JPS63233077A - Silicon nitride base composite sintered body - Google Patents

Silicon nitride base composite sintered body

Info

Publication number
JPS63233077A
JPS63233077A JP62200640A JP20064087A JPS63233077A JP S63233077 A JPS63233077 A JP S63233077A JP 62200640 A JP62200640 A JP 62200640A JP 20064087 A JP20064087 A JP 20064087A JP S63233077 A JPS63233077 A JP S63233077A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
composite sintered
base composite
nitride base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62200640A
Other languages
Japanese (ja)
Inventor
裕 久保
久雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPS63233077A publication Critical patent/JPS63233077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性を有する窒化珪素基複合焼結体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride-based composite sintered body having electrical conductivity.

〔従来の技術〕[Conventional technology]

反応焼結による窒化珪素基焼結体は、Si粉末を所定の
形に成形した後、窒素雰囲気中1300〜1500℃程
度の温度でSiを窒化焼結することにより得られる(例
えば特開昭50−75207号など)。反応焼結により
得られる焼結体は、焼結時の収縮がほとんとないのが大
きな特徴であり、他方法による緻密な焼結体において問
題となる焼結時の変形。
A silicon nitride-based sintered body by reaction sintering can be obtained by forming Si powder into a predetermined shape and then nitriding and sintering the Si at a temperature of about 1300 to 1500°C in a nitrogen atmosphere (for example, as described in Japanese Patent Application Laid-Open No. -75207 etc.). A major feature of the sintered bodies obtained by reaction sintering is that there is almost no shrinkage during sintering, and deformation during sintering is a problem with dense sintered bodies produced by other methods.

焼結残留応力等を回避することができる。また。Sintering residual stress etc. can be avoided. Also.

多孔質であることも一つの大きな特徴である。Another major feature is that it is porous.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の反応焼結窒化珪素基焼結体は、絶縁体で
あるため金属溶融用のるつぼ等の限ら九た用途でしか使
われず電子部品、機械装置等への応用はほとんどなされ
ていない。また反応焼結窒化珪素基焼結体は、常圧焼結
体等で作成した緻密な焼結体と比べれば加工性は良いが
、それでも微細な穴加工等はほとんど行なうことができ
ない。
However, since conventional reaction-sintered silicon nitride-based sintered bodies are insulators, they are used only in limited applications such as crucibles for melting metals, and have hardly been applied to electronic parts, mechanical devices, etc. Further, although the reaction-sintered silicon nitride-based sintered body has better workability than a dense sintered body made from an atmospheric pressure sintered body, it is still almost impossible to form minute holes.

本発明の目的は導電性化合物を含み導電性を有する反応
焼結法による窒化珪素基複合焼結体を提供することであ
る。
An object of the present invention is to provide a silicon nitride-based composite sintered body produced by a reactive sintering method, which contains a conductive compound and has conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は導電性化合物を20〜70vo1%含み導電性
を有し、10%を越える気孔を含むことを特徴とする反
応焼結法による窒化珪素基複合焼結体である。
The present invention is a silicon nitride-based composite sintered body produced by a reactive sintering method, which is characterized by containing 20 to 70 vol% of a conductive compound, having conductivity, and containing more than 10% of pores.

ここで導電性化合物としては、窒化珪素基焼結体の持つ
耐熱性を損なわないために高融点の化合物であることが
望ましい。例えばIVa、 Va、 VIa族の窒化物
、酸窒化物がこれに相当し望ましいが、反応焼結中にこ
れら窒化物に変化する酸化物、珪化物、水素化物等の化
合物あるいは金属、金属間化合物等を用いることも可能
である。これら化合物の量を20〜70vo1%とする
のは、20vo1%未満では、導電性化合物粒子の相互
の接触が不十分であり、導電性を生じないためであり、
70vo1%を越えると焼結性が低下し、気孔率が急増
するからである。
Here, the conductive compound is preferably a compound with a high melting point so as not to impair the heat resistance of the silicon nitride-based sintered body. For example, nitrides and oxynitrides of groups IVa, Va, and VIa are suitable and desirable, but compounds such as oxides, silicides, and hydrides, or metals and intermetallic compounds that convert into nitrides during reaction sintering are also suitable. It is also possible to use . The reason why the amount of these compounds is set to 20 to 70 vol% is because if it is less than 20 vol%, the mutual contact of the conductive compound particles is insufficient and no conductivity occurs.
This is because if it exceeds 70 vol%, the sinterability will decrease and the porosity will increase rapidly.

