒径0
.1μ〜! 0011の一次tb、 Fが、その元の形
状を多分に残した形で強固に結合した、いわゆる団粒構
造を形成していることが必要である。
In addition, this degreasing material for ceramic injection molding with a particle size of 50μ to 2000μ has a particle size of 0
.. 1 μ~! It is necessary for the primary tb, F of 0011 to form a so-called aggregate structure in which the primary tb and F of 0011 are strongly bonded while retaining much of their original shape.

かかる団粒構造を有するセラミ’7り射出成形用脱脂材
の作製方法としては、まず粒形0.1μ〜100μのセ
ラミックからなる一次粒子を準備し、これに所定の形状
を付与するために有機結合剤と混合する。
As a method for producing a degreasing material for ceramic injection molding having such an aggregate structure, first, primary particles made of ceramic with a particle size of 0.1 μm to 100 μm are prepared, and then an organic material is added to give them a predetermined shape. Mix with binder.

有機結合剤は上記セラミック粉末を結合して所定形状に
するために添加されるもので、一般には熱可塑性樹脂と
滑剤と可塑剤とで構成される。
The organic binder is added to bind the ceramic powder to form a predetermined shape, and is generally composed of a thermoplastic resin, a lubricant, and a plasticizer.

熱可塑性樹脂としては、ポリプロピレン、ポリエチレン
、ポリスチレン等を、滑剤としては、パラフィン、ワッ
クス、ステアリン酸等を、そして可塑剤としては、ジオ
キシフェニレン、ジエチルフェニレン等を用いることが
できる。
As the thermoplastic resin, polypropylene, polyethylene, polystyrene, etc. can be used, as the lubricant, paraffin, wax, stearic acid, etc. can be used, and as the plasticizer, dioxyphenylene, diethylphenylene, etc. can be used.

セラミックの一次粒子は、有機結合剤1重量部に対し、
1重量部以上混合する。有機結合剤1重量部に対し、セ
ラミックの一次粒子を4〜5重量部混合するのが望まし
い。
For 1 part by weight of the organic binder, the ceramic primary particles are
Mix 1 part by weight or more. It is desirable to mix 4 to 5 parts by weight of ceramic primary particles to 1 part by weight of the organic binder.

次いで、上記−次粒子と有機結合剤の混合物を、粒径5
0μ〜2000μの範囲のうちで適当な径の大きさに押
し出し成形し、続いて長さ50〜2000μの大きさに
切断することにより、粒径50μ〜2000 pの成形
物を得る。
Next, the mixture of the above-mentioned primary particles and organic binder was mixed with a particle size of 5.
A molded product with a particle size of 50 to 2000p is obtained by extrusion molding to a suitable diameter within the range of 0 to 2000μ, and then cutting to a length of 50 to 2000μ.

次に、この成形体を加熱して有機結合剤を除去する。こ
のとき、加熱は通常500℃位まで行う。
Next, this molded body is heated to remove the organic binder. At this time, heating is usually carried out to about 500°C.

大気中で加熱し°ζもかまわないが、成形体から流出・
飛散する有機成分が酸素等と反応しないように不活性雰
囲気中で行うのが望ましい。
Heating in the atmosphere is fine, but there is no leakage from the molded product.
It is desirable to carry out the process in an inert atmosphere so that the scattered organic components do not react with oxygen or the like.

最後に、成形体を800℃〜1400℃の範囲、望まし
くは、1000℃〜1300℃の範囲で仮焼する。この
とき、仮焼は大気中でもよいが、不活性雰囲気中で行う
のが望ましい。
Finally, the molded body is calcined at a temperature in the range of 800°C to 1400°C, preferably in the range of 1000°C to 1300°C. At this time, the calcination may be performed in the air, but preferably in an inert atmosphere.

〔発明の作用効果〕[Function and effect of the invention]

本発明に係るセラミック射出成形用脱脂材の作製方法に
よれば、次の効果を奏する。
According to the method for producing a degreasing material for ceramic injection molding according to the present invention, the following effects are achieved.

(a)本発明の作製方法によれば、800℃〜1400
℃で仮焼するため一次粒子どうしの結合が強固なものと
なり、脱脂材の強度があがり耐熱性が向」−する。従っ
て、脱脂処理に使用しても破損することは少な(、再使
用が可能であり、極めて経済的である。
(a) According to the production method of the present invention, 800°C to 1400°C
Because it is calcined at ℃, the bonds between the primary particles become stronger, increasing the strength of the degreasing material and improving its heat resistance. Therefore, even if it is used for degreasing, it is unlikely to be damaged (it can be reused and is extremely economical).

