JPS6131343A - Manufacture of ceramic product - Google Patents

Manufacture of ceramic product

Info

Publication number
JPS6131343A
JPS6131343A JP59152298A JP15229884A JPS6131343A JP S6131343 A JPS6131343 A JP S6131343A JP 59152298 A JP59152298 A JP 59152298A JP 15229884 A JP15229884 A JP 15229884A JP S6131343 A JPS6131343 A JP S6131343A
Authority
JP
Japan
Prior art keywords
weight
degreasing
manufacturing
organic material
ceramic product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59152298A
Other languages
Japanese (ja)
Inventor
基義 田中
谷田 祥三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59152298A priority Critical patent/JPS6131343A/en
Publication of JPS6131343A publication Critical patent/JPS6131343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は混合工程と、成形工程と、脱脂工程及び焼結工
程とから成るセラミック製品の製造方法に関するもので
、詳細にはセラミック成形体の脱脂時の欠陥の発生を防
止する製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic product, which comprises a mixing step, a molding step, a degreasing step, and a sintering step. The present invention relates to a manufacturing method that prevents defects from occurring during degreasing.

[従来の技術] セラミック製品の製造方法には、例えば、セラミック原
料粉末にバインダとしての熱可塑性樹脂を配合し、この
混合物を射出成形等によって成形し、得られた成形体を
脱脂した後焼結する方法がある。この方法は複雑形状製
品を錆度良く、かつ能率的に製造する方法として採用さ
れている。しかしながらこの方法では成形後にバインダ
を除く脱脂工程が必要である。そして脱脂時の欠陥の発
生を防ぐ目的で、窒素ガス或いは真空中等の非醗化性雰
囲気で、また昇温速度も例えば2℃/時間と極端に遅く
したり、比較的低い濃度で5日〜数週間保つことで脱脂
していた。
[Prior Art] A method for manufacturing ceramic products includes, for example, blending ceramic raw material powder with a thermoplastic resin as a binder, molding this mixture by injection molding, etc., degreasing the obtained molded body, and then sintering it. There is a way to do it. This method has been adopted as a method for efficiently manufacturing products with complex shapes with good rust resistance. However, this method requires a degreasing step to remove the binder after molding. In order to prevent defects during degreasing, degreasing is carried out in a non-oxidizing atmosphere such as nitrogen gas or vacuum, and the heating rate is extremely slow, e.g. 2°C/hour, or at a relatively low concentration for 5 to 5 days. It was degreased by keeping it for several weeks.

[発明が解決しようとする問題点] セラミック製品の射出成形法等では従来、特に厚肉の材
料を製造する場合に、脱脂工程において発生するガス量
が増大し、内部応力も大きく、割れや膨れ等の欠陥が発
生する場合があった。この問題点を防ぐ為に、脱脂の昇
温速度を極端に遅くしたり、一定温度で長時間保温した
り、また窒素ガス等の不活性雰囲気下で脱脂したりする
必要があった。その為、脱脂工程に高コストがかかると
共に、歩留まり及び品質の面でも不安定であり、セラミ
ックスの射出成形法の実用化に対し、この問題点が大き
な障害となっていた。
[Problems to be solved by the invention] Conventionally, in injection molding methods for ceramic products, especially when manufacturing thick materials, the amount of gas generated during the degreasing process increases, internal stress is large, and cracks and blisters occur. In some cases, such defects may occur. In order to prevent this problem, it has been necessary to extremely slow down the temperature rise rate during degreasing, to keep the temperature at a constant temperature for a long time, or to degrease in an inert atmosphere such as nitrogen gas. Therefore, the degreasing process is expensive, and the yield and quality are unstable, and this problem has been a major obstacle to the practical application of injection molding methods for ceramics.

