JPS61132563A - Manufacture of boron nitride sintered body - Google Patents

Manufacture of boron nitride sintered body

Info

Publication number
JPS61132563A
JPS61132563A JP59251334A JP25133484A JPS61132563A JP S61132563 A JPS61132563 A JP S61132563A JP 59251334 A JP59251334 A JP 59251334A JP 25133484 A JP25133484 A JP 25133484A JP S61132563 A JPS61132563 A JP S61132563A
Authority
JP
Japan
Prior art keywords
sintered body
mold
sintering
pressure
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59251334A
Other languages
Japanese (ja)
Inventor
小板橋 寿光
小笠原 武司
太田 広道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP59251334A priority Critical patent/JPS61132563A/en
Publication of JPS61132563A publication Critical patent/JPS61132563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化硼素焼結体の製造方法に関し、常圧、焼
結によって緻密な焼結体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a boron nitride sintered body, and more particularly, to a method for producing a dense sintered body by sintering under normal pressure.

〔従来の技術〕[Conventional technology]

窒化硼素(以下BNという)は熱伝導重大、熱膨張率率
、耐食性良好、電気絶縁性穴、潤滑性良好、機械加工可
能、軽量などの性質を有する。このため、これらの特性
が要求される工業分野1例えば電気絶縁材料、高温伝熱
材料、耐食性材料として、電気炉、溶融物の処理などの
分野に利用されている。
Boron nitride (hereinafter referred to as BN) has properties such as excellent thermal conductivity, coefficient of thermal expansion, good corrosion resistance, electrically insulating holes, good lubricity, machinability, and light weight. For this reason, they are used in industrial fields that require these properties, such as electrical insulating materials, high-temperature heat transfer materials, and corrosion-resistant materials, such as electric furnaces and processing of molten materials.

しかし、利用分野の広いわりに使用量が増加しないのは
BNの高価格が一因する0価格の高い理由として、焼結
体の製造コストが挙げられる。焼結体はホットプレス法
で製造されるが、この場合、ホットプレス装置本体や黒
鉛ダイスの材料費が高価であり、生産能率が悪いなどが
コストアップの原因である。
However, the high price of BN is one reason why the amount of BN used has not increased despite its wide range of applications.One reason for the high price is the manufacturing cost of the sintered body. The sintered body is manufactured by a hot press method, but in this case, the material costs of the hot press equipment and graphite dies are expensive, and the production efficiency is poor, which are the causes of increased costs.

BN焼結体を低価格で製造する方法の1つに、常圧焼結
法が考えられるが、BNの特徴的な焼結挙動の問題があ
る。即ち、BHの焼結は結晶粒が成長することによって
進行するが、その際に焼結体の体積が膨張するという現
象である。一般の焼結過程では、粒子同志の拡散や粒成
長により空孔が除去され収縮が起こり、従って緻密化が
進行するのであるがBNの焼結は逆の現象である。その
ため、緻密なりN焼結体を作るにはホットプレスのよう
な加圧焼結に依存せざるを得ない、また、BNは自己焼
結性に乏しいために、単体での焼結は難しく、加圧焼結
においてもB2O3やCaOのような助剤を必要とする
One possible method for manufacturing BN sintered bodies at low cost is pressureless sintering, but there is a problem with the characteristic sintering behavior of BN. That is, sintering of BH progresses as crystal grains grow, and at this time, the volume of the sintered body expands. In a general sintering process, pores are removed and shrinkage occurs due to particle diffusion and grain growth, and therefore densification progresses, but the opposite phenomenon occurs in BN sintering. Therefore, in order to make a dense N sintered body, we have to rely on pressure sintering such as hot pressing, and since BN has poor self-sintering properties, it is difficult to sinter it alone. Pressure sintering also requires auxiliary agents such as B2O3 and CaO.

従来、常圧焼結や反応焼結の実施例として、特公昭47
−38047、特公昭48−43648があるがともに
BNと5i02あるいはBNとA9.、 S iとの複
合化を目的としておりBN配合比が30〜70%の範囲
である。複合体はBN本来の優れた性質が減少するので
、用途に限定がある。
Conventionally, as an example of pressureless sintering and reaction sintering,
-38047 and Special Publication No. 48-43648, but both are BN and 5i02 or BN and A9. , Si, and the blending ratio of BN is in the range of 30 to 70%. Composites have limited applications because the original excellent properties of BN are diminished.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

