JPS61201662A - Manufacture of composite ceramics - Google Patents

Manufacture of composite ceramics

Info

Publication number
JPS61201662A
JPS61201662A JP60041152A JP4115285A JPS61201662A JP S61201662 A JPS61201662 A JP S61201662A JP 60041152 A JP60041152 A JP 60041152A JP 4115285 A JP4115285 A JP 4115285A JP S61201662 A JPS61201662 A JP S61201662A
Authority
JP
Japan
Prior art keywords
particle size
average particle
silicon carbide
silicon
composite ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60041152A
Other languages
Japanese (ja)
Inventor
安富 義幸
浩介 中村
中川 師夫
綿引 誠次
田口 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60041152A priority Critical patent/JPS61201662A/en
Publication of JPS61201662A publication Critical patent/JPS61201662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複合セラミックスの製造法に係り。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing composite ceramics.

特に従来の反応焼結法より高寸法精度、高強度、耐熱衝
撃性、耐蝕性を必要とする構造用材料の製造に好適な複
合セラミックスの製造方法に関する。
In particular, the present invention relates to a method for manufacturing composite ceramics suitable for manufacturing structural materials that require higher dimensional accuracy, higher strength, thermal shock resistance, and corrosion resistance than conventional reaction sintering methods.

〔発明の背景〕[Background of the invention]

一般に、エンジンやタービンなどの構造材料に適するエ
ンジニアリングセラミツとして窒化ケイ素又は炭化ケイ
素が考えられている。その焼結技術として常圧焼結法、
加圧焼結法9反応焼結法がある。この中で常圧焼結法、
加圧焼結法は焼成収縮率が20%近くもあり、寸法精度
が悪く高度な技術が必要である。
Generally, silicon nitride or silicon carbide is considered as an engineering ceramic suitable for structural materials such as engines and turbines. The sintering technology is the pressureless sintering method.
There are 9 pressure sintering methods and 9 reaction sintering methods. Among these, pressureless sintering method,
Pressure sintering has a firing shrinkage rate of nearly 20%, poor dimensional accuracy, and requires advanced technology.

他方1反応焼結法は他の方法に比べて焼成収縮率が小さ
いが強度や耐熱衝撃性などを高めるのは難しい、また、
焼成収縮率が小さいといっても特開昭58−14037
5号公報で示すように1〜1.5%あり、加工コストを
下げるには、更に焼成収縮率を小さくして高寸法精度に
する必要がある。
On the other hand, the one-reaction sintering method has a smaller firing shrinkage rate than other methods, but it is difficult to increase strength and thermal shock resistance.
Although the firing shrinkage rate is small, JP-A-58-14037
As shown in Publication No. 5, it is 1 to 1.5%, and in order to reduce processing costs, it is necessary to further reduce the firing shrinkage rate and achieve high dimensional accuracy.

そこで、現在耐火物として使用されている窒化ケイ素結
合炭化ケイ素組成物を耐熱構造用材料に適用することが
想到される。窒化ケイ素結合炭化ケイ素組成物の製造例
は、特開昭58−88169号公報に開示されているが
、機械的強度が不十分で機械構造用材料として使用する
には不適当であり、寸法変化も1〜1.5%程度ある。
Therefore, it has been conceived to apply silicon nitride-bonded silicon carbide compositions, which are currently used as refractories, to materials for heat-resistant structures. An example of manufacturing a silicon nitride-bonded silicon carbide composition is disclosed in JP-A-58-88169, but it has insufficient mechanical strength and is unsuitable for use as a material for mechanical structures, and dimensional changes occur. It is also about 1 to 1.5%.