原料としては、上記導電性化合物とSLが主原料となる
が、これに適宜S i3 N 4 tサイアロン。
The main raw materials are the above-mentioned conductive compound and SL, and optionally Si3N4tsialon.

A1□O,、AINなどの粉末を添加することもできる
Powders such as A1□O, AIN, etc. can also be added.

また気孔率が10%を越えるようにするのは、反応焼結
法では気孔率を10%以下にすることは困蔑であること
、および気孔率10%以下であると開気孔を利用した用
途に適さなくなるためである。
In addition, the reason why the porosity should exceed 10% is that it is difficult to reduce the porosity to less than 10% in the reaction sintering method. This is because it becomes unsuitable for

〔実施例〕〔Example〕

以下本発明を実施例によりさらに詳しく説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例I Si粉末(粒径1.1μm)、TiN粉末(粒径1.5
μm)を原料とし、焼結体中のTiNの量が第1表のよ
うになるよう所定の割合に混合、加圧成形の後1400
℃、72時間の反応焼結を行なった(昇温速度は100
℃/H,N、−10%Ar気流中)。得られた焼結体の
特性を第1表に示す。
Example I Si powder (particle size 1.1 μm), TiN powder (particle size 1.5
μm) as a raw material, mixed at a predetermined ratio so that the amount of TiN in the sintered body is as shown in Table 1, and after pressure molding, 1400
Reaction sintering was performed at ℃ for 72 hours (heating rate was 100
°C/H, N, -10% Ar flow). Table 1 shows the properties of the obtained sintered body.

第  1  表 実施例2 Si粉末(粒径1゜1μm)と各種導電性化合物粉末(
粒径1.5〜3.5μm)を用い、焼結体中の導電性化
合物の量が40vo1%となるよう所定の割合に混合、
加圧成形の後、実施例1と同一の焼結条件で反応焼結を
行なった。得られた焼結体の特性を第2表に示す。
Table 1 Example 2 Si powder (particle size 1° 1 μm) and various conductive compound powders (
(particle size 1.5 to 3.5 μm), mixed at a predetermined ratio so that the amount of conductive compound in the sintered body is 40vol%,
After pressure forming, reaction sintering was performed under the same sintering conditions as in Example 1. The properties of the obtained sintered body are shown in Table 2.

第2表 以上の実施例より導電性化合物を20〜70vo1%添
加することにより良好な導電性を持つ、反応焼結窒化珪
素基複合焼結体が得られることがわかる。
From the Examples shown in Table 2 and above, it can be seen that by adding 20 to 70 vol% of a conductive compound, a reaction-sintered silicon nitride-based composite sintered body having good conductivity can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、反応焼結窒化珪素に導電性を付与した
窒化珪素基複合焼結体を得ることができる。
According to the present invention, it is possible to obtain a silicon nitride-based composite sintered body in which conductivity is imparted to reaction-sintered silicon nitride.

これにより、従来の金属溶湯用るつぼ等の限られた分野
に加え、導電性を利用した極めて広い分野への適用が可
能となる。
This makes it possible to apply it not only to limited fields such as conventional crucibles for molten metal, but also to an extremely wide range of fields that utilize conductivity.

すなわちヒーター材料、黒鉛に代替するブラシ材料等の
導電性を持っ耐摩材料、連続気孔を利用した気体反応用
媒体、放電加工を用いる構造部品等広範囲の分野におい
ての使用が可能となる。
That is, it can be used in a wide range of fields such as heater materials, conductive and wear-resistant materials such as brush materials replacing graphite, gas reaction media using continuous pores, and structural parts using electrical discharge machining.