本発明者は上記の問題点に鑑み、鋭意研究の結果脱脂時
の欠陥の発生を少なくする方法を発見し、本発明を完成
したものである。すなわち本発明はセラミック成形体の
脱脂工程における欠陥の発1を防止するセラミック製品
の製造方法を提供することを目的とする。
In view of the above-mentioned problems, the inventors of the present invention have discovered a method of reducing the occurrence of defects during degreasing as a result of intensive research, and have completed the present invention. That is, an object of the present invention is to provide a method for manufacturing a ceramic product that prevents defects from occurring during the degreasing process of a ceramic molded body.

L問題点を解決するための手段〕 本発明は廿ラミック粉末と有機材料を混合し、混合物を
成形した後脱脂し、その後焼結してセラミック製品とす
るセラミック製品の製造方法において、 該有機材料には、大気中で熱分解した場合に少なくとも
その10vol%が解重合反応により分解する熱可塑性
樹脂が該有機材料100ffif11部のうち10〜9
0重量部含まれていることを特徴とづる。
Means for Solving Problem L] The present invention provides a method for manufacturing a ceramic product, in which a ceramic product is produced by mixing a lamic powder and an organic material, molding the mixture, degreasing the mixture, and then sintering the organic material. , a thermoplastic resin of which at least 10 vol % decomposes due to a depolymerization reaction when thermally decomposed in the atmosphere is present in 10 to 9 of 11 parts of 100 ffif of the organic material.
It is characterized by containing 0 parts by weight.

ここに、セラミック粉末としては、窒化珪素(Si3N
+)、炭化珪素(s+c>が代表的なものであり、場合
によっては窒化アルミニウム<AIN>、窒化硼素(B
N)等の窒化物、炭化チタン(TiC)等の炭化物、硼
化チタン(TiB2)、硼化ジルコニウム(ZrB2)
等の硼化物、サイアロン等の酸窒化物、ジルコニア(Z
r02>、アルミナ(Al2O2)、コージライト、チ
タン酸バリウム(BaT i○3)、酸化チタン(1’
 i 02 )等の酸化物を用いることができる。
Here, as the ceramic powder, silicon nitride (Si3N
+), silicon carbide (s+c>), and in some cases aluminum nitride <AIN>, boron nitride (B
Nitride such as N), carbide such as titanium carbide (TiC), titanium boride (TiB2), zirconium boride (ZrB2)
borides such as, oxynitrides such as sialon, zirconia (Z
r02>, alumina (Al2O2), cordierite, barium titanate (BaT i○3), titanium oxide (1'
i 02 ) and the like can be used.

このセラミック粉末は単体で用いても、二種以上のセラ
ミック粉末を混合して用いてもよい。
This ceramic powder may be used alone or as a mixture of two or more types of ceramic powder.

上記セラミック粉末は有機材料と混合されるが、その混
合物組成中にセラミック粉末が70〜90重壷%、特に
は76〜85重量%含まれていることが望ましい。セラ
ミック粉末が70重滑%より少なくなると望ましい密度
を有するセラミック製品を得ることは難しく、90重量
%を越えると射出成形が困難となる。また、上記セラミ
ック粉末の粒径は大きくとも5μ迄の範囲が好ましく、
0゜1〜2.0μの範囲が特に望ましい。同時に上記セ
ラミック粉末の表面積は1〜100m2/Qの範囲が好
ましく、5〜20m’ /Qの範囲が特に望ましい。
The above-mentioned ceramic powder is mixed with an organic material, and it is desirable that the mixture composition contains 70 to 90% by weight, particularly 76 to 85% by weight of ceramic powder. When the ceramic powder is less than 70% by weight, it is difficult to obtain a ceramic product with a desired density, and when it exceeds 90% by weight, injection molding becomes difficult. Further, the particle size of the ceramic powder is preferably within a range of 5μ at the most,
A range of 0°1 to 2.0μ is particularly desirable. At the same time, the surface area of the ceramic powder is preferably in the range of 1 to 100 m2/Q, particularly preferably in the range of 5 to 20 m'/Q.

