JPS61178470A - Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools - Google Patents

Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools

Info

Publication number
JPS61178470A
JPS61178470A JP60020766A JP2076685A JPS61178470A JP S61178470 A JPS61178470 A JP S61178470A JP 60020766 A JP60020766 A JP 60020766A JP 2076685 A JP2076685 A JP 2076685A JP S61178470 A JPS61178470 A JP S61178470A
Authority
JP
Japan
Prior art keywords
nitride
sintered body
heat
weight
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020766A
Other languages
Japanese (ja)
Inventor
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60020766A priority Critical patent/JPS61178470A/en
Publication of JPS61178470A publication Critical patent/JPS61178470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1寸法精度に優れた窒化物焼結体の製造方法お
よび寸法精度の優れた耐熱性治具用窒化物焼結体に関し
、特に本発明は、所望の形状に成形した生成形体を実質
的に焼成収縮を生じさせることなく焼結することによっ
て、寸法精度および強度の要求される用途に適した窒化
物焼結体を安価にかつ容易に製造することのできる寸法
精度の優れた窒化物焼結体の製造方法および寸法精度の
優れた耐熱性治具用窒化物焼結体に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a nitride sintered body with excellent dimensional accuracy and a nitride sintered body for heat-resistant jigs with excellent dimensional accuracy, and particularly relates to The present invention enables the production of nitride sintered bodies suitable for applications requiring dimensional accuracy and strength at low cost and by sintering a formed body molded into a desired shape without substantially causing firing shrinkage. The present invention relates to a method for manufacturing a nitride sintered body with excellent dimensional accuracy that can be easily manufactured, and a heat-resistant nitride sintered body for a jig with excellent dimensional accuracy.

〔従来の技術〕[Conventional technology]

窒化物焼結体には、機械的強度、耐熱性、耐腐蝕性など
の諸特性に優れたものが多く、高温構造材料や耐蝕耐摩
耗材料としての用途が知られている。
Many nitride sintered bodies have excellent properties such as mechanical strength, heat resistance, and corrosion resistance, and are known to be used as high-temperature structural materials and corrosion- and wear-resistant materials.

従来、窒化物焼結体の製造方法としては加圧焼結法、常
圧焼結法および反応焼結法等の方法が知られている。
Conventionally, methods such as pressure sintering, normal pressure sintering, and reaction sintering are known as methods for manufacturing nitride sintered bodies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このうち加圧焼結法および常圧焼結法によれ
ば、高密度かつ高強度の焼結体を得ることはできるが、
いずれも焼成時に大きな焼成収縮を伴う焼結法であり、
焼結体の寸法は前記焼成収縮および生成形体の密度に大
きく影響を受けるため、特定の寸法精度を有する焼結体
を格別の機械加工を施すことなく製造することは極めて
困難である。
By the way, among these methods, according to the pressure sintering method and the pressureless sintering method, it is possible to obtain a sintered body with high density and high strength.
Both are sintering methods that involve large firing shrinkage during firing.
Since the dimensions of the sintered body are greatly affected by the firing shrinkage and the density of the formed body, it is extremely difficult to manufacture a sintered body with specific dimensional accuracy without special machining.

また、反応焼結法は焼成収縮をそれ程伴わない焼結法で
あるが、反応焼結法は温度および雰囲気をコントロール
して反応温度が金属元素の融点以上にあがらないように
制御して焼成することが重要であり、焼成時間が著しく
長くかかる欠点を有している。
In addition, the reaction sintering method is a sintering method that does not cause much shrinkage during firing, but in the reaction sintering method, firing is performed by controlling the temperature and atmosphere so that the reaction temperature does not rise above the melting point of the metal element. This is important, and has the drawback that the firing time is extremely long.