BNの焼結方法において、加圧焼結すると高価格であり
、常圧焼結では緻密にならないという問題点があった0
本発明では、加圧焼結をせずに、焼結中の膨張を抑えて
緻Sな焼結体を製造する方法を提案するものである。
In the sintering method of BN, pressure sintering is expensive, and pressureless sintering does not make it dense.
The present invention proposes a method for manufacturing a dense S sintered body by suppressing expansion during sintering without pressure sintering.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、成形段階で可能な限り高密度な成形体を作り
、旋盤などで加工した後、高強度で低熱膨張率の特性を
有するモールド中にすき間なく挿入して、モールドごと
不活性雰囲気中で焼結するものである。低熱膨張率のモ
ールドを用いるので、焼結過程のIa!張を極力抑える
ことが出来、市販の成形体に近い密度を有する焼結体の
製造が可能である。
The present invention involves making a compact as dense as possible in the molding stage, processing it using a lathe, etc., and then inserting the compact into a mold with high strength and low coefficient of thermal expansion without any gaps, and placing the entire mold in an inert atmosphere. It is sintered with Since a mold with a low coefficient of thermal expansion is used, the Ia! It is possible to suppress tension as much as possible, and to produce a sintered body having a density close to that of commercially available molded bodies.

モールドは低熱膨張性でかつ、焼結過程の膨張に打ちか
つような強度を有することが必要である。また耐熱温度
が1700℃以上必要なので、材料には黒鉛、A見N、
B4 C,TiC1TiB2が好ましい。
The mold needs to have low thermal expansion and strength to overcome the expansion during the sintering process. In addition, the heat resistance temperature needs to be over 1700℃, so the materials include graphite, AmiN,
B4C, TiC1TiB2 are preferred.

また成形体は高密度にするほど良い、BN粒自体は潤滑
性を有するので成形性に優れている。ラバープレス成形
で5〜lOt/cm’の高圧力を加えれば理論密度の8
5〜90%に到達する。
Furthermore, the higher the density of the molded product, the better; the BN grains themselves have lubricity, so they have excellent moldability. If high pressure of 5 to 10t/cm' is applied during rubber press molding, the theoretical density will be 8.
Reach 5-90%.

本発明方法は、 ■高密度成形体の成形 ■機械加工 (■低熱膨張性モールドへの挿入 ■焼成 の4工程からなる。以下、順次説明する。The method of the present invention includes ■Molding of high-density compacts ■Machining (■ Insertion into low thermal expansion mold ■Baking It consists of four steps. The explanation will be given below.

成形体の成形方法にはラバープレス法、金型法がある。Methods for forming the molded body include a rubber press method and a mold method.

ラバープレス法はゴム型に充てんした粉体に等方的に圧
力を加え、圧縮成形を行う方法で、均−密度及び粒子配
向の少い成形体を得ることができる。BN粉の形状は六
角板状であり、金型法のような一軸成形では粒子配向を
起こすので、等方圧成形のラバープレス法が適している
The rubber press method is a method in which compression molding is performed by isotropically applying pressure to powder filled in a rubber mold, and it is possible to obtain a molded product with uniform density and low particle orientation. The shape of BN powder is a hexagonal plate, and since uniaxial molding such as a mold method causes particle orientation, a rubber press method of isostatic pressure molding is suitable.

第1図は成形体密度とラバープレス圧力との関係を示す
、へ曲線はBN粉をスプレードライヤーで造粒した場合
を示し、3曲線は造粒なしの場合を示す、造粒した原料
を用いると成形体密度が向上する。第1図のBN粉は1
醜を原料として製造したものである。
Figure 1 shows the relationship between compact density and rubber press pressure. The curve 1 shows the case where BN powder is granulated with a spray dryer, and the 3rd curve shows the case without granulation, using granulated raw materials. and the density of the compact is improved. The BN powder in Figure 1 is 1
It is manufactured using ugliness as a raw material.

ラバープレス圧力を5〜10Ton/crn’に選んだ
理由は以下の通りである。ラバープレス圧力が5Ton
/crn”までは成形体密度の向上が著しいが5Ton
/Cm’を越えると密度の向上は鈍り、10Ton/c
m’以上では向上しない。BN焼結体の密度は高いほど
良いが、理論密度の85%以上あれば、実用に供しうる
The reason why the rubber press pressure was selected to be 5 to 10 Ton/crn' is as follows. Rubber press pressure is 5Ton
/crn”, the density of the compact is significantly improved, but up to 5Ton
/Cm', the increase in density slows down to 10T/c
There is no improvement above m'. The higher the density of the BN sintered body, the better, but it can be put to practical use if it is 85% or more of the theoretical density.