上記セラミック粉末と混合される有機材料は、成形時に
混合物に流動性を与え、セラミック粉末を被覆して成形
装置を保護し、さらに成形体を充分に接合して形を厳密
に保つ役割を有している。
The organic material mixed with the ceramic powder has the role of imparting fluidity to the mixture during molding, covering the ceramic powder to protect the molding equipment, and sufficiently bonding the molded product to maintain its shape. ing.

従って該有機材料は熱可塑性材料であることが望ましい
。しかしながら該有機材料は最終製品にはほとんど不必
要なものであり、脱脂工程で容易に分解、気化するもの
が望ましく、分解温度が150〜500℃のものが望ま
しい。
Therefore, it is desirable that the organic material is a thermoplastic material. However, the organic material is almost unnecessary for the final product, and it is preferable that it be easily decomposed and vaporized in the degreasing process, and preferably have a decomposition temperature of 150 to 500°C.

本発明の特色は上記有機材料の組成にある。すなわち有
機材料には、大気中で熱分解した場合に少なくともその
10vo1%が解重合反応により分解する熱可塑性樹脂
(以下解重合性樹脂という〉が含まれていることを最大
の特色とするものである。この解重合性樹脂には代表的
にものにポリイソブチレンがある。たとえばポリイソブ
チレンは、人気中で熱分解させた場合でも酸化分解が少
なく、はとんどが解重合反応によって分解し、分解時に
発生するガスの量が他の熱可塑性樹脂に比べ極めて少な
い。本発明はこの点に看目し、成されたものである。す
なわちポリイソブチレン等の解重合性樹脂は上記有機材
料中に10〜901量%含まれていることを特徴とする
。ここで解重合性樹脂が10重量%より少ない場合には
効果が発揮できず、脱脂時に膨れ、割れ等の欠陥が発生
する場合があり、90重量%を超える場合には射出成形
を行った際の成形体強度が低く、型から成形体を取り出
した時に成形体に割れが発生する場合がある。
The feature of the present invention lies in the composition of the above organic material. In other words, the main feature of the organic material is that it contains a thermoplastic resin (hereinafter referred to as depolymerizable resin), at least 10vol% of which decomposes through a depolymerization reaction when thermally decomposed in the atmosphere. A typical example of this depolymerizable resin is polyisobutylene.For example, polyisobutylene is popular, and even if it is thermally decomposed, there is little oxidative decomposition; The amount of gas generated during decomposition is extremely small compared to other thermoplastic resins.The present invention was made in view of this point.In other words, depolymerizable resins such as polyisobutylene are incorporated into the above organic materials. It is characterized by containing 10 to 901% by weight.If the depolymerizable resin is less than 10% by weight, the effect cannot be achieved and defects such as blistering and cracking may occur during degreasing. If the amount exceeds 90% by weight, the strength of the molded product during injection molding will be low, and cracks may occur in the molded product when taken out from the mold.

従って解重合性樹脂の有機材料中に占める割合は10〜
90重山%であることが望ましい。
Therefore, the proportion of depolymerizable resin in the organic material is 10~
It is desirable that it be 90%.