上述の如く、従来高い寸法精度の要求される構造用窒化
物焼結体を格別の機械加工を施すことなく安価にかつ容
易に製造する方法は知られていなかった。
As mentioned above, there has been no known method for manufacturing structural nitride sintered bodies requiring high dimensional accuracy at low cost and easily without special machining.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の如き従来知られた焼結方法とは異なる
焼結方法、すなわち所望の形状に成形した生成形体を実
質的に焼成収縮を生じさせること、  なく焼結し、寸
法精度および強度の要求される構造用窒化物焼結体を格
別の機械加工を施すことなく安価に製造することのでき
る方法を提供することを目的とし、微細な窒化物粉末を
出発原料とし、焼結に伴う焼成収縮を抑制することので
きる焼結方法を開発すべ(種々研究を積重ねた結果、窒
化物粉末に含有される不純物成分を制御し、特定の雰囲
気および温度範囲内で焼結することによって実質的な焼
成収縮を生じさせることなく表面寸法精度の葛い高強度
の窒化物焼結体を製造することのできる方法を新規に知
見するに至り、本発明を完成した。
The present invention uses a sintering method different from the conventionally known sintering methods as described above, that is, a formed body formed into a desired shape is sintered without substantially causing firing shrinkage, thereby improving dimensional accuracy and strength. The purpose of this project is to provide a method for manufacturing structural nitride sintered bodies that require Develop a sintering method that can suppress firing shrinkage (as a result of various studies, we have found that by controlling the impurity components contained in nitride powder and sintering within a specific atmosphere and temperature range, The present invention has been completed by discovering a new method for manufacturing a nitride sintered body with excellent surface dimensional accuracy and high strength without causing significant firing shrinkage.

本発明によれば、平均粒径が5μm以下の窒化物粉末を
主体とする出発原料を生成形体に成形した後、前記生成
形体を非酸花柱雰囲気中で実質的に収縮させることなく
焼結し2kg/m1以上の平均曲げ強度を有する窒化物
焼結体を製造することを特徴とする寸法精度の優れた窒
化物焼結体の製造方法および実質的に収縮させることな
く焼結させた窒化物焼結体よりなり、平均曲げ強度が2
 A9/mm2以上であることを特徴とする寸法精度の
優れた耐熱性治具用窒化物焼結体によつて前記目的を達
成することができる。
According to the present invention, a starting material mainly composed of nitride powder with an average particle size of 5 μm or less is formed into a green body, and then the green body is sintered in a non-acid style atmosphere without substantially shrinking. A method for producing a nitride sintered body with excellent dimensional accuracy, characterized by producing a nitride sintered body having an average bending strength of 2 kg/m1 or more, and a nitride sintered without substantially shrinking. Made of sintered body, average bending strength is 2
The above object can be achieved by a heat-resistant nitride sintered body for a jig with excellent dimensional accuracy characterized by A9/mm2 or more.

次に本発明の製造方法を詳細に説明する。Next, the manufacturing method of the present invention will be explained in detail.

本発明によれば、窒化物粉末を主体とする出発原料は、
その平均粒径が5μm以下であることが必要である。前
記平均粒径を5μm以下に限定する理由は、5μmより
大きいと焼結体内の粒と粒との結合箇所が少な(なるた
め、高強度すなわち平均曲げ強度が5級−以上の高い強
度の焼結体を得ることが困難になるばかりでなく、表面
の面粗度を劣化させるからである。
According to the present invention, the starting material mainly consisting of nitride powder is
It is necessary that the average particle size is 5 μm or less. The reason why the average grain size is limited to 5 μm or less is that if it is larger than 5 μm, there will be fewer bonding points between grains in the sintered body, which results in a high strength sintered body with a high strength, that is, an average bending strength of grade 5 or higher. This is because it not only becomes difficult to obtain a solid, but also the surface roughness deteriorates.

