JPS6129907B2 - - Google Patents

Info

Publication number
JPS6129907B2
JPS6129907B2 JP55088892A JP8889280A JPS6129907B2 JP S6129907 B2 JPS6129907 B2 JP S6129907B2 JP 55088892 A JP55088892 A JP 55088892A JP 8889280 A JP8889280 A JP 8889280A JP S6129907 B2 JPS6129907 B2 JP S6129907B2
Authority
JP
Japan
Prior art keywords
degreasing
resin
ceramic
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55088892A
Other languages
Japanese (ja)
Other versions
JPS5717468A (en
Inventor
Fumyoshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8889280A priority Critical patent/JPS5717468A/en
Publication of JPS5717468A publication Critical patent/JPS5717468A/en
Publication of JPS6129907B2 publication Critical patent/JPS6129907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、発泡(フクレ)、割れ、変形等を生
じることなく短時間で脱脂することができるセラ
ミツク焼結体の製造方法に関するものである。 従来セラミツク焼結体の製造方法は、以下の工
程で実施されている。 原 料:セラミツク粉末、樹脂 ↓ 混 練:樹脂を高温で溶解し、セラミツク粉
末と一緒に混練 ↓ ペレツト化:樹脂とセラミツク粉末との混練物
をペレツト化 ↓ 射出成形:樹脂の射出成形と同様に射出成形 ↓ 脱 脂:大気中ゆつくり昇温し樹脂を分解除
去 ↓ 焼 成:セラミツクの焼結温度で焼成 近年、セラミツク部品は、その耐熱性、耐摩耗
性、耐蝕性が金属等に比べて極めて優れているこ
とから、各種産業分野において広く使用され始め
ている。これらの利点を有するセラミツクを自動
車部品のような複雑な形状で大量に生産される部
品に応用しようとする時、その大量生産技術が問
題となる。そのような用途に対する製造法とし
て、射出成形法やトランスフアー成形法は有望で
あるが、この場合問題となるのが上記工程におけ
る脱脂方法で、この脱脂工程をいかに安定化させ
るかが、これら製造法の採否に大きな影響を及ぼ
す。 脱脂工程は、射出成形により得られる成形体中
に含まれる樹脂を加熱により完全に分解除去する
ことが目的であり、そのための種々の条件が考え
られている。あまり急激に短時間で加熱すると、
成形体が変形したり発泡したりする場合があるの
で、一般には成形体を例えば1〜5℃/hrのよう
なゆつくりした上昇温度で加熱するかまたは適当
な温度で5〜20時間成形体を保持する等により行
つていた。しかし、この方法でも変形や発泡を完
全に防止することは難しく、また成形体の厚さが
10mm以上になると上記のように長い時間かけて脱
脂しても、発泡(フクレ)や割れ、変形が生じ、
良品ができないという欠点があつた。このよう
に、脱脂工程はセラミツク焼結体製造工程中でも
最も難しい工程で、その改良はセラミツク部品の
大量生産にとつて不可欠のものである。 本発明の目的は、脱脂工程において従来のよう
に大気圧中でゆつくり加熱する方法とは異なり、
成形体に割れ、変形や発泡(フクレ)が生じるこ
となく、短時間で脱脂することのできるセラミツ
クの焼結方法を提供するものである。 即ち、本発明方法は、セラミツク粉末と樹脂を
混練後、成形・脱脂・焼成によりセラミツク焼結
体を製造する工程において、脱脂工程を、少なく
とも2気圧以上の高圧の酸素又は酸素を含むガス
の下でセラミツク粉末と樹脂の混練物の成形体を
加熱することにより行うことを特徴とする。 本発明方法が適用可能なセラミツク材料として
は、例えばアルミナ、炭化ケイ素、窒化ケイ素等
であり、樹脂としては、通常この種の成形に結合
材とした使用されるものがそのまま使用でき、例
えばポリスチレン、ポリエチレン、尿素樹脂、等
が挙げられ、場合によりこれらの合成樹脂はフタ
ル酸エステルのような可塑剤やステアリン酸のよ
うな安定剤等の添加剤を含有していてもよい。 一方、脱脂に用いるガスとしては、酸素又は酸
素を含むガスが好ましく、例えば窒素、アルゴ
ン、ヘリウム等の不活性ガスに若干の酸素を添加
したガス空気等が挙げられる。これらのガスは使
用する樹脂によつて選択される。圧力は、少なく
とも2気圧以上の高圧であれば良いが、装置的に
は2〜10気圧が好ましく、ガスを流しながら脱脂
すると効果が大きい。しかしながら、静止ガス中
でも十分効果はある。 脱脂中のセラミツクは、通常1〜4℃/hrのゆ
つくりした昇温速度で樹脂の分解温度まで加熱さ
れるが、本発明方法では、例えばアルミナ粉末と
ポリスチレンの混練物の場合、常温から50℃まで
1時間、50℃から350℃までを4〜10℃/hrの昇
温速度で約30〜70時間かけて加熱する。また、窒
化ケイ素質セラミツク粉末とポリプロピレンの場
合には、常温から60℃まで1時間、60℃〜350℃
までを4〜10℃/hrの昇温速度で30〜70時間加熱
する。従つて、本発明方法によれば、従来方法よ
りはるかに短時間で脱脂を行うことができ、また
脱脂時にワレやフクレが生じない。 以下、実施例により本発明をさらに詳しく説明
する。 実施例 1 セラミツク粉末として粒径44μ以下のアルミナ
粉末、樹脂としてポリスチレン:ジエチルフタレ
ート:ステアリン酸=65:10:25の割合で配合し