したがって、構造 □用材料に適合するには高強度にす
ることが重要で、更に高寸法精度にすることが重要であ
る。これまでこれに対処できる技術がなく、実用的なも
のがない。
Therefore, it is important to have high strength in order to be compatible with the material for the structure, and it is also important to have high dimensional accuracy. Until now, there is no technology that can deal with this, and there is nothing practical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高寸法精度で強度を高め構造用材料と
して適用できるようにした複合セラミックスの製造法を
提供することにある。
An object of the present invention is to provide a method for manufacturing composite ceramics that has high dimensional accuracy and increased strength so that it can be used as a structural material.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明は複合セラミックスの製造
法に関する発明であって、平均粒径5〜100μmと0
.3〜1μmの大小2種類の炭化ケイ素粉末、平均粒径
0.25〜2μmの金属ケイ素粉末、及び成形助剤を混
合し成形する工程、及び成形体を窒化性ガス雰囲気中で
金属ケイ素の溶融温度未満の温度で焼成する工程の各工
程を包含することを特徴とする。
To summarize the present invention, the present invention relates to a method for producing composite ceramics, which has an average particle size of 5 to 100 μm and 0.
.. A process of mixing and molding two types of silicon carbide powders of large and small sizes of 3 to 1 μm, metallic silicon powder with an average particle size of 0.25 to 2 μm, and a molding aid, and melting of the metallic silicon in a nitriding gas atmosphere. It is characterized by including each step of firing at a temperature lower than the above temperature.

本発明は、平均粒径5〜100μmと0.3〜1μmの
大小2種類の炭化ケイ素粉末と平均粒径0.25〜2μ
mの金属ケイ素粉末を配合したことに特徴を有するもの
であって、従来のような単に耐熱衝撃性に優れているだ
けでなく、構造用材料に適用できるように高強度、高寸
法精度にしたことに効果の特徴を有する。
The present invention uses silicon carbide powders of two types, large and small, with an average particle size of 5 to 100 μm and 0.3 to 1 μm, and a silicon carbide powder with an average particle size of 0.25 to 2 μm.
This material is characterized by the fact that it is formulated with metallic silicon powder, and it not only has excellent thermal shock resistance like conventional products, but also has high strength and high dimensional accuracy so that it can be applied to structural materials. It has particularly effective characteristics.

以下、本発明方法の一般的条件を説明する。The general conditions of the method of the present invention will be explained below.

まず原料として、平均粒径5〜100μmの炭化ケイ素
を好ましくは25〜250重量部、平均粒径0.3〜1
μmの炭化ケイ素を好ましくは5〜40重量部そして平
均粒径0.25〜2μmの金属ケイ素100重量部との
混合物を用い、これに例えばポリビニルブチラールやポ
リエチレンなどの有機高分子化合物、熱可塑性樹脂及び
可盟剤、安定剤、潤滑剤などの補助剤を好ましくは2〜
15重量部混置部、これをメカニカルプレスや射出成形
機などにより成形体とする。成形体の大きさは特に制限
はない、ここで、炭化ケイ素、金属ケイ素は市販のもの
をそのまま使用できる。また、ミルなどにより粉砕した
丸みを帯びた粒子を使用してもよい、この成形体は、成
形助剤として用いた有機高分子化合物、熱可塑性樹脂、
補助剤などが分解揮散する温度まで加熱する。また、成
形体の相対密度を60%以上とするのが好ましい。
First, as a raw material, preferably 25 to 250 parts by weight of silicon carbide with an average particle size of 5 to 100 μm, and an average particle size of 0.3 to 1
A mixture of preferably 5 to 40 parts by weight of silicon carbide with a diameter of 0.25 to 2 μm and 100 parts by weight of metal silicon with an average particle size of 0.25 to 2 μm is used, and an organic polymer compound such as polyvinyl butyral or polyethylene, or a thermoplastic resin is used. and auxiliary agents such as binders, stabilizers, and lubricants, preferably from 2 to
A mixed portion of 15 parts by weight is formed into a molded product using a mechanical press, an injection molding machine, or the like. There is no particular restriction on the size of the molded body, and commercially available silicon carbide and metal silicon can be used as they are. Alternatively, rounded particles pulverized by a mill or the like may be used.
Heat to a temperature at which the auxiliary agent decomposes and evaporates. Further, it is preferable that the relative density of the molded body is 60% or more.