本発明によれば、前記窒化物粉末としては種々のものを
使用できるが、なかでも耐熱性、硬度、化学的安定性お
よび電気的特性などに優れた窒化物焼結体を製造する上
で出発原料は窒化ホウ素、窒化アルミニウム、窒化珪素
より選ばれるいずれか少なくとも1種を含有し、その含
有量の合計が50M′Ik%以上であるこ七が好ましく
、なかでも窒化珪素を少な(とも50重量%含有する出
発原料が好適である。
According to the present invention, various types of nitride powder can be used, but among them, a starting material is used for producing a nitride sintered body having excellent heat resistance, hardness, chemical stability, and electrical properties. It is preferable that the raw material contains at least one selected from boron nitride, aluminum nitride, and silicon nitride, and the total content thereof is 50 M'Ik% or more. Starting materials containing are preferred.

本発明によれば、前記出発原料は焼結時に液相を生成す
る物質の含有量が5重量%以下であることが好ましい。
According to the present invention, it is preferable that the content of a substance that generates a liquid phase during sintering in the starting material is 5% by weight or less.

その理由は、焼結時に液相を生成する物質の含有量が5
1承%より多いと焼結時に液相の作用によって焼成収縮
し易いからである。
The reason is that the content of substances that generate a liquid phase during sintering is 5.
This is because if the amount is more than 1%, sintering shrinkage is likely to occur due to the action of the liquid phase during sintering.

本発明によれば、前記出発原料はMyO1A120x、
CeO,Li2O,8iozおよびY2O3の含有量の
合計が3M量%以下であることが有利である。その理由
は、前記酸化物は一般に窒化物を常圧焼結する際に焼結
助剤として使用されるものであり、含有量の合計が3重
量%より多いと焼成収縮し易(なるため寸法精度の高い
焼結体を得ることが困難になるからである。
According to the invention, the starting material is MyO1A120x,
Advantageously, the total content of CeO, Li2O, 8 ioz and Y2O3 is less than or equal to 3M%. The reason for this is that the above oxides are generally used as sintering aids when sintering nitrides at normal pressure, and if the total content is more than 3% by weight, they tend to shrink during firing (as a result, the dimensions This is because it becomes difficult to obtain a highly accurate sintered body.

本発明によれば、寸法精度の高い焼結体を得る上で実質
的に収縮させることなく焼結することが必要であり、そ
の際の収縮率は2%以下であることが好ましく、なかで
も1%以下であることがより好適である。
According to the present invention, in order to obtain a sintered body with high dimensional accuracy, it is necessary to sinter without substantially shrinking, and the shrinkage rate at that time is preferably 2% or less, especially More preferably, it is 1% or less.

本発明によれば、前記生成形体を焼成雰囲気を制御する
ことのできる耐熱性容器内に装入して焼成することが有
利である。このように耐熱性容器内に生成形体を装入し
て焼成雰囲気を制御しつつ焼成することが有利である理
由は、隣接する窒化物粒子間のネックを成長させること
ができ強固に結合させろことができるからである6前述
の如く耐熱性容器内に生成形体を装入して焼成雰囲気を
制御しつつ焼成することによって隣接する窒化物粒子間
のネックを成長させることができ強固に結合させること
ができる理由は、窒化物粒子間における窒化物の蒸発・
再凝縮および/または表面拡散による物質移動を促進す
ることができるためと考えられる。
According to the present invention, it is advantageous to charge and fire the green body into a heat-resistant container in which the firing atmosphere can be controlled. The reason why it is advantageous to charge the formed body into a heat-resistant container and fire it while controlling the firing atmosphere is because it allows the necks between adjacent nitride particles to grow and form strong bonds. 6. As mentioned above, by charging the formed body into a heat-resistant container and firing it while controlling the firing atmosphere, necks between adjacent nitride particles can grow and they can be firmly bonded. The reason for this is the evaporation of nitride between nitride particles.
This is thought to be because mass transfer by recondensation and/or surface diffusion can be promoted.