たものを、セラミツク粉末80に対して20の割合で
調合混練した。混練は、高温ニーダーで樹脂の溶
解温度180℃で実施し、その後高温ロールでシー
トを作り、これをペレタイザーで2.4mm以下のペ
レツトにした。 射出成形は、横型射出成形機を用いて、以下の
条件で各々巾10mm、厚さ5mm、長さ50mmの板状試
験片を成形した。 射出圧力:800Kg/cm2 射出温度:180℃ 金型温度:35℃ 成形品はバリ取りした後で脱脂した。 上記で得られた各試験片について、第1表に示
す脱脂雰囲気、圧力条件で脱脂を行つた。試験片
を例えば1時間かけて常温から50℃まで加熱し、
次に50℃から350℃まで昇温速度60℃/hrでゆつ
くり加熱して50時間で樹脂を分解した。各試験片
についての評価を第1表に示す。
The present invention relates to a method for producing a ceramic sintered body that can be degreased in a short time without causing blistering, cracking, deformation, etc. A conventional method for manufacturing a ceramic sintered body is carried out through the following steps. Raw materials: Ceramic powder, resin ↓ Kneading: Melt the resin at high temperature and knead it with ceramic powder ↓ Pelletization: Turn the kneaded product of resin and ceramic powder into pellets ↓ Injection molding: Same as injection molding of resin Injection molding ↓ Degreasing: The resin is decomposed and removed by slowly raising the temperature in the atmosphere ↓ Firing: Firing at the sintering temperature of ceramics In recent years, ceramic parts have improved in terms of heat resistance, wear resistance, and corrosion resistance compared to metals. Due to its excellent properties, it has begun to be widely used in various industrial fields. When trying to apply ceramics, which have these advantages, to parts that have complex shapes and are mass produced, such as automobile parts, the mass production technology becomes a problem. Injection molding and transfer molding are promising manufacturing methods for such applications, but the problem in this case is the degreasing method in the above process, and how to stabilize this degreasing process is the key to these manufacturing methods. It has a major influence on whether the law is adopted or rejected. The purpose of the degreasing process is to completely decompose and remove the resin contained in the molded body obtained by injection molding by heating, and various conditions for this purpose have been considered. If it is heated too rapidly in a short period of time,
Since the molded product may be deformed or foamed, generally the molded product is heated at a slowly increasing temperature, such as 1 to 5°C/hr, or the molded product is heated at an appropriate temperature for 5 to 20 hours. This was done by holding the However, even with this method, it is difficult to completely prevent deformation and foaming, and the thickness of the molded product
If it exceeds 10mm, foaming (blister), cracking, and deformation will occur even if you degrease it for a long time as described above.