本発明の焼結法はBN成形体の密度を保持しつつ焼結体
を製造する方法であるので、理論密度の85%焼結体は
、う八−プレス5Ton/cm’で作った成形体により
達成でさる。
Since the sintering method of the present invention is a method for producing a sintered body while maintaining the density of the BN compact, a sintered body with a theoretical density of 85% is a compact made using an Uhachi press of 5 Ton/cm'. Achieved by monkey.

次に成形体はモールドに挿入するが、両者のすき間は狭
いほど良い、成形体は旋盤加工によって仕上げるために
強度が必要であるが、5Ton/crn’ラバープレス
の成形体は加工に耐えられる強度を有する。一方、モー
ルドは耐熱性高温強度、低膨張率の性質を有する材料で
なければならない、Bed、Cr203 、AjlN、
B4 C。
Next, the molded body is inserted into the mold, and the narrower the gap between the two, the better.The molded body needs strength because it is finished by lathe processing, but the molded body of the 5Ton/crn' rubber press is strong enough to withstand the machining. has. On the other hand, the mold must be made of a material that has the properties of heat resistance, high temperature strength, and low expansion coefficient, such as Bed, Cr203, AjlN,
B4 C.

TiB2.黒鉛が使用可能で、これらの材料の線膨張率
は1100℃において1%以下である。
TiB2. Graphite can be used, and the coefficient of linear expansion of these materials is less than 1% at 1100°C.

モールドはBN成形体を挿入した後、成形体の上下方向
に対する膨張を抑えるためにBN成形体に接触する栓で
両端を閉じる。栓はモールドと同一の材質を用いる。焼
結過程で、BN成形体中の揮発分が蒸発するので、モー
ルドや栓には小孔を設ける。また、2分割式モールドを
用いて焼結すれば、焼結体の取り出しは容易である。
After the BN molded body is inserted into the mold, both ends of the mold are closed with plugs that contact the BN molded body to suppress vertical expansion of the molded body. The plug is made of the same material as the mold. During the sintering process, the volatile matter in the BN molded body evaporates, so small holes are provided in the mold and plug. Further, if sintering is performed using a two-part mold, the sintered body can be easily taken out.

焼結温度を1700〜2000℃に限定する理由として
、1700℃以下では焼結中の結晶化および粒成長が不
十分であり、焼結中の緻密化が進まない、一方、200
0″C以上では焼結助剤となるB2O3が蒸発して減少
するので、液相を介しての焼結が進まず粒成長が十分に
起こらない、また、モールドの高温強度が低下するので
、2000℃が限界である。
The reason why the sintering temperature is limited to 1700 to 2000°C is that below 1700°C, crystallization and grain growth during sintering are insufficient, and densification during sintering does not proceed.
At temperatures above 0''C, the sintering aid B2O3 evaporates and decreases, so sintering through the liquid phase does not proceed and sufficient grain growth does not occur, and the high temperature strength of the mold decreases. The limit is 2000°C.

〔実施例〕〔Example〕

BN粉末(−14m97%)にB2O3粉末3%、PV
A1%添加してボールミルでエチルアルコール中で24
時時間式混合した。混合物はスプレードライヤー(かけ
て30〜50ALmに造粒した。造粒物はゴム型(30
mm内径X300mm長さ)に振動充填した後、高圧ラ
バープレスを用いて圧カフ000kg/crrr”で成
形した。成形体の寸法は18.3mm径、長さ280m
mである。a形体は表面を加工して18− Om m径
に仕上げ黒鉛モールドに挿入した。黒鉛モールドは肉厚
10mmで縦方向2分割を合わせ、外側に肉厚10mm
のリングをはめる構造である。モールドの上下部はネジ
加工した黒鉛円柱にて密閉した。高周波加熱の黒鉛容器
中にモールドを入れ1900℃で30分間、N2気流中
で焼結した。
BN powder (-14m97%), B2O3 powder 3%, PV
24 in ethyl alcohol with addition of 1% A
Mixed time-wise. The mixture was granulated using a spray dryer (30 to 50 ALm).
After vibration-filling into a tube (mm inner diameter x 300 mm length), it was molded using a high-pressure rubber press at a pressure cuff of 000 kg/crrr.The molded body had a diameter of 18.3 mm and a length of 280 m.
It is m. The surface of the A-shaped body was processed to have a diameter of 18-0 mm, and the shape was inserted into a graphite mold. The graphite mold has a wall thickness of 10 mm, and the two vertical divisions are aligned, and the outer wall is 10 mm thick.
It has a structure that allows you to fit a ring. The upper and lower parts of the mold were sealed with threaded graphite cylinders. The mold was placed in a high-frequency heated graphite container and sintered at 1900° C. for 30 minutes in a N2 stream.