本発明によれば、前記生成形体を焼成雰囲気を制御する
ことのできる耐熱性容器内に装入して焼成することによ
り、焼成時における窒化物の揮散率を抑制し、前記揮散
率を5重量%以下とすることが有利である。
According to the present invention, by charging the formed body into a heat-resistant container in which the firing atmosphere can be controlled and firing it, the volatilization rate of nitrides during firing is suppressed, and the volatilization rate is reduced to 5% by weight. % or less is advantageous.

本発明によれば、前記生成形体は少なくとも45容積%
の密度を有するものであることが有利である。その理由
は、前記生成形体の密度が45容積%より低いと窒化物
粒子相互の接触点が少ないため、必然的に結合箇所が少
なくなり、本発明の目的とする2 kq//14以上の
平均曲げ強度を有する焼結体を得ることが困難であるか
らである。
According to the invention, said product form has at least 45% by volume
Advantageously, it has a density of . The reason for this is that when the density of the formed body is lower than 45% by volume, there are fewer points of contact between the nitride particles, which inevitably results in fewer bonding points, and the average of 2 kq//14 or more, which is the objective of the present invention, is reduced. This is because it is difficult to obtain a sintered body with bending strength.

本発明によれば、前記非酸化性雰囲気中の窒素ガス分圧
を窒化物の平衡圧以上とすることが好ましい。その理由
は、前記窒素ガス分圧を窒化物の平衡圧以上とすること
によってネックの成長を促進させることができ、焼結体
の強度を高めることができるからである。
According to the present invention, it is preferable that the nitrogen gas partial pressure in the non-oxidizing atmosphere is equal to or higher than the equilibrium pressure of nitride. The reason for this is that by making the nitrogen gas partial pressure equal to or higher than the equilibrium pressure of the nitride, neck growth can be promoted and the strength of the sintered body can be increased.

次に本発明の耐熱性治具用窒化物焼結体について詳細に
説明する。
Next, the heat-resistant sintered nitride body for jig of the present invention will be explained in detail.

本発明の耐熱性治具用窒化物焼結体は、実質的に収縮さ
せることな(焼結させた窒化物焼結体よりなり、平均曲
げ強度が2 kQ/d以上であることが必要である。そ
の理由は、焼結時における収縮は富強度の焼結体を得る
上では好ましいが、一般的には焼結時の収縮量は生成形
体の密度に大きく影響するため、均一な収縮を生じさせ
るためには均一な密度を有する生成形体を得ることが重
要である。しかし、そのような均一な密度を有する生成
形体を得ることは極めて困難であるため、本発明の目的
とする極めて寸法精度の高い焼結体を得ることが困難で
あるからである。また平均曲げ強度を2kV−以上に限
定する理由は、焼結体の強度が2 kq/−より低いと
使用中に折れたり割れたりし易く、実質的な使用に耐え
ないからである。
The heat-resistant nitride sintered body for a jig of the present invention must be made of a sintered nitride sintered body without substantially shrinking, and must have an average bending strength of 2 kQ/d or more. The reason for this is that although shrinkage during sintering is preferable in order to obtain a sintered body with high strength, the amount of shrinkage during sintering generally has a large effect on the density of the formed body, so it is important to ensure uniform shrinkage. In order to achieve this, it is important to obtain a formed body with a uniform density.However, it is extremely difficult to obtain a formed body with such a uniform density. This is because it is difficult to obtain a highly precise sintered body.Also, the reason why the average bending strength is limited to 2 kV- or more is that if the strength of the sintered body is lower than 2 kq/-, it may break or crack during use. This is because they are easily damaged and cannot withstand practical use.

なお、本発明の実質的に収縮させることなく焼結させた
窒化物焼結体の焼成収縮率は296以下であることが有
利であり、なかでも196以下であることがより好適で
ある。
In addition, it is advantageous that the sintering shrinkage rate of the nitride sintered body of the present invention, which is sintered without substantially shrinking, is 296 or less, and more preferably 196 or less.