The drawback was that they could not produce quality products. As described above, the degreasing process is the most difficult process in the manufacturing process of ceramic sintered bodies, and its improvement is essential for the mass production of ceramic parts. The purpose of the present invention is to differ from the conventional method of slowly heating under atmospheric pressure in the degreasing process.
To provide a method for sintering ceramic that can be degreased in a short time without causing cracking, deformation, or blistering in a molded body. That is, in the method of the present invention, in the step of manufacturing a ceramic sintered body by kneading ceramic powder and resin, molding, degreasing, and firing, the degreasing step is carried out under a high pressure of at least 2 atmospheres of oxygen or oxygen-containing gas. It is characterized in that it is carried out by heating a molded product of a kneaded product of ceramic powder and resin. Ceramic materials to which the method of the present invention can be applied include, for example, alumina, silicon carbide, silicon nitride, etc., and resins that are normally used as binders in this type of molding can be used as they are, such as polystyrene, Examples include polyethylene, urea resins, and the like, and these synthetic resins may optionally contain additives such as plasticizers such as phthalate esters and stabilizers such as stearic acid. On the other hand, the gas used for degreasing is preferably oxygen or a gas containing oxygen, such as air, a gas prepared by adding some oxygen to an inert gas such as nitrogen, argon, or helium. These gases are selected depending on the resin used. The pressure may be as high as at least 2 atm or higher, but 2 to 10 atm is preferable in terms of equipment, and degreasing while gas is flowing is most effective. However, it is sufficiently effective even in static gas. Ceramic during degreasing is normally heated to the decomposition temperature of the resin at a slow heating rate of 1 to 4°C/hr. ℃ for 1 hour, and from 50℃ to 350℃ at a temperature increase rate of 4 to 10℃/hr for about 30 to 70 hours. In addition, in the case of silicon nitride ceramic powder and polypropylene, it can be heated from room temperature to 60℃ for 1 hour, and from 60℃ to 350℃.
Heat for 30 to 70 hours at a temperature increase rate of 4 to 10°C/hr. Therefore, according to the method of the present invention, degreasing can be carried out in a much shorter time than conventional methods, and cracks and blisters do not occur during degreasing. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Alumina powder with a particle size of 44μ or less was mixed as a ceramic powder, and polystyrene:diethyl phthalate:stearic acid was blended as a resin in a ratio of 65:10:25, and the mixture was mixed and kneaded at a ratio of 20 to 80 of the ceramic powder. . Kneading was carried out using a high-temperature kneader at a resin melting temperature of 180°C, then a sheet was formed using a high-temperature roll, and this was made into pellets of 2.4 mm or less using a pelletizer. In the injection molding, plate-shaped test pieces each having a width of 10 mm, a thickness of 5 mm, and a length of 50 mm were molded using a horizontal injection molding machine under the following conditions. Injection pressure: 800Kg/cm 2 Injection temperature: 180℃ Mold temperature: 35℃ The molded product was deburred and degreased. Each test piece obtained above was degreased under the degreasing atmosphere and pressure conditions shown in Table 1. Heat the test piece from room temperature to 50°C over a period of 1 hour, for example,
Next, the resin was slowly heated from 50°C to 350°C at a heating rate of 60°C/hr to decompose the resin in 50 hours. Table 1 shows the evaluation for each test piece.