(b)有機結合剤とセラミックの一次粒子を混合するこ
とにより所定形状に成形するため、有機結合剤と一次粒
子の割合を変えることにより、脱脂材の充填密度、粒径
、さらには空隙率を所望の値に容易に制御することがで
きる。従って、従来より品質が安定する。
(b) Since the organic binder and ceramic primary particles are mixed to form a predetermined shape, by changing the ratio of the organic binder and the primary particles, the packing density, particle size, and even porosity of the degreasing material can be adjusted. It can be easily controlled to a desired value. Therefore, the quality is more stable than before.

〔実施例〕〔Example〕

次に、本発明の実−流側について図面を参考るこして説
明する。
Next, the practical side of the present invention will be explained with reference to the drawings.

第1図は本発明のセラミ・ツク射出成形用脱脂材の作製
方法の実施例を示す工程図である。
FIG. 1 is a process diagram showing an embodiment of the method for producing a degreasing material for ceramic injection molding of the present invention.

まず、平均粒径0.9〜1.0μの窒化珪素粉末90部
にスピネル10部を加えた一次粒子lに、有機結合剤2
としてアタクチックポリプロピレン20部を準備しく第
1図(A)) 、これを混合し加圧ニーダ3を用いて1
30部3℃の温度で30分間混練する(第1図(B))
。その後、ペレタイザー置4に混練物を投入し、平均粒
径Q、3 inのベレット5を作成した(第1図(C)
)。このベレット5を脱脂炉6に装入し、窒素ガス中、
1気圧のもとで、温室から450℃まで10℃/hrの
昇温速度で温度をあげ、有機結合剤2を除去した(第1
図(D))。冷却後、このベレット5を焼成炉7に装入
し、窒素ガス中、1気圧のもとて1200℃で4時間仮
焼した(第1図(E))。斯くしてベレット状の脱脂材
を作製した。
First, 2 parts of an organic binder are added to primary particles 1, which are made by adding 10 parts of spinel to 90 parts of silicon nitride powder with an average particle size of 0.9 to 1.0 μm.
Prepare 20 parts of atactic polypropylene as shown in Fig. 1 (A)), mix this and use a pressure kneader 3 to make 1
30 parts Kneaded at 3°C for 30 minutes (Figure 1 (B))
. Thereafter, the kneaded material was put into the pelletizer 4, and pellets 5 with an average particle size Q of 3 inches were prepared (Fig. 1 (C)).
). This pellet 5 is charged into a degreasing furnace 6, and in nitrogen gas,
Under 1 atm, the temperature was raised from the greenhouse to 450°C at a heating rate of 10°C/hr to remove organic binder 2 (first
Figure (D)). After cooling, the pellet 5 was charged into a firing furnace 7 and calcined at 1200° C. for 4 hours in nitrogen gas at 1 atm (FIG. 1(E)). In this way, a pellet-shaped degreasing material was produced.

次に、この脱脂材の効果を確認するため、プーリの製造
に−F記脱脂材を利用した。すなわち、平均粒径0.9
〜1. Opの窒化珪素粉末100部に対し、ポリエチ
レン10部、エチルビニルアルコール12部、可塑剤と
してのジオキシフェニレン3部を180部5°Cに設定
したニーダに投入し、40分程攪拌した後、ニーダから
取り出しペレタイザーで粗粉化した。次いで、この粗粉
化したベレットを140部2℃で設定された2軸押ル出
しを行い射出成形用ペレッI・を作製した。その後、射
出成形機にて射出温度180℃、型温50℃1、射出圧
力900 ktr/ctn、射出率4QcC/秒でプー
リを射出成形した。
Next, in order to confirm the effect of this degreasing material, the degreasing material -F was used in the manufacture of pulleys. That is, the average particle size is 0.9
~1. To 100 parts of Op silicon nitride powder, 180 parts of polyethylene, 12 parts of ethyl vinyl alcohol, and 3 parts of dioxyphenylene as a plasticizer were put into a kneader set at 5°C, and stirred for about 40 minutes. It was taken out from the kneader and coarsely powdered using a pelletizer. Next, 140 parts of the coarse pellets were subjected to twin-screw extrusion at 2° C. to produce injection molding pellets I. Thereafter, a pulley was injection molded using an injection molding machine at an injection temperature of 180° C., a mold temperature of 50° C., an injection pressure of 900 ktr/ctn, and an injection rate of 4 QcC/sec.

次に、この射出成形体を脱脂炉に入れ、上記脱脂材を射
出成形体のまわりに充填した。次いで、脱脂炉内を加熱
し、1気圧の窒素ガス雰囲気中で50℃〜500℃まで
4℃/hrの速度で昇温させ脱脂を行った。その後、1
気圧の窒素ガス雰囲気中にて1750℃で焼成を行った
Next, this injection molded body was placed in a degreasing furnace, and the above-mentioned degreasing material was filled around the injection molded body. Next, the inside of the degreasing furnace was heated and the temperature was raised from 50° C. to 500° C. at a rate of 4° C./hr in a nitrogen gas atmosphere of 1 atm to perform degreasing. After that, 1
Firing was performed at 1750° C. in a nitrogen gas atmosphere at atmospheric pressure.