本発明の耐熱性治具用窒化物焼結体としての窒化物焼結
体は深々の窒化物を使用できるが、なかでも耐熱性、硬
度、化学的安定性および電気的特性などに優れた焼結体
が要求される用途に対しては窒化ホウ素、窒化アルミニ
ウム、窒化珪素から遣ばれるいずれか少なくとも1mの
窒化物を含有し、その含有量の合計が50ifi%以上
であることが好ましい。
The nitride sintered body as the nitride sintered body for heat-resistant jigs of the present invention can be made of deep nitrides, but among them, sintered bodies with excellent heat resistance, hardness, chemical stability, and electrical properties are used. For applications requiring solid bodies, it is preferable that at least 1 m of nitride selected from boron nitride, aluminum nitride, and silicon nitride is contained, and the total content is 50 ifi% or more.

本発明の耐熱性治具用窒化物焼結体は、極めて高い寸法
精度および強度が要求されるものであり、平均粒径が5
μm以下の窒化物粉末を主体とする出発原料を生成形体
に成形した後、前記生成形体を非酸化性雰囲気中で焼結
させた窒化物焼結体であることが好ましい。
The heat-resistant nitride sintered body for jig of the present invention is required to have extremely high dimensional accuracy and strength, and has an average grain size of 5.
It is preferable that the nitride sintered body is obtained by molding a starting material mainly composed of nitride powder of μm or less into a green body, and then sintering the green body in a non-oxidizing atmosphere.

本発明の耐熱性治具用窒化物焼結体は、半導体熱処理用
治具、断熱材止め具やセッターのような耐熱部品絶縁ス
リーブ、耐熱・耐食プレート、パルプ・ポンプ部品とし
て有利に使用することができる。
The nitride sintered body for heat-resistant jigs of the present invention can be advantageously used as jigs for semiconductor heat treatment, insulating sleeves for heat-resistant parts such as heat-insulating fasteners and setters, heat-resistant/corrosion-resistant plates, and pulp/pump parts. I can do it.

次に本発明の実施例および比較例について説明する。Next, examples and comparative examples of the present invention will be described.

実施例! 平均粒径が0.4μm、純度が96重量%の窒化珪素粉
末100重量部に対し、ワックス2重量部、ポリエチレ
ングリコール1重量部、ステアリン酸0.5重量部およ
びベンゼン100重量部を配合し、ボールミル中で5時
間混合した後噴霧乾燥した。
Example! 2 parts by weight of wax, 1 part by weight of polyethylene glycol, 0.5 parts by weight of stearic acid and 100 parts by weight of benzene are blended with 100 parts by weight of silicon nitride powder with an average particle size of 0.4 μm and a purity of 96% by weight, After mixing in a ball mill for 5 hours, it was spray dried.

なお、前記窒化珪素粉末は酸素を2重量%、炭素を1重
量%、鉄を0.07重量%、カルシウムを0.01重量
%、アルミニウムを0.2重量%、マグネシウムをo、
osxtit%含有していた。
The silicon nitride powder contains 2% by weight of oxygen, 1% by weight of carbon, 0.07% by weight of iron, 0.01% by weight of calcium, 0.2% by weight of aluminum, and 0.0% by weight of magnesium.
It contained osxtit%.

この乾燥物を適量採取し、金属製押し型を用いて1.5
t/dの圧力で成形し、直径40鱈、厚さ5fi、密度
1.’16f/cd (55容積%)の生成形体を得た
Collect an appropriate amount of this dried material and use a metal mold to
Molded at a pressure of t/d, diameter 40, thickness 5fi, density 1. A product form of '16f/cd (55% by volume) was obtained.

前記生成形体を黒鉛製ルツボに装入し、大気圧下の窒素
ガス雰囲気中で1700’Cの温度で1時間焼成した。
The formed body was placed in a graphite crucible and fired at a temperature of 1700'C for 1 hour in a nitrogen gas atmosphere under atmospheric pressure.