【表】【table】

【表】 ○…亀裂なし、フクレ無し
第1表より、高圧ガス中で脱脂することによ
り、亀裂やフクレを生じずに脱脂が行われること
がわかる。 しかし、酸素を含むガスではない水蒸気中でで
脱脂したものは、樹脂が炭化してカーボンが残存
していたため、脱脂後空気中、500℃で焼成して
カーボンを除去した。 酸素並びに酸素を含むガスであるN2+1%
O2、N2+2%O2及び空気中で脱脂したものは、
脱脂の際、酸素が樹脂を酸化分解するため、樹脂
が炭化してカーボンが残るということがなく、良
好に脱脂された。 次に、上記のように脱脂した各試験片を、1700
℃で1時間焼成して、アルミナ焼結体を得た。こ
れらの焼結体中、No.1〜3、No.8、No.14のものは
脱脂時に生じた亀裂がフクレがそのまま残つてい
たが、高圧ガス中で脱脂したもの(No.4〜7、No.
9〜13、No.15〜19)には亀裂等の欠陥は全く生じ
なかつた。 以上のように、本実施例により酸素及び酸素を
含むガス雰囲気は脱脂性を向上させることがわか
る。 上記脱脂工程は、所定の圧力以上に圧力が上昇
しないように、レギユレーターを付けたオートク
レープ中で実施した。 実施例 2 窒化ケイ素(Si3N4)質セラミツク、炭化ケイ素
(SiC)質セラミツクについてそれぞれ実施例
1、第1表中の試験片No.1〜7に示したと同じ条
件下で脱脂を行つたが、その結果も同様であつ
た。この際、焼結雰囲気は、窒化ケイ素について
は窒素、炭化ケイ素については真空を用いた。 上記記載からも明らかなように、本発明方法で
は高圧ガス中で加熱することにより脱脂を行うた
め、成形体に含まれる樹脂が加熱分解する際にガ
ス圧により亀裂の発生やフクレが抑制され、脱脂
が良好に行われる。従つて、最終的に得られる焼
成品にもほとんど不良品がみられない等、本発明
は工業的に非常に利用価値の高いものである。
[Table] ○...No cracks, no blisters From Table 1, it can be seen that by degreasing in high-pressure gas, degreasing is carried out without causing cracks or blisters. However, when the resin was degreased in water vapor (not a gas containing oxygen), the resin was carbonized and carbon remained, so after degreasing, it was fired in air at 500°C to remove the carbon. Oxygen and oxygen-containing gas N 2 +1%
Those degreased in O 2 , N 2 + 2% O 2 and air are:
During degreasing, oxygen oxidized and decomposed the resin, so the resin was not carbonized and no carbon remained, and the degreasing was successful. Next, each specimen degreased as described above was
C. for 1 hour to obtain an alumina sintered body. Among these sintered bodies, those of No. 1 to 3, No. 8, and No. 14 still had cracks and blisters that occurred during degreasing, but those that were degreased in high-pressure gas (No. 4 to 7.No.
No. 9-13, No. 15-19) had no defects such as cracks at all. As described above, this example shows that oxygen and a gas atmosphere containing oxygen improve degreasing performance. The above degreasing step was carried out in an autoclave equipped with a regulator to prevent the pressure from rising above a predetermined pressure. Example 2 Silicon nitride (Si 3 N 4 ) ceramic and silicon carbide (SiC) ceramic were degreased under the same conditions as shown in Example 1 and test pieces No. 1 to 7 in Table 1, respectively. However, the results were similar. At this time, the sintering atmosphere used was nitrogen for silicon nitride and vacuum for silicon carbide. As is clear from the above description, in the method of the present invention, degreasing is performed by heating in a high-pressure gas, so when the resin contained in the molded article is thermally decomposed, the gas pressure suppresses the occurrence of cracks and blisters. Good degreasing is achieved. Therefore, the present invention has very high utility value industrially, with almost no defective products being found in the finally obtained fired products.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク粉末と樹脂を混練後、成形・脱
脂・焼成工程によりセラミツク焼結体を製造する
方法において、前記脱脂工程を、少なくとも2気
圧以上の高圧の酸素又は酸素を含むガスの下でセ
ラミツク粉末と樹脂の混練物の成形体を加熱する
ことにより行うことを特徴とするセラミツク焼結
体の製造方法。
1. In a method for producing a ceramic sintered body by kneading ceramic powder and resin, and then molding, degreasing, and firing, the degreasing step is performed by kneading ceramic powder and resin under high pressure oxygen or oxygen-containing gas of at least 2 atmospheres. 1. A method for producing a ceramic sintered body, which is carried out by heating a molded body of a resin kneaded product.