う 本発明のも労一つの特色は有機材料中にパラフィン或い
はワックスが20〜80重量部含まれているところにあ
る。このパラフィン或いはワックスの揮発温度は有機材
料中に含まれる熱可塑性樹脂の分解温度より低いことが
必要であり、約り50℃〜約190℃の範囲にあるのが
望ましい。パラフィン或いはワックスは熱可塑性物質で
あり、バインダとして機能する他、熱可塑性樹脂の分解
温度よりも低温で揮発する為、脱脂時の有機材料の分解
・気化を均一化して急激な変化を防ぎ、脱脂時にセラミ
ック製品にかかる応力を緩和する作用がある。ここでパ
ラフィン或いはワックスが20重量%より少ない場合に
は効果が発揮できず脱脂時に膨れ、割れ等の欠陥が発生
する場合があり、80重量%を超える場合には射出成形
を行った際の成形体強度が低く、型から取り出した時等
に割れが発生したり、成形体の寸法安定性にも問題が生
ずる場合がある。
One of the most important features of the present invention is that the organic material contains 20 to 80 parts by weight of paraffin or wax. The volatilization temperature of this paraffin or wax needs to be lower than the decomposition temperature of the thermoplastic resin contained in the organic material, and is preferably in the range of about 50°C to about 190°C. Paraffin or wax is a thermoplastic substance that functions as a binder and evaporates at a lower temperature than the decomposition temperature of thermoplastic resin, so it uniformizes the decomposition and vaporization of organic materials during degreasing, prevents sudden changes, and improves degreasing. It has the effect of relieving stress that is sometimes applied to ceramic products. If the paraffin or wax content is less than 20% by weight, the effect may not be achieved and defects such as blistering and cracking may occur during degreasing, and if it exceeds 80% by weight, molding during injection molding may occur. The body strength is low, and cracks may occur when removed from the mold, and problems may arise in the dimensional stability of the molded product.

有機材料には解重合性樹脂とパラフィン及びワックス以
外に従来使用されている熱可塑性樹脂。
Organic materials include depolymerizable resins and conventionally used thermoplastic resins in addition to paraffin and wax.

離型剤及び可塑剤等が等が使用できる。この熱可塑性樹
脂としては、ポリエチレン、アタクチックポリプロピレ
ン、ポリプロピレン、エチレン−酢酸ビニル共重合物、
ポリブタジェン、スチレン−7タジエン共重合物、ポリ
スチレン、αメチルスチレン、アクリル樹脂、メタクリ
ル樹脂等があり、これらの一種類又は二種以上の混合物
が使用できる。離型剤としてはステアリン酸等があり、
可塑剤としてはジエチルフタレート、ジブチルフタレー
ト等がある。また必要に応じ植物油、鉱油等の油を添加
することもできる。これらの有機材料は特に制限は無く
、従来使用されている有機材料を従来と同量使用できる
A mold release agent, a plasticizer, etc. can be used. Examples of this thermoplastic resin include polyethylene, atactic polypropylene, polypropylene, ethylene-vinyl acetate copolymer,
Examples include polybutadiene, styrene-7tadiene copolymer, polystyrene, α-methylstyrene, acrylic resin, methacrylic resin, and one type or a mixture of two or more of these can be used. Mold release agents include stearic acid, etc.
Examples of plasticizers include diethyl phthalate and dibutyl phthalate. Further, oil such as vegetable oil or mineral oil may be added if necessary. These organic materials are not particularly limited, and conventionally used organic materials can be used in the same amount as conventionally.

本発明の製造方法において特徴を有する工程は脱脂工程
であり、他の工程については従来と同様に行なうことが
できる。すなわち、前記セラミック粉末と本発明の特色
を成す前記有機材料は従来と同様に熱間混合されベレッ
ト化される。このベレットは従来と同様に射出成形機等
に供給され成形される。成形体の脱脂は大気雰囲気で行
なってもよく、窒素ガス等の非酸化性雰囲気で行なって
もよいが、作業性、コスト等の面から鑑みて、大気雰囲
気で行なう方が利点が多く望ましい。また脱脂工程の4
温速度を従来のように極端に遅くしたり、比較的低温で
長時間保温したりする必要は無く、5〜b 〜450℃迄加熱することにより脱脂される。脱脂され
た成形体は従来と同様に所定の温度r焼結されてセラミ
ック製品が製造される。
The characteristic step in the manufacturing method of the present invention is the degreasing step, and the other steps can be performed in the same manner as conventional methods. That is, the ceramic powder and the organic material, which is a feature of the present invention, are hot mixed and pelletized in the same manner as in the prior art. This pellet is fed to an injection molding machine or the like and molded in the same manner as before. Degreasing of the molded body may be carried out in an air atmosphere or in a non-oxidizing atmosphere such as nitrogen gas, but in view of workability, cost, etc., it is desirable to carry out the degreasing in an air atmosphere as it has many advantages. In addition, 4 of the degreasing process
There is no need to extremely slow down the heating rate or keep it warm for a long time at a relatively low temperature, as in the past, and it is degreased by heating to 5-450°C. The degreased molded body is sintered at a predetermined temperature r in the same manner as in the past to produce a ceramic product.