Claims (1)

【特許請求の範囲】 1 導電性化合物を20〜70vol%含み導電性を有
し、10%を越える気孔を含むことを特徴とする反応焼
結法による窒化珪素基複合焼結体。 2 導電性化合物としてIVa、Va、VIa族の窒化物、
酸窒化物のうち1種以上の化合物を用いる特許請求の範
囲第1項記載の窒化珪素基複合焼結体。
[Scope of Claims] 1. A silicon nitride-based composite sintered body produced by a reactive sintering method, characterized in that it contains 20 to 70 vol% of a conductive compound, has conductivity, and contains more than 10% of pores. 2 Nitride of group IVa, Va, VIa as a conductive compound,
The silicon nitride-based composite sintered body according to claim 1, which uses one or more compounds among oxynitrides.
JP62200640A 1986-11-14 1987-08-11 Silicon nitride base composite sintered body Pending JPS63233077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-271018 1986-11-14
JP27101886 1986-11-14

Publications (1)

Publication Number Publication Date
JPS63233077A true JPS63233077A (en) 1988-09-28

Family

ID=17494262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62200640A Pending JPS63233077A (en) 1986-11-14 1987-08-11 Silicon nitride base composite sintered body

Country Status (1)

Country Link
JP (1) JPS63233077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247716A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Reaction sintering silicon nitride-based sintered body and its producing process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200265A (en) * 1981-05-31 1982-12-08 Sumitomo Electric Industries Silicon nitrogen member and manufacture
JPS5841771A (en) * 1981-08-31 1983-03-11 住友電気工業株式会社 Silicon nitride sintered body
JPS5860677A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Manufacture of high tenacity silicon nitride sintered body
JPS61207927A (en) * 1985-03-12 1986-09-16 Fueroo:Kk Stable measuring method for ultrasonic level instrument
JPS6283377A (en) * 1985-10-04 1987-04-16 日本特殊陶業株式会社 Manufacture of composite sintered body
JPS63185864A (en) * 1986-09-05 1988-08-01 株式会社日立製作所 Composite ceramics and manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200265A (en) * 1981-05-31 1982-12-08 Sumitomo Electric Industries Silicon nitrogen member and manufacture
JPS5841771A (en) * 1981-08-31 1983-03-11 住友電気工業株式会社 Silicon nitride sintered body
JPS5860677A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Manufacture of high tenacity silicon nitride sintered body
JPS61207927A (en) * 1985-03-12 1986-09-16 Fueroo:Kk Stable measuring method for ultrasonic level instrument
JPS6283377A (en) * 1985-10-04 1987-04-16 日本特殊陶業株式会社 Manufacture of composite sintered body
JPS63185864A (en) * 1986-09-05 1988-08-01 株式会社日立製作所 Composite ceramics and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247716A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Reaction sintering silicon nitride-based sintered body and its producing process

Similar Documents

Publication Publication Date Title
US4351787A (en) Process for sintering reaction bonded silicon nitride
US4320204A (en) Sintered high density boron carbide
JPH0768066B2 (en) Heat resistant composite and method for producing the same
US5773733A (en) Alumina-aluminum nitride-nickel composites
JPH09268072A (en) Production of silicon nitride sintered compact
JPS63233077A (en) Silicon nitride base composite sintered body
JPS58213677A (en) Silicon nitride composite sintered body
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH0224789B2 (en)
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH025711B2 (en)
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPH01192767A (en) Production of silicon nitride-based complex sintered compact
JPS61201662A (en) Manufacture of composite ceramics
JPS61281059A (en) Manufacture of electroconductive ceramic sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
KR910003901B1 (en) Manufacture method of sic sintering material
JPS6126566A (en) Method of sintering sic composite body
JPH0321502B2 (en)
JPH0568428B2 (en)
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPS6236068A (en) Manufacture of composite ceramics
JPH0435436B2 (en)
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same