JPH04357167A - Ceramics heater - Google Patents

Ceramics heater

Info

Publication number
JPH04357167A
JPH04357167A JP3129901A JP12990191A JPH04357167A JP H04357167 A JPH04357167 A JP H04357167A JP 3129901 A JP3129901 A JP 3129901A JP 12990191 A JP12990191 A JP 12990191A JP H04357167 A JPH04357167 A JP H04357167A
Authority
JP
Japan
Prior art keywords
heater
silicon carbide
silicon
ceramic
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3129901A
Other languages
Japanese (ja)
Other versions
JP2685370B2 (en
Inventor
Zenichi Inoue
善一 井上
Tetsuo Moriyama
森山 徹夫
Masaaki Nishibe
西部 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3129901A priority Critical patent/JP2685370B2/en
Publication of JPH04357167A publication Critical patent/JPH04357167A/en
Application granted granted Critical
Publication of JP2685370B2 publication Critical patent/JP2685370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a ceramics heater free from partial ununiformity of temperature by mutually bonding hydrofluoric acid-treated silicon carbide particles into a porous aggregate using silicon nitride generated by nitriding of metallic silicon and attaching electrode units to a sintered molding of the porous aggregate. CONSTITUTION:Silicon carbide particles are subjected to high-purification treatment of a metallic silicon powder with a hydrofluoric acid-containing acid and and then a molding assistant (e.g. high-molecular cellulose resin) and water are blended therewith. The resultant mixture is formed into a desired shape and dried. The dried material is then heated and sintered in an atmosphere of nitrogen gas so that the silicon carbide particles may be mutually bonded into a porous aggregate by silicon nitride generated by nitriding of metallic silicon. An electroconductive ceramics sintered molding having 0.1-100cm resistivity is produced thereby and a pair of electrode units are then attached to the resultant sintered molding, thus obtaining the objective ceramic heater. This ceramics heater is suitably used as a heater for a rice cooker, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はセラミックスヒータに
関し、さらに具体的には炊飯器用発熱体やホットプレー
ト熱板など主に電化製品に使用される発熱体として利用
できるセラミックスヒータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater, and more specifically to a ceramic heater that can be used as a heating element for use in electrical appliances, such as heating elements for rice cookers and hot plates.

【0002】0002

【従来の技術】従来の発熱ヒータは図14〜17に示す
ごとくシーズヒータ22と熱板21とを一体化し、シー
ズヒータ22からの熱が熱伝導で熱板21につたわり放
熱される構造体で、シーズヒータ22周囲部分とシーズ
ヒータ22無き部分との温度差が発生する構造体のもの
で調理器等に用いられるものが知られている(例えば、
特公昭54−67070公報,特公昭55−43804
公報, 特公昭55−48460公報参照)。
[Prior Art] A conventional heat generating heater is a structure in which a sheathed heater 22 and a hot plate 21 are integrated as shown in FIGS. 14 to 17, and the heat from the sheathed heater 22 is transferred to the hot plate 21 by thermal conduction and is radiated. There are known types of structures that generate a temperature difference between the area around the sheathed heater 22 and the area without the sheathed heater 22, which are used in cooking appliances, etc. (for example,
Special Publication No. 54-67070, Special Publication No. 55-43804
(Refer to Japanese Patent Publication No. 55-48460).

【0003】0003

【発明が解決しようとする課題】従来のシーズヒータを
利用した上述のごとき熱板は、シーズヒータからの熱伝
導を利用した構造体のため、 シーズヒータ周囲部分と
シーズヒータ無き部分との温度差が大きく発生する欠点
があった。この発明は以上の事情を艦みなされたもので
、温度差がほとんど無く発熱することができる発熱体(
ヒータ)を提供することを主たる目的とする。
[Problem to be solved by the invention] The above-mentioned heat plate using a conventional sheathed heater has a structure that utilizes heat conduction from the sheathed heater, so there is a temperature difference between the area around the sheathed heater and the area without the sheathed heater. There was a drawback that a large amount of This invention was developed in consideration of the above circumstances, and is a heating element (
The main purpose is to provide heaters.

【0004】0004

【課題を解決するための手段及び作用】この発明によれ
ば、弗化水素酸を含む酸により高純度化処理された炭化
珪素粒子が金属シリコンの窒化により生成する窒化珪素
で多孔状に結合されてなる、0.1〜100Ω・cmの
比抵抗を有する導電性セラミックス焼結成形体と、この
焼結成形体に付設された1対の電極部とからなるセラミ
ックスヒータが提供される。
[Means and effects for solving the problems] According to the present invention, silicon carbide particles that have been highly purified with an acid including hydrofluoric acid are bonded in a porous manner with silicon nitride produced by nitriding metal silicon. A ceramic heater is provided that includes a conductive ceramic sintered body having a specific resistance of 0.1 to 100 Ω·cm and a pair of electrode parts attached to the sintered body.