なお、本発明の製造方法は主として射出成形に適用され
るが、脱脂工程を含む製造、方法であれば射出成形法に
限らず適用できる。
The manufacturing method of the present invention is mainly applied to injection molding, but any manufacturing method that includes a degreasing step can be applied not only to injection molding.

〔作用〕[Effect]

本発明の@I造方法の脱脂工程が人気雰囲気−トで行な
われる場合において、昇温が始まると約15O℃からパ
ラフィン又はワックスが揮発し成形体から離脱づ゛るよ
うになる。さらに温度が上昇し約り00℃〜約250℃
になると他の有機材料の分解が始まり、約400℃〜5
00℃で脱脂が完了づ゛る。この間解重合性樹脂は主と
して解重合反応により分解・気化し、酸化分解反応は少
ない。従って発生するガス量が従来の製造方法に比べ極
めて少なく、故に体積の膨張によるセラミック成形体の
膨れや割れ等の欠陥が生じる危険性が極めて小さくなる
。また約り50℃〜約500℃の脱脂工程の間、平均的
に有機材料が分解・気化し、なだらかに重量が減少する
。従ってヒラミック製品の内部応力が小さくなり、欠陥
が生じる危険性がさらに小さくなる。
When the degreasing step of the @I manufacturing method of the present invention is carried out in a popular atmosphere, paraffin or wax begins to volatilize and separate from the molded product from about 150° C. when the temperature starts to rise. The temperature further rises to about 00℃~250℃
At this point, other organic materials begin to decompose and the temperature reaches approximately 400°C to 5°C.
Degreasing is completed at 00°C. During this time, the depolymerizable resin is mainly decomposed and vaporized by depolymerization reaction, and oxidative decomposition reaction is small. Therefore, the amount of gas generated is extremely small compared to conventional manufacturing methods, and therefore the risk of defects such as bulges and cracks in the ceramic molded body due to volume expansion is extremely reduced. Further, during the degreasing process at about 50°C to about 500°C, the organic material decomposes and evaporates on average, and the weight gradually decreases. Therefore, the internal stress of the Hiramic product is reduced, and the risk of defects is further reduced.

[実施例〕 以下実施例により本発明の製造方法を説明する。[Example〕 The manufacturing method of the present invention will be explained below with reference to Examples.

平均粒径0.7μの窒化珪素(3i3N4)粉末80重
量%に融点60℃のワックス(日本石油製)を10重量
%、重量平均分子量8万のポリイソ1チレン(白石化学
製)を6重量%及びごカット軟化点120℃以上の高密
度ポリエチレン(三井ポリケミカル製)を4重量部加え
、高温ニーダ中で170℃にて2時間混練した後、二軸
高温押出し機を用いて再混線及びペレット化を行なった
80% by weight of silicon nitride (3i3N4) powder with an average particle size of 0.7μ, 10% by weight of wax with a melting point of 60°C (manufactured by Nippon Oil), and 6% by weight of polyiso-1-tyrene (manufactured by Shiraishi Chemical) with a weight average molecular weight of 80,000. Add 4 parts by weight of high-density polyethylene (manufactured by Mitsui Polychemicals) with a softening point of 120°C or higher and knead in a high-temperature kneader at 170°C for 2 hours, then remix and pelletize using a twin-screw high-temperature extruder. .