成形体は、窒素及び/又はアンモニアに、必要に応じて
水素を加えた窒化性ガス雰囲気下で金属ケイ素の融点未
満の温度車で加熱し、焼結体とする。金属ケイ素の融点
以上の温度まで加熱すると。
The molded body is heated in a nitriding gas atmosphere containing nitrogen and/or ammonia and hydrogen, if necessary, at a temperature lower than the melting point of metal silicon to form a sintered body. When heated to a temperature above the melting point of metallic silicon.

金属ケイ素が溶融し1表面にしみ出てくるからである。This is because metal silicon melts and seeps out onto one surface.

本発明において炭化ケイ素粉末の平均粒径を5〜100
μmと0.3〜1μmとした理由は、この粒径の範囲で
あると炭化ケイ素粉末の分散が良好なので成形体の相対
密度が向上するからである。
In the present invention, the average particle size of silicon carbide powder is 5 to 100.
The reason why the particle size is set to 0.3 to 1 μm is that within this particle size range, the silicon carbide powder is well dispersed and the relative density of the molded body is improved.

また、100μmより大きい粗粒粉であると強度が改良
されないからである。また5μmより小さい微粒粉だけ
であると耐熱衝撃性が改良されないからである。更にま
た、100μmより大きい粗粒粉が存在すると成形助剤
との混合が難しく、射出成形時に成形助剤と粗粒粉が分
離し成形困難であるからである。
Further, if the particle size is larger than 100 μm, the strength will not be improved. Further, if only fine particles smaller than 5 μm are used, the thermal shock resistance will not be improved. Furthermore, if coarse particles larger than 100 μm are present, it is difficult to mix with the molding aid, and the molding aid and the coarse powder will separate during injection molding, making molding difficult.

本発明において、平均粒径が大きい方の炭化ケイ素と金
属ケイ素の粒径比を炭化ケイ素:金属ケイ素=5〜20
:1とするのが好ましく、その理由は、この粒径比の範
囲であると炭化ケイ素粉末と金属ケイ素粉末の分散が良
好なので成形体の相対密度が向上し、焼結による寸法変
化を±0.3%以内という従来の反応焼結法より高寸法
精度にできるからである。
In the present invention, the particle size ratio of silicon carbide and metal silicon, which has a larger average particle size, is silicon carbide: metal silicon = 5 to 20.
:1 is preferable, because within this particle size ratio, silicon carbide powder and metal silicon powder are well dispersed, so the relative density of the compact is improved, and the dimensional change due to sintering is reduced to ±0. This is because higher dimensional accuracy than the conventional reaction sintering method, which is within .3%, can be achieved.

本発明において、前記のように、平均粒径5〜100μ
mの炭化ケイ素25〜50重量部、平均粒径0.3〜1
μmの炭化ケイ素5〜40重量部、平均粒径0.25〜
2μmの金属ケイ素100重量部の混合物が好適である
理由は、成形体の相対密度が向上するため、及び焼結に
よる寸法変化を±0.3%以内という従来の反応焼結法
より高寸法精度で高強度にできるからである。
In the present invention, as mentioned above, the average particle size is 5 to 100 μm.
m silicon carbide 25-50 parts by weight, average particle size 0.3-1
μm silicon carbide 5-40 parts by weight, average particle size 0.25-
The reason why a mixture of 100 parts by weight of 2 μm metal silicon is preferable is that it improves the relative density of the compact, and it also provides higher dimensional accuracy than the conventional reaction sintering method, which keeps the dimensional change due to sintering within ±0.3%. This is because high strength can be obtained.

本発明によれば、この組成物の焼結体は、耐熱衝撃性、
耐熱性、耐蝕性を加え、焼結により寸法変化することな
く高強度を有するので複雑形状の構造用材料などへの利
用範囲を拡大するものである。
According to the present invention, the sintered body of this composition has thermal shock resistance,
It has heat resistance, corrosion resistance, and high strength without dimensional changes due to sintering, so it can be used in structural materials with complex shapes, etc.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained more specifically using examples,
The invention is not limited to these examples.