得られた焼結体の密度は1.76fAであり、生成形体
に対する線収縮率はいずれの方向に対しても0.4±0
.07%の範囲内であり、焼結体の寸法精度は±O,0
3111以内であった。また、この焼結体の平均曲げ強
度を測定したところ6.3瞼−と高強度であった。
The density of the obtained sintered body is 1.76 fA, and the linear shrinkage rate of the formed body is 0.4 ± 0 in any direction.
.. The dimensional accuracy of the sintered body is within ±0.07%.
It was within 3111. Furthermore, when the average bending strength of this sintered body was measured, it was found to be as high as 6.3.

実施例2 実施例1と同様の操作を繰返して焼結体を得た。Example 2 The same operation as in Example 1 was repeated to obtain a sintered body.

得られた焼結体の物性は第1表に示した。The physical properties of the obtained sintered body are shown in Table 1.

第1表に示した結果よりわかるように線収縮率は最大で
も0.5%と小さく、実施例1に示した焼結条件によれ
ば線収縮率を0.4%に設定して生成形体を成形し焼結
を行うことにより、極めて寸法精度の高い焼結体を容易
に製造することが可能であることが確認された。
As can be seen from the results shown in Table 1, the linear shrinkage rate is as small as 0.5% at maximum, and according to the sintering conditions shown in Example 1, the linear shrinkage rate was set to 0.4% and the formed shape was produced. It was confirmed that by molding and sintering, it is possible to easily produce a sintered body with extremely high dimensional accuracy.

実施例3 実施例1と同様であるが、平均粒径が4.1μmの窒化
珪素粉末を使用して焼結体を得た。得られた焼結体の物
性は第1表に示した。
Example 3 A sintered body was obtained in the same manner as in Example 1, except that silicon nitride powder having an average particle size of 4.1 μm was used. The physical properties of the obtained sintered body are shown in Table 1.

比較例1 実施例1と同様であるが、平均粒径が8.3戸の窒化珪
素粉末を使用して焼結体を得た。得られ1こ焼結体の物
性は第1表に示した。
Comparative Example 1 A sintered body was obtained in the same manner as in Example 1, except that silicon nitride powder having an average particle size of 8.3 mm was used. The physical properties of the single sintered body obtained are shown in Table 1.

第1表に示した結果よりわかるように、本発明の実施例
は線収縮率およびそのバラツキが小さく寸法精度に優れ
た焼結体を容易に製造することが可能であった。これに
対して、比較例1の平均粒径が8.3μmと大きな窒化
珪素粉末を出発原料とした場合には線収縮率が0.3±
0.3%とバラツキが大きく寸法精度も±0.1211
1と低下した。
As can be seen from the results shown in Table 1, in the examples of the present invention, it was possible to easily produce a sintered body with a small linear shrinkage rate and its variation and excellent dimensional accuracy. On the other hand, when the silicon nitride powder of Comparative Example 1 with a large average particle diameter of 8.3 μm was used as a starting material, the linear shrinkage rate was 0.3 ±
Large variation of 0.3% and dimensional accuracy of ±0.1211
It dropped to 1.

実施例4 実施例1と同様であるが、窒化珪素粉末に換えて平均粒
径が0.8μm、純度が97重量%の窒化アルミニウム
粉末を使用し、1600℃の温度で焼結体を得た。なお
、前記窒化アルミニウム粉末は炭素を0.16重量%、
珪素を0.1重量%、鉄を0.09重量%、マグネシウ
ムを0.07重量%含有してイタ。
Example 4 Same as Example 1, except that aluminum nitride powder with an average particle size of 0.8 μm and a purity of 97% by weight was used instead of silicon nitride powder, and a sintered body was obtained at a temperature of 1600°C. . Note that the aluminum nitride powder contains 0.16% by weight of carbon,
It contains 0.1% by weight of silicon, 0.09% by weight of iron, and 0.07% by weight of magnesium.