次に射出成形機によって170℃、500kg/cmt
の条件下で金型に射出し、幅i 5mm、高さ15mm
、長さ7Qmmの直方体状成形体を製造した。この成形
体を大気雰囲気下で昇温速度8℃/時間で20℃から4
00℃迄50時間かかつて脱脂した。脱脂時の減量は平
均17.5重量%であり、すなわち上記条件で脱脂はほ
とんど完了していた。得られた脱脂体の表面を肉眼で観
察したところ、30個のすべての表面には割れ及び膨れ
は認められず良好な脱脂体であった。さらに内部の状態
を調べる為にX線探査を行なったが、30個すべてにつ
いて内部欠陥は認められなかった。
Next, using an injection molding machine at 170℃, 500kg/cmt
Injected into a mold under the following conditions, width i 5mm, height 15mm
A rectangular parallelepiped molded body having a length of 7 Qmm was manufactured. This molded body was heated from 20°C to 4°C at a heating rate of 8°C/hour in the air.
It was degreased for 50 hours up to 00℃. The average weight loss during degreasing was 17.5% by weight, that is, degreasing was almost completed under the above conditions. When the surfaces of the obtained degreased bodies were observed with the naked eye, no cracks or blisters were observed on the surfaces of all 30 pieces, indicating that the degreased bodies were in good condition. Furthermore, X-ray inspection was conducted to investigate the internal condition, but no internal defects were found in all 30 pieces.

この脱脂体を窒素ガス雰囲気下で1750℃に4時間保
って焼結したところ、比重3.21の良好な焼結体が得
られた。
When this degreased body was sintered by keeping it at 1750° C. for 4 hours in a nitrogen gas atmosphere, a good sintered body with a specific gravity of 3.21 was obtained.

次に比較例として従来の製造方法により脱脂を行なった
。すなわちポリイソブチレンの代りに軟化温度120℃
のエチレン−αオレフイン共重合物(千葉ファインケミ
カル類)を同重量%用いること以外は実施例と同一の材
料を用い、実施例と同様に混線、ペレット化及び射出成
形を行なって実施例と同一形状の成形体を30個輪造し
た。この成形体は実施例と同一条件で脱脂され、脱脂時
の減量は平均17.5重量%であり、すなわちこの条件
で脱脂はほとんど完了していた。得られた脱脂体は30
個全てについて脱脂体中心部からのR泡が生じ、表面に
膨れ及び割れが生じて脱脂不良品となった。
Next, as a comparative example, degreasing was performed using a conventional manufacturing method. That is, instead of polyisobutylene, the softening temperature is 120°C.
The same materials as in the example were used, except that the same weight percent of ethylene-α olefin copolymer (Chiba Fine Chemicals) was used, and cross-wire, pelletization, and injection molding were carried out in the same manner as in the example to produce a product with the same shape as in the example. A total of 30 molded bodies were produced. This molded body was degreased under the same conditions as in the example, and the weight loss during degreasing was 17.5% by weight on average, that is, the degreasing was almost completed under these conditions. The obtained degreased body was 30
In all of the degreased products, R bubbles were generated from the center of the degreased body, and blisters and cracks were generated on the surface, resulting in defective degreased products.

ここで実施例に使用したポリイソブチレンの熱分解曲線
を図に示す。条件としては大気雰囲気中において10℃
/分の昇温速度で室温から450℃まで加熱して行なっ
た。図において、TG曲線1よりポリイソブチレンは2
60℃〜390℃の範囲でほぼ温度に比例して熱分解し
ている。そしてDSC80曲線り発熱反応のピークがほ
とんど観察されないことから、この分解はほとんどが酸
化分解よりも解重合分解によるものであることがわかる
。さらに熱分解時の生成ガスをガスクロマトグラフィー
により分析したところ、解重合分解による生成物が生成
ガスの約9Qvo 1%を占めていた。すなわちポリイ
ソブチレンは熱分解時にそのほとんどが解重合分解によ
って分解することが明らかである。
The figure shows the thermal decomposition curve of polyisobutylene used in the examples. The conditions are 10℃ in the air atmosphere.
The heating was carried out by heating from room temperature to 450° C. at a heating rate of /min. In the figure, from TG curve 1, polyisobutylene is 2
Thermal decomposition occurs approximately in proportion to temperature in the range of 60°C to 390°C. Since almost no exothermic reaction peak was observed on the DSC80 curve, it can be seen that most of this decomposition is due to depolymerization decomposition rather than oxidative decomposition. Furthermore, when the gas produced during thermal decomposition was analyzed by gas chromatography, it was found that the products from depolymerization and decomposition accounted for about 9Qvo 1% of the produced gas. That is, it is clear that most of polyisobutylene is decomposed by depolymerization and decomposition during thermal decomposition.