JP8889280A 1980-06-30 1980-06-30 Manufacture of ceramic sintered body Granted JPS5717468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8889280A JPS5717468A (en) 1980-06-30 1980-06-30 Manufacture of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8889280A JPS5717468A (en) 1980-06-30 1980-06-30 Manufacture of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS5717468A JPS5717468A (en) 1982-01-29
JPS6129907B2 true JPS6129907B2 (en) 1986-07-10

Family

ID=13955618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8889280A Granted JPS5717468A (en) 1980-06-30 1980-06-30 Manufacture of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS5717468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374306U (en) * 1986-10-31 1988-05-18
JPH0464884B2 (en) * 1986-10-30 1992-10-16 Hayakawa Rubber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205672A (en) * 1985-03-06 1986-09-11 株式会社日本製鋼所 Manufacture of nonoxide base ceramic sintered body
US4661315A (en) * 1986-02-14 1987-04-28 Fine Particle Technology Corp. Method for rapidly removing binder from a green body
JPH0782963B2 (en) * 1986-05-30 1995-09-06 松下電器産業株式会社 Manufacturing method of laminated ceramics
JP2554491B2 (en) * 1987-05-13 1996-11-13 日本特殊陶業株式会社 Method of manufacturing ceramic rotating body
JPH0735294B2 (en) * 1991-03-15 1995-04-19 日本碍子株式会社 Beta-alumina tube manufacturing method
JP2021187724A (en) * 2020-06-04 2021-12-13 三菱重工業株式会社 Method for degreasing molded body and method for manufacturing fired body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114523A (en) * 1979-02-28 1980-09-03 Asahi Glass Co Ltd Method of removing resin from molding
JPS5716104A (en) * 1980-01-14 1982-01-27 Uitetsuku Keiman Patentsu Ltd Method and apparatus for removing binder from green body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114523A (en) * 1979-02-28 1980-09-03 Asahi Glass Co Ltd Method of removing resin from molding
JPS5716104A (en) * 1980-01-14 1982-01-27 Uitetsuku Keiman Patentsu Ltd Method and apparatus for removing binder from green body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464884B2 (en) * 1986-10-30 1992-10-16 Hayakawa Rubber
JPS6374306U (en) * 1986-10-31 1988-05-18

Also Published As

Publication number Publication date
JPS5717468A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
JPS6129907B2 (en)
JPH0578177A (en) Process for removing polyacetal binder from untreated molded ceramic product by using acid gas
JPS6135150B2 (en)
US3085886A (en) Method of preparing silicon nitride foam material
JPS591743B2 (en) Composition for injection molding or extrusion molding
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPS60145966A (en) Method of dewaxing ceramic injection formed body
JP3547464B2 (en) Manufacturing method of sintered molded products
JPS61201673A (en) Method of dewaxing injection formed body of ceramic powder or metal powder
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPH08183661A (en) Production of silicon carbide sintered compact
JPH04124203A (en) Binder for powder metallurgy and method for degreasing green compact
JPS61201662A (en) Manufacture of composite ceramics
JPH0641601B2 (en) Molding composition
JPH0823042B2 (en) Metal injection molding method
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JPS62265180A (en) Method of dewaxing ceramic injection formed body
JPS62260761A (en) Composition for ceramic injection forming
JPH06263547A (en) Method for degreasing ceramic injection molded body
JPS605065A (en) Powder formed body dewaxing process
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPS6345166A (en) Composition for ceramic injection forming