黒鉛モールドから取り出した焼結体は18.5 m m
径長さ28.2 m mで、かさ比重1.95気孔率は
13.4%である。常温曲げ強度はa、6kg/mm”
、  1500℃と空冷とを10回繰返した後の曲げ強
度は2.6kg/mtn’である。
The sintered body taken out from the graphite mold is 18.5 mm.
The diameter and length are 28.2 mm, the bulk specific gravity is 1.95, and the porosity is 13.4%. Room temperature bending strength is a, 6kg/mm”
The bending strength after repeating 1500° C. and air cooling 10 times is 2.6 kg/mtn'.

〔発明の効果〕〔Effect of the invention〕

BN焼結体を熱間高圧焼結法以外の方法にて焼結を可能
にした。この発明は製造費の低下、生産性の向上の効果
を奏する。
It has become possible to sinter a BN sintered body by a method other than hot high-pressure sintering. This invention has the effect of reducing manufacturing costs and improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はラバープレス圧力と成形体密度との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between rubber press pressure and compact density.

Claims (1)

【特許請求の範囲】[Claims] 1 六方晶窒化硼素を5〜10t/cm^2の圧力にて
ラバープレス成形し、機械加工した後、低熱膨張性モー
ルドに挿入し、両端を該モールドと同一の材質でBN成
形体に接触して閉じ、その後、1700〜2000℃の
範囲の温度にて非酸化性雰囲気下で焼成することを特徴
とするBN焼結体の製造方法。
1 Hexagonal boron nitride is rubber press molded at a pressure of 5 to 10 t/cm^2, machined, then inserted into a low thermal expansion mold, and both ends are made of the same material as the mold and brought into contact with the BN molded body. A method for producing a BN sintered body, comprising: closing the BN sintered body, and then firing the BN sintered body at a temperature in the range of 1700 to 2000°C in a non-oxidizing atmosphere.
JP59251334A 1984-11-28 1984-11-28 Manufacture of boron nitride sintered body Pending JPS61132563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251334A JPS61132563A (en) 1984-11-28 1984-11-28 Manufacture of boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251334A JPS61132563A (en) 1984-11-28 1984-11-28 Manufacture of boron nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61132563A true JPS61132563A (en) 1986-06-20

Family

ID=17221274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251334A Pending JPS61132563A (en) 1984-11-28 1984-11-28 Manufacture of boron nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61132563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063184A (en) * 1987-04-01 1991-11-05 Agency Of Industrial Science And Technology Pressureless sintered body of boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063184A (en) * 1987-04-01 1991-11-05 Agency Of Industrial Science And Technology Pressureless sintered body of boron nitride

Similar Documents

Publication Publication Date Title
CN110590377B (en) High beta-phase compact silicon nitride ceramic and low-temperature preparation method
JPS6047225B2 (en) Manufacturing method for densified silicon products
GB2093481A (en) Sintered high density refractory compositions
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
CN101734920B (en) Titanium nitride porous ceramics and preparation method thereof
JPS59207882A (en) Manufacture of aluminum nitride sintered body
US3720740A (en) Low pressure sintering of boron nitride using low thermal expansion static sintering molds
JPS5832072A (en) Aluminum nitride sintered body and manufacture
JPS61132563A (en) Manufacture of boron nitride sintered body
JPH04130065A (en) Method of forming high-density metal boride complex
US5928583A (en) Process for making ceramic bodies having a graded porosity
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPS6256368A (en) Manufacture of silicon carbide sintered body
JP2614874B2 (en) Pressureless sintered boron nitride compact
JPS61201662A (en) Manufacture of composite ceramics
JPH0453831B2 (en)
JPS61168570A (en) Boron nitride sintered body and manufacture
JPS6235995B2 (en)
JPS6359993B2 (en)
CN117088690A (en) Preparation method of high-heat-conductivity diamond-silicon carbide composite ceramic and heat dissipation substrate
JPS62202866A (en) Manufacture of boron nitride sintered body
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPS6287461A (en) Manufacture of high density silicon carbide sintered body
JPS61178470A (en) Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools
CN113185290A (en) High-density ceramic material and preparation method and application thereof