上記実施例の結果はポリイソブチレンの効果によるもの
であることが明らかであり、これは図の熱分解の結果か
らポリイソブチレンが解重合分解をすることで理由が説
明される。すなわち本発明のセラミック製品の製造方法
により脱脂工程の欠陥の発生を防止することができる。
It is clear that the results of the above examples are due to the effect of polyisobutylene, and the reason for this can be explained by the depolymerization and decomposition of polyisobutylene from the thermal decomposition results shown in the figure. That is, the method of manufacturing a ceramic product of the present invention can prevent defects from occurring during the degreasing process.

[発明の効果] 本発明のセラミック製品の製造方法を適用することによ
り、従来は窒素ガス或いは真空中等の非酸化性雰囲気で
脱脂していたものが大気雰囲気中で脱脂することが可能
となる。また昇温速度も従来はど極端に遅くする必要は
無く、比較的低い温度で長時間保つ必要も無く、従来に
比べ短時間で脱脂することができる。従って本発明のセ
ラミック製品の製造方法においては、これらの理由によ
り歩留まり及び品質の面で安定した製品を供給すること
ができ、脱脂工程の低コスト化が可能となる。
[Effects of the Invention] By applying the method for manufacturing ceramic products of the present invention, products that were conventionally degreased in a non-oxidizing atmosphere such as nitrogen gas or vacuum can now be degreased in the air. Furthermore, there is no need to make the temperature increase rate extremely slow, and there is no need to maintain the temperature at a relatively low temperature for a long time, making it possible to degrease in a shorter time than in the past. Therefore, in the method for manufacturing a ceramic product of the present invention, it is possible to supply a product with stable yield and quality for these reasons, and it is possible to reduce the cost of the degreasing process.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例に使用したポリイソブチレンの熱分解時の、
TG凸曲線びDSC曲線を表わす線図である。 1・・・TG凸曲 線・・・DSC曲線 特許出願人   日本電装株式会社 代理人    弁理士 大川 宏 同     弁理士 藤谷 修 同     弁理士 丸山明夫
The figure shows the thermal decomposition of polyisobutylene used in the example.
It is a diagram showing a TG convex curve and a DSC curve. 1...TG convex curve...DSC curve Patent applicant Nippondenso Co., Ltd. Agent Patent attorney Hirodo Okawa Patent attorney Shudo Fujitani Patent attorney Akio Maruyama

Claims (5)