なお、第1図及び第2図は、本発明品で試験に供した4
枚羽根型成形体の1例の正面図(第1図)及び平面図(
第2図)である、各数値の単位は1111である。
Note that Figures 1 and 2 show the four samples tested using the product of the present invention.
A front view (Fig. 1) and a plan view (Fig.
(Fig. 2), the unit of each numerical value is 1111.

実施例1 平均粒径2μmの金属ケイ素粉末60gと平均粒径16
μmの炭化ケイ素30g、平均粒径0.7μmの炭化ケ
イ素Logの混合粉末に成形助剤としてポリビニルブチ
ラール15%溶液を100cc添加し、ポットミルで1
2時間混合し、次に室温で乾燥させ供試原料とした。こ
の原料をメカニカルプレスを用いて成形圧力250 k
g−f/Cm”で直径100mm、厚さ30Il111
のものを成形した。これを5 kg/am”の窒素ガス
雰囲気中1100℃で10時間。
Example 1 60 g of metallic silicon powder with an average particle size of 2 μm and an average particle size of 16
100 cc of a 15% solution of polyvinyl butyral as a molding aid was added to a mixed powder of 30 g of silicon carbide of μm and silicon carbide Log of an average particle size of 0.7 μm, and
The mixture was mixed for 2 hours and then dried at room temperature to provide a test material. This raw material is molded using a mechanical press at a pressure of 250 k.
g-f/Cm” diameter 100mm, thickness 30Il111
I molded it. This was heated at 1100°C for 10 hours in a nitrogen gas atmosphere of 5 kg/am''.

1200℃で20時間、 1300℃で15時間、 1
350℃で5時間保持後炉冷した。ここで各昇温速度は
10℃/分である。焼成後の焼結体の相対密度は85%
、寸法変化率は0.3%であった。この焼結体の試験結
果を第1表に示す、ここで、熱衝撃抵抗性は、焼結体を
窒素ガス中1200℃で30分間保持し、水中に急冷し
た。そして亀裂を見出すまで反復した回数で示した。
20 hours at 1200℃, 15 hours at 1300℃, 1
After being held at 350°C for 5 hours, it was cooled in a furnace. Here, each temperature increase rate is 10° C./min. The relative density of the sintered body after firing is 85%
, the dimensional change rate was 0.3%. The test results of this sintered body are shown in Table 1. Here, the thermal shock resistance was determined by holding the sintered body at 1200° C. for 30 minutes in nitrogen gas and quenching it in water. The number of repetitions until a crack is found is shown.

実施例2 実施例1と同様にして金属ケイ素粉末、炭化ケイ素粉末
の粒径1組成を変えて焼結した結果を第2表に示す。
Example 2 Table 2 shows the results of sintering in the same manner as in Example 1 by changing the particle size and composition of metallic silicon powder and silicon carbide powder.

これから明らかなように、本発明品は、耐熱衝撃性、耐
熱性、耐蝕性に優れ、更に高寸法精度。
As is clear from this, the product of the present invention has excellent thermal shock resistance, heat resistance, and corrosion resistance, as well as high dimensional accuracy.

高強度であることが分る。It can be seen that it has high strength.

実施例3 平均粒径0.9μmの金属ケイ素粉末80.1 gと平
均粒径16μmの炭化ケイ素39.15 gと平均粒径
0.5μmの炭化ケイ素13.05 gの混合粉末に成
形助剤としてポリエチレン3.5g  、ポリエチレン
ワックス7.1g、天然ワックス3.5g、ステアリン
酸2.4gを混合し原料とした。この原料を射出成形機
を用いて第1図及び第2図に示すような4枚羽根の成形
体を試作した。これを窒素ガス中410℃まで加熱し成
形助剤を分解揮散させた後、5kg/cI112の窒素
ガス雰囲気中1100℃で10時間。
Example 3 A molding aid was added to a mixed powder of 80.1 g of silicon metal powder with an average particle size of 0.9 μm, 39.15 g of silicon carbide with an average particle size of 16 μm, and 13.05 g of silicon carbide with an average particle size of 0.5 μm. A raw material was prepared by mixing 3.5 g of polyethylene, 7.1 g of polyethylene wax, 3.5 g of natural wax, and 2.4 g of stearic acid. Using this raw material, an injection molding machine was used to fabricate a four-blade molded article as shown in FIGS. 1 and 2. This was heated to 410°C in nitrogen gas to decompose and volatilize the forming aid, and then heated at 1100°C in a nitrogen gas atmosphere of 5 kg/cI112 for 10 hours.