得られた焼結体の物性は第1表に示した。The physical properties of the obtained sintered body are shown in Table 1.

実施例5 実施例1と同様であるが、窒化珪素粉末に換えて平均粒
径が0.3μm、線間が99.5重量%の窒化ホウ素粉
末を使用し、1400℃の温度で焼結体を得た。
Example 5 Same as Example 1, except that boron nitride powder with an average particle size of 0.3 μm and a line spacing of 99.5% by weight was used instead of silicon nitride powder, and the sintered body was sintered at a temperature of 1400°C. I got it.

得られた焼結体の物性は第1表に示した。The physical properties of the obtained sintered body are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた如(、本発明によれば、実質的に焼成収縮を
生じさせることなく寸法精度の優れた窒化物焼結体を得
ることができ、寸法精度および強度の要求される構造材
料としての窒化物焼結体を格別の機械加工を施すことな
く安価に提供できる。
As described above, according to the present invention, a nitride sintered body with excellent dimensional accuracy can be obtained without substantially causing firing shrinkage, and it can be used as a structural material that requires dimensional accuracy and strength. Nitride sintered bodies can be provided at low cost without special machining.

Claims (1)

【特許請求の範囲】 1、平均粒径が5μm以下の窒化物粉末を主体とする出
発原料を生成形体に成形した後、前記生成形体を非酸化
性雰囲気中で実質的に収縮させることなく焼結し2kg
/mm^2以上の平均曲げ強度を有する窒化物焼結体を
製造することを特徴とする寸法精度の優れた窒化物焼結
体の製造方法。 2、前記焼結体の焼結に伴う収縮率は2%以下である特
許請求の範囲第1項記載の製造方法。 3、前記出発原料は窒化ホウ素、窒化アルミニウム、窒
化珪素より選ばれるいずれか少なくとも1種を含有し、
その含有量の合計が50重量%以上である特許請求の範
囲第1あるいは2項記載の製造方法。 4、前記出発原料は窒化珪素を少なくとも50重量%含
有する特許請求の範囲第1〜3項のいずれかに記載の製
造方法。 5、前記出発原料は焼結時に液相を生成する物質の含有
量が5重量%以下である特許請求の範囲第1〜4項のい
ずれかに記載の製造方法。 6、前記非酸化性雰囲気中の窒素ガス分圧を窒化物の平
衡圧以上とする特許請求の範囲第1〜5項のいずれかに
記載の製造方法。 7、実質的に収縮させることなく焼結させた窒化物焼結
体よりなり、平均曲げ強度が5kg/mm^2以上であ
ることを特徴とする寸法精度の優れた耐熱性治具用窒化
物焼結体。 8、前記窒化物焼結体は窒化ホウ素、窒化アルミニウム
、窒化珪素より選ばれるいずれか少なくとも1種を含有
し、その含有量の合計が50重量%以上である特許請求
の範囲第7項記載の耐熱性治具用窒化物焼結体。 9、前記窒化物焼結体は平均粒径が5μm以下の窒化物
粉末を主体とする出発原料を生成形体に成形した後、前
記生成形体を非酸化性雰囲気中で焼結させたものである
特許請求の範囲第7あるいは8項記載の耐熱性治具用窒
化物焼結体。
[Claims] 1. After forming a starting material mainly composed of nitride powder with an average particle size of 5 μm or less into a green body, the green body is sintered in a non-oxidizing atmosphere without substantially shrinking. 2 kg of knots
A method for producing a nitride sintered body with excellent dimensional accuracy, characterized by producing a nitride sintered body having an average bending strength of /mm^2 or more. 2. The manufacturing method according to claim 1, wherein the shrinkage rate of the sintered body due to sintering is 2% or less. 3. The starting material contains at least one selected from boron nitride, aluminum nitride, and silicon nitride,
The manufacturing method according to claim 1 or 2, wherein the total content thereof is 50% by weight or more. 4. The manufacturing method according to any one of claims 1 to 3, wherein the starting material contains at least 50% by weight of silicon nitride. 5. The manufacturing method according to any one of claims 1 to 4, wherein the starting material has a content of 5% by weight or less of a substance that generates a liquid phase during sintering. 6. The manufacturing method according to any one of claims 1 to 5, wherein the nitrogen gas partial pressure in the non-oxidizing atmosphere is equal to or higher than the equilibrium pressure of the nitride. 7. A heat-resistant jig nitride with excellent dimensional accuracy, which is made of a nitride sintered body sintered without substantially shrinking, and has an average bending strength of 5 kg/mm^2 or more. Sintered body. 8. The nitride sintered body contains at least one selected from boron nitride, aluminum nitride, and silicon nitride, and the total content thereof is 50% by weight or more. Nitride sintered body for heat-resistant jigs. 9. The nitride sintered body is obtained by forming a starting material mainly composed of nitride powder with an average particle size of 5 μm or less into a green body, and then sintering the green body in a non-oxidizing atmosphere. A nitride sintered body for a heat-resistant jig according to claim 7 or 8.
JP60020766A 1985-02-04 1985-02-04 Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools Pending JPS61178470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020766A JPS61178470A (en) 1985-02-04 1985-02-04 Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020766A JPS61178470A (en) 1985-02-04 1985-02-04 Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools

Publications (1)

Publication Number Publication Date
JPS61178470A true JPS61178470A (en) 1986-08-11

Family

ID=12036296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020766A Pending JPS61178470A (en) 1985-02-04 1985-02-04 Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools

Country Status (1)

Country Link
JP (1) JPS61178470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029763A (en) * 1987-04-01 1990-01-12 Agency Of Ind Science & Technol Boron nitride sintered body and production thereof under ordinary pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497614A (en) * 1978-01-03 1979-08-01 Max Planck Gesellschaft Sintering of silicon nitride formed body
JPS55116674A (en) * 1979-02-28 1980-09-08 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS59184771A (en) * 1983-04-04 1984-10-20 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body
JPS59207814A (en) * 1983-05-13 1984-11-26 Tokuyama Soda Co Ltd Aluminum nitride powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497614A (en) * 1978-01-03 1979-08-01 Max Planck Gesellschaft Sintering of silicon nitride formed body
JPS55116674A (en) * 1979-02-28 1980-09-08 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS59184771A (en) * 1983-04-04 1984-10-20 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body
JPS59207814A (en) * 1983-05-13 1984-11-26 Tokuyama Soda Co Ltd Aluminum nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029763A (en) * 1987-04-01 1990-01-12 Agency Of Ind Science & Technol Boron nitride sintered body and production thereof under ordinary pressure

Similar Documents

Publication Publication Date Title
JPS61197464A (en) Manufacture of sintered formed body
US4356136A (en) Method of densifying an article formed of reaction bonded silicon nitride
JPS61178470A (en) Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPS61201662A (en) Manufacture of composite ceramics
JPH0224789B2 (en)
JPS6144770A (en) Manufacture of silicon nitride sintered body
JPH0193470A (en) Ceramic sintered material
JPS61146752A (en) Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JPS62113769A (en) Manufacture of silicon nitride sintered body
JPS60186470A (en) Manufacture of silicon nitride sintered body
JPH0568428B2 (en)
JPH0818876B2 (en) Method for manufacturing silicon nitride sintered body
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPS62256770A (en) Manufacture of silicon nitride base sintered body
JPS61132563A (en) Manufacture of boron nitride sintered body
JPS62113767A (en) Silicon nitride base sintered body and manufacture
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPS6163571A (en) Manufacture of aluminum nitride sintered body
JPS62148372A (en) Manufacture of ceramic sintered body
JPS6287461A (en) Manufacture of high density silicon carbide sintered body
JPH0360791B2 (en)