この結果得られたプーリの良品率は100%であった(
但し、N= 100)。かかるプーリの製造を、同一の
脱脂材を繰り返し利用して10回行った。このときの焼
成良品率(%)を第2図に、脱脂材の粒子径の変化(龍
)を第3図に示す。
The quality of the pulleys obtained as a result was 100% (
However, N = 100). The manufacture of such a pulley was repeated 10 times using the same degreasing material. Fig. 2 shows the firing rate (%) of non-defective products at this time, and Fig. 3 shows the change in particle size (dragon) of the degreasing material.

(比較例) 脱脂材として、平均粒径が1μ(0,1μ〜10μの範
囲の粒度分布を示す)の窒化珪素粉末を一次粒子とし、
スプレードライヤ方式で粒11100杓 μ〜400μとしたものを用いたこと以外は、実施例と
全く同じ条件でプーリの製造を行った。
(Comparative example) As a degreasing material, silicon nitride powder with an average particle size of 1 μ (showing a particle size distribution in the range of 0.1 μ to 10 μ) was used as primary particles,
Pulleys were manufactured under exactly the same conditions as in the example except that particles of 11,100 μm to 400 μm were used using a spray dryer method.

この結果得られたプーリの良品率は99%であった(但
し、N=100)。かかるプーリの製造を、実施例と同
様、同一の脱脂材を繰り返し利用して10回行った。こ
のときの焼成良品率(%)を実施例と同様第2図に、脱
脂材の粒子径の変化(lII)を第3図に併せ示ず。
The quality of the pulleys obtained as a result was 99% (N=100). This pulley was manufactured 10 times using the same degreasing material in the same manner as in the examples. The baked good product rate (%) at this time is shown in FIG. 2 as in the example, and the change in particle size of the degreasing material (II) is not shown in FIG. 3 either.

第2図、第3図から明らかなように、スプレードライヤ
方式により作製した従来の脱脂材を用いた場合は、脱脂
材の粒径が1回使用した後では大幅に減少し、一部粉塵
化し、もって焼成良品率も4回目頃から極端に悪化して
いるのに対し、本発明により作製した脱脂材は、10回
繰り返し使用しても粒径の変化はほとんどなく、焼成良
品率も全く低下していない。
As is clear from Figures 2 and 3, when using the conventional degreasing material produced by the spray dryer method, the particle size of the degreasing material decreases significantly after one use, and some of it becomes dust. However, the degreasing material produced according to the present invention showed almost no change in particle size even after repeated use 10 times, and the yield rate of non-defective products decreased significantly from around the fourth time. I haven't.

これにより、本発明により作製した脱脂材は、強度、耐
熱性が向ヒしており、再使用に耐えることが判る。
This shows that the degreasing material produced according to the present invention has improved strength and heat resistance, and can withstand reuse.

また、粒径の制御も極めて楽に、かつ精度よく行えた。In addition, the particle size could be controlled extremely easily and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセラミック射出成形用脱脂材の作製方
法の実施例を示す工程図、 第2図は本発明の実施例と比較例における焼成良品率を
示すグラフ、 第3図は本発明の実施例と比較例にお1する脱脂材の粒
径の変化を示すグラフである。 1−・・−セラミックの一次粒子 2・−・−・・−有機結合剤 3−−−−−一加圧二−ダ 4−−一一−−−ベレタイザ装置 5−一一−−−−ペレット 6−−−−−説脂炉 7・・−一−−−焼成炉 出願人 トヨ; ン自動車羽艷2ト旺 第 (A) (B) (C) C山2f−:) 1図 (D) (E)
Fig. 1 is a process diagram showing an example of the method for producing a degreasing material for ceramic injection molding of the present invention, Fig. 2 is a graph showing the firing rate of good products in an example of the present invention and a comparative example, and Fig. 3 is a graph showing the firing rate in the example of the present invention and a comparative example. 1 is a graph showing changes in particle size of degreasing materials in Examples and Comparative Examples. 1-...-Ceramic primary particles 2---Organic binder 3---1 Pressure seconder 4--11--Beletizer device 5-11-- Pellet 6 ---- Fat refining furnace 7...-1---Kilning furnace Applicant Toyo; D) (E)

Claims (1)