1200℃で20時間、 1300℃で20時間、 1
350℃で5時間保持後炉冷した。ここで各昇温速度は
10℃/分である。焼成後の焼結体の相対密度は86%
1寸法変化率は0.27%であった。また、変形や割れ
もなく寸法精度と良好であった。
20 hours at 1200℃, 20 hours at 1300℃, 1
After being held at 350°C for 5 hours, it was cooled in a furnace. Here, each temperature increase rate is 10° C./min. The relative density of the sintered body after firing is 86%
The rate of change in one dimension was 0.27%. In addition, there was no deformation or cracking, and the dimensional accuracy was good.

これから明らかなように1本発明品は複雑形状の構造用
材料を変形や割れもなく寸法精度よく容易に得ることが
でき、高強度、耐熱衝撃性、耐熱性、耐蝕性に優れたい
ることが分る。
As is clear from this, the product of the present invention can easily obtain structural materials with complex shapes with good dimensional accuracy without deformation or cracking, and has excellent strength, thermal shock resistance, heat resistance, and corrosion resistance. I understand.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐熱衝撃性、耐熱性、耐蝕性。 According to the present invention, thermal shock resistance, heat resistance, and corrosion resistance.

高強度に加え、焼結による寸法変化が±0.3%と従来
の反応焼結法のものより高寸法精度を有する窒素ケイ素
結合炭化ケイ素焼結体が容易に得ることができるので、
加工コストが大幅に下がり、耐火物部品のみならず、エ
ンジンやタービンなどの複雑形状の構造用材料などへの
利用範囲を拡大することができるという顕著な効果が奏
せられる。
In addition to high strength, it is possible to easily obtain a nitrogen-silicon bonded silicon carbide sintered body that has a dimensional change of ±0.3% due to sintering, which is higher dimensional accuracy than that of the conventional reaction sintering method.
This has the remarkable effect of significantly reducing processing costs and expanding the range of applications not only for refractory parts but also for structural materials with complex shapes such as engines and turbines.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、平均粒径5〜100μmと0.3〜1μmの大小2
種類の炭化ケイ素粉末、平均粒径0.25〜2μmの金
属ケイ素粉末、及び成形助剤を混合し成形する工程、及
び成形体を窒化性ガス雰囲気中で金属ケイ素の溶融温度
未満の温度で焼成する工程の各工程を包含することを特
徴とする複合セラミックスの製造法。 2、平均粒径が大きい方の炭化ケイ素と、該金属ケイ素
との粒径比が、炭化ケイ素:金属ケイ素:5〜20:1
である特許請求の範囲第1項記載の複合セラミックスの
製造法。 3、該平均粒径5〜100μmの炭化ケイ素を25〜2
50重量部、該平均粒径0.3〜1μmの炭化ケイ素を
5〜40重量部、該金属ケイ素を100重量部、該成形
助剤を2〜15重量部使用する特許請求の範囲第1項記
載の複合セラミックスの製造法。 4、該成形体の焼成による寸法変化が、±0.3%以内
である特許請求の範囲第1項記載の複合セラミックスの
製造法。
[Claims] 1. Average particle size of 5 to 100 μm and 0.3 to 1 μm 2.
A step of mixing and molding different types of silicon carbide powder, metallic silicon powder with an average particle size of 0.25 to 2 μm, and a forming aid, and firing the compact at a temperature below the melting temperature of metallic silicon in a nitriding gas atmosphere. A method for producing composite ceramics characterized by including each step of the process. 2. The particle size ratio of silicon carbide with a larger average particle size and the metal silicon is silicon carbide: metal silicon: 5 to 20:1
A method for producing composite ceramics according to claim 1. 3. 25 to 2 silicon carbide with an average particle size of 5 to 100 μm
Claim 1: 50 parts by weight, 5 to 40 parts by weight of silicon carbide having an average particle size of 0.3 to 1 μm, 100 parts by weight of the metallic silicon, and 2 to 15 parts by weight of the molding aid. Method of manufacturing the described composite ceramics. 4. The method for producing composite ceramics according to claim 1, wherein the dimensional change of the molded body upon firing is within ±0.3%.
JP60041152A 1985-03-04 1985-03-04 Manufacture of composite ceramics Pending JPS61201662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041152A JPS61201662A (en) 1985-03-04 1985-03-04 Manufacture of composite ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041152A JPS61201662A (en) 1985-03-04 1985-03-04 Manufacture of composite ceramics