【特許請求の範囲】[Claims] (1)セラミック粉末と有機材料を混合し、混合物を成
形した後脱脂し、その後焼結して製品とするセラミック
製品の製造方法において、 該有機材料には、大気中で熱分解した場合に少なくとも
その10vol%が解重合反応により分解する熱可塑性
樹脂が該有機材料100重量部のうち10〜90重量部
含まれていることを特徴とするセラミック製品の製造方
法。
(1) In a method of manufacturing a ceramic product in which a ceramic powder and an organic material are mixed, the mixture is molded, degreased, and then sintered to produce a product, the organic material has at least 1. A method for producing a ceramic product, characterized in that 10 to 90 parts by weight of a thermoplastic resin, of which 10 vol % decomposes through a depolymerization reaction, is contained in 100 parts by weight of the organic material.
(2)熱可塑性樹脂はポリイソブチレンである特許請求
の範囲第1項記載のセラミック製品の製造方法。
(2) The method for manufacturing a ceramic product according to claim 1, wherein the thermoplastic resin is polyisobutylene.
(3)有機材料にはパラフィン或いはワックスが20〜
80重量%含まれている特許請求の範囲第1項記載のセ
ラミック製品の製造方法。
(3) The organic material contains paraffin or wax from 20 to
A method for producing a ceramic product according to claim 1, wherein the content is 80% by weight.
(4)パラフィン或いはワックスの揮発温度は該熱可塑
性樹脂の分解温度より低い特許請求の範囲第3項記載の
セラミック製品の製造方法。
(4) The method for manufacturing a ceramic product according to claim 3, wherein the volatilization temperature of the paraffin or wax is lower than the decomposition temperature of the thermoplastic resin.
(5)脱脂工程は大気雰囲気下で行なわれる特許請求の
範囲第1項記載のセラミック製品の製造方法。
(5) The method for manufacturing a ceramic product according to claim 1, wherein the degreasing step is performed in an atmospheric atmosphere.
JP59152298A 1984-07-23 1984-07-23 Manufacture of ceramic product Pending JPS6131343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152298A JPS6131343A (en) 1984-07-23 1984-07-23 Manufacture of ceramic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152298A JPS6131343A (en) 1984-07-23 1984-07-23 Manufacture of ceramic product

Publications (1)

Publication Number Publication Date
JPS6131343A true JPS6131343A (en) 1986-02-13

Family

ID=15537464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152298A Pending JPS6131343A (en) 1984-07-23 1984-07-23 Manufacture of ceramic product

Country Status (1)

Country Link
JP (1) JPS6131343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249712A (en) * 1986-04-24 1987-10-30 株式会社日本製鋼所 Manufacture of sintered product through injection molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249712A (en) * 1986-04-24 1987-10-30 株式会社日本製鋼所 Manufacture of sintered product through injection molding
JPH0317643B2 (en) * 1986-04-24 1991-03-08 Japan Steel Works Ltd

Similar Documents

Publication Publication Date Title
US4624812A (en) Injection moldable ceramic composition containing a polyacetal binder and process of molding
US5019537A (en) Forming aids for ceramic materials, ceramic bodies formed by using the aids, and process of producing ceramic products
US5155158A (en) Moldable ceramic compositions
EP0114746B1 (en) Polyacetal binders for injection moulding of ceramics
EP0500682A1 (en) Process for removing polyacetal binder from molded ceramic green bodies.
US6986810B1 (en) Aqueous binder formulation for metal and ceramic feedstock for injection molding and aqueous coating composition
US5043118A (en) Whisker-reinforced ceramic matrix composite by injection molding
EP0189181A2 (en) Method of producing silicon carbide base sintered material containing boron as sintering assistant
JPS6131343A (en) Manufacture of ceramic product
JP2677675B2 (en) Method for producing sintered product consisting of powder molding binder and metal powder or ceramic powder
JPS6129907B2 (en)
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS59121150A (en) Injection molding material
JP3959555B2 (en) Aluminum nitride powder and method for producing degreased body thereof
JPS6311562A (en) Material for injection forming
JPH0647682B2 (en) Manufacturing method of sintered metal
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JPH0421626B2 (en)
JPS61201662A (en) Manufacture of composite ceramics
JP3804108B2 (en) Manufacturing method of ceramic sintered body
JPS5899171A (en) Non-oxide ceramic composition and manufacture of non-oxide ceramic sintered body therefrom
JPS61122152A (en) Ceramic composition for injection molding
JPS6345166A (en) Composition for ceramic injection forming
JPS59174569A (en) Manufacture of ceramic products
JPS62260761A (en) Composition for ceramic injection forming