【特許請求の範囲】[Claims] (1)粒径0.1μ〜100μのセラミックからからな
る一次粒子から粒径50μ〜2000μの団粒構造を有
するセラミック射出成形用脱脂材を作製する方法であっ
て、次の工程からなる。 (イ)粒径0.1μ〜100μのセラミックからなる一
次粒子を準備する工程。 (ロ)この−欠粒子を、有機結合剤1重量部に対し1重
量部以上混合し混合物を得る工程。 (ハ)この混合物を径50μ〜2000μの範囲のうち
で適当な径の大きさに押し出す工程(ニ)次いで、押し
出された成形物を長さ50μ〜2000μの大きさに切
断する工程。 (ホ)切断された成形物を加熱して有機結合剤を除去す
る工程。 (へ)次に、800℃〜1400℃の範囲において、有
機結合剤を除去した脱脂材を仮焼する工程。
(1) A method for producing a degreasing material for ceramic injection molding having an aggregate structure with a particle size of 50 μm to 2000 μm from primary particles made of ceramic with a particle size of 0.1 μm to 100 μm, which comprises the following steps. (a) A step of preparing primary particles made of ceramic having a particle size of 0.1 μm to 100 μm. (b) A step of mixing 1 part by weight or more of the missing particles with 1 part by weight of the organic binder to obtain a mixture. (c) A step of extruding this mixture to a suitable diameter within the range of 50 μm to 2000 μm (d) A step of cutting the extruded molded product into lengths of 50 μm to 2000 μm. (e) A step of heating the cut molded product to remove the organic binder. (f) Next, a step of calcining the degreasing material from which the organic binder has been removed in a range of 800°C to 1400°C.
JP58226443A 1983-11-30 1983-11-30 Manufacture of dewaxing agent for ceramic injection formation Pending JPS60118663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226443A JPS60118663A (en) 1983-11-30 1983-11-30 Manufacture of dewaxing agent for ceramic injection formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226443A JPS60118663A (en) 1983-11-30 1983-11-30 Manufacture of dewaxing agent for ceramic injection formation

Publications (1)

Publication Number Publication Date
JPS60118663A true JPS60118663A (en) 1985-06-26

Family

ID=16845183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226443A Pending JPS60118663A (en) 1983-11-30 1983-11-30 Manufacture of dewaxing agent for ceramic injection formation

Country Status (1)

Country Link
JP (1) JPS60118663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180743A (en) * 1989-01-06 1990-07-13 Ngk Insulators Ltd Production of sand
JP2007290739A (en) * 2006-04-24 2007-11-08 Taisei Kako Co Ltd Shock absorbing package and shock absorbing packaging structure
CN107140978A (en) * 2017-06-22 2017-09-08 绍兴华晶科技有限公司 A kind of preparation method of ceramic sheet
CN107162588A (en) * 2017-06-22 2017-09-15 绍兴华晶科技有限公司 A kind of preparation method of full porcelain artificial tooth zirconium oxide porcelain block

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180743A (en) * 1989-01-06 1990-07-13 Ngk Insulators Ltd Production of sand
JP2007290739A (en) * 2006-04-24 2007-11-08 Taisei Kako Co Ltd Shock absorbing package and shock absorbing packaging structure
CN107140978A (en) * 2017-06-22 2017-09-08 绍兴华晶科技有限公司 A kind of preparation method of ceramic sheet
CN107162588A (en) * 2017-06-22 2017-09-15 绍兴华晶科技有限公司 A kind of preparation method of full porcelain artificial tooth zirconium oxide porcelain block

Similar Documents

Publication Publication Date Title
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
US4708838A (en) Method for fabricating large cross section injection molded ceramic shapes
US4704242A (en) Method for injection molding and removing binder from large cross section ceramic shapes
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
JPH0352422B2 (en)
JPH06207084A (en) Thermoplastic molding composition for producing inorganic sintered molding and production of the sintered molding
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JPS6212667A (en) Manufacture of member for semiconductor
JPH04325604A (en) Production of porous sintered body
JPS62278175A (en) Manufacture of porous ceramics
JPS60118664A (en) Dewaxing agent for ceramic injection formation
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPS62197166A (en) Production of crushing and mixing media
JPH06287055A (en) Production of sintered article of ceramic
JPH1171190A (en) Production of silicon carbide-silicon composite material
JPS6172677A (en) Dewaxing material for ceramic injection molding
JPH02172853A (en) Production of ceramic sintered body
JPS59174569A (en) Manufacture of ceramic products
JPS60151271A (en) Manufacture of ceramic product
JPH11278915A (en) Composition for injection molding of ceramic
JPH0210790B2 (en)
JP2000117714A (en) Inorganic powder injection molding composition and manufacture of inorganic sintered body
JPS6131343A (en) Manufacture of ceramic product
JPH0421626B2 (en)
JPH0383845A (en) Production of ceramic sintered compact