Publications (1)

Publication Number Publication Date
JPS61201662A true JPS61201662A (en) 1986-09-06

Family

ID=12600444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041152A Pending JPS61201662A (en) 1985-03-04 1985-03-04 Manufacture of composite ceramics

Country Status (1)

Country Link
JP (1) JPS61201662A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331160A2 (en) * 1988-03-04 1989-09-06 Hitachi, Ltd. Functional ceramic shaped article and process for producing the same
JPH04357167A (en) * 1991-05-31 1992-12-10 Sharp Corp Ceramics heater
US5378417A (en) * 1987-04-10 1995-01-03 Hitachi, Ltd. Process for producing ceramic compositions
WO2005026076A1 (en) * 2003-09-09 2005-03-24 Ngk Insulators, Ltd. SiC REFRACTORY COMPRISING SILICON NITRIDE BONDED THERETO AND METHOD FOR PRODUCTION THEREOF

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378417A (en) * 1987-04-10 1995-01-03 Hitachi, Ltd. Process for producing ceramic compositions
EP0331160A2 (en) * 1988-03-04 1989-09-06 Hitachi, Ltd. Functional ceramic shaped article and process for producing the same
JPH04357167A (en) * 1991-05-31 1992-12-10 Sharp Corp Ceramics heater
WO2005026076A1 (en) * 2003-09-09 2005-03-24 Ngk Insulators, Ltd. SiC REFRACTORY COMPRISING SILICON NITRIDE BONDED THERETO AND METHOD FOR PRODUCTION THEREOF
US7494949B2 (en) 2003-09-09 2009-02-24 Ngk Insulators, Ltd. SiC refractory comprising silicon nitride bond thereto and method for production thereof

Similar Documents

Publication Publication Date Title
US2799912A (en) Processes for forming high temperature ceramic articles
IE43834B1 (en) Sintered silicon carbide ceramic body
JPS6051655A (en) Manufacture of ceramic sintered body
CA1092615A (en) High density hot pressed thermal shock resistant silicon carbide
JPS62182163A (en) Silicon nitride ceramic sintered body and manufacture
JPS61201662A (en) Manufacture of composite ceramics
US4832771A (en) Method for bonding ceramics
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
US4487734A (en) Method for the preparation of a high density sintered body of silicon carbide
US3821005A (en) Densification of silicon nitride
JPS632913B2 (en)
JPS61158866A (en) Ceramic sintered body and manufacture
KR910003901B1 (en) Manufacture method of sic sintering material
JPH06279124A (en) Production of silicon nitride sintered compact
JPS6328871B2 (en)
JPS6121965A (en) Alumina sintered body and manufacture
JPS60210571A (en) Silicon carbide-containing alumina sintered body and manufacture
JPS62275066A (en) Manufacture of silicon carbide sintered body
JPS5926972A (en) Manufacture of nitride carbide ceramic
JPS6042280A (en) Manufacture of aluminum nitride sintered body
JPS63233077A (en) Silicon nitride base composite sintered body
JPS61178470A (en) Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools
JPS6126566A (en) Method of sintering sic composite body
JPS63210056A (en) Manufacture of ceramic processed body
JPS61256981A (en) Manufacture of aluminum nitride sintered body with high heatconductivity