【0005】上記炭化珪素粒子は、導電性セラミックス
焼結成形体(又は焼結体)を構成するためのものであっ
て、通常99重量%以上の純度を有すると共に1〜10
μmの平均粒径を有するものが好ましい。この中でも2
〜7μmの平均粒径を有するものが特に好ましい。 平
均粒径が10μm超では、成型機の摩耗が著しく製造上
問題があると同時に摩耗粉が原料内に混入し、焼結物の
物性及び電気特性に悪い影響を与える。また、1μm未
満では、炭化径素粉の高純度化が困難でかつ成形性が悪
くなり焼結体の電気特性のバラツキが大きくなる。この
炭化珪素粒子は、炭素粉末とケイ石を間接式抵抗炉で1
800〜1900℃に加熱して得られる市販の炭化珪素
粒子に比べて粒子表面に存在する酸化珪素や鉄分等の不
純物の極めて少ないものを用いることができる。この炭
化珪素粒子の製造は、例えば市販の平均粒径1〜10μ
mの炭化珪素を弗化水素酸を含む酸水溶液で処理して行
うことができる。 この弗化水素酸を含む酸は、弗化水素酸のみを用いても
よいが、弗化水素酸とそれ以外の酸を混合して用いても
よい。弗化水素酸以外の酸としては、硝酸、塩酸、硫酸
等であり、これらの酸を混合した弗化水素酸水溶液も用
いることができる。
The silicon carbide particles are used to constitute a conductive ceramic sintered body (or sintered body), and usually have a purity of 99% by weight or more and a purity of 1 to 10% by weight.
Those having an average particle size of μm are preferred. Among these, 2
Particularly preferred are those with an average particle size of ~7 μm. If the average particle size exceeds 10 μm, the molding machine will be significantly worn, which will cause problems in production, and at the same time, abrasion powder will be mixed into the raw material, adversely affecting the physical properties and electrical properties of the sintered product. Furthermore, if the diameter is less than 1 μm, it is difficult to obtain a high purity carbonized powder, and the moldability deteriorates, resulting in large variations in the electrical properties of the sintered body. These silicon carbide particles are produced by combining carbon powder and silica stone in an indirect resistance furnace.
Compared to commercially available silicon carbide particles obtained by heating to 800 to 1900° C., particles with significantly less impurities such as silicon oxide and iron present on the particle surface can be used. The silicon carbide particles can be manufactured using, for example, commercially available average particle diameters of 1 to 10 μm.
This can be carried out by treating silicon carbide (m) with an acid aqueous solution containing hydrofluoric acid. As the acid containing hydrofluoric acid, only hydrofluoric acid may be used, or a mixture of hydrofluoric acid and other acids may be used. Examples of acids other than hydrofluoric acid include nitric acid, hydrochloric acid, and sulfuric acid, and an aqueous hydrofluoric acid solution containing a mixture of these acids can also be used.

【0006】上記窒化珪素は、炭化珪素粒子を多孔状に
結合させるためのものであって、平均粒径1〜10μm
の金属珪素粉末を炭化珪素粒子と混合し、この金属珪素
粉末を窒化させると共に炭化珪素粒子間にわたって結着
させて用いることができる。この発明における導電性セ
ラミックス焼結成形体は、電気エネルギーにより発熱す
るヒータを構成するためのものであって、比抵抗が0.
1〜100Ω・cm、好ましくは0.5〜50Ω・cm
のものを用いることができる。
[0006] The silicon nitride is used to bond silicon carbide particles in a porous manner, and has an average particle diameter of 1 to 10 μm.
It can be used by mixing metal silicon powder with silicon carbide particles, nitriding the metal silicon powder, and binding it between the silicon carbide particles. The conductive ceramic sintered compact according to the present invention is used to configure a heater that generates heat using electrical energy, and has a specific resistance of 0.
1 to 100Ω・cm, preferably 0.5 to 50Ω・cm
can be used.

【0007】次に、この発明における導電性セラミック
ス焼結成形体の製造方法について述べる。 すなわち、 弗化水素酸を含む酸により純度99重量%
以上に高純度化処理された平均粒径1〜10μmの炭化
珪素粉末60〜90重量部と平均粒径1〜10μmの金
属珪素粉末10〜40重量部からなる原料に、成形助剤
と水を加えて混合し、この混合物を、所定形状に成形し
た後窒素雰囲気中で加熱焼結することによって導電性セ
ラミックス焼結成形体を得ることができる。
Next, a method for manufacturing a conductive ceramic sintered body according to the present invention will be described. That is, the purity is 99% by weight with an acid including hydrofluoric acid.
A molding aid and water are added to the raw material consisting of 60 to 90 parts by weight of silicon carbide powder with an average particle size of 1 to 10 μm and 10 to 40 parts by weight of silicon metal powder with an average particle size of 1 to 10 μm, which have been highly purified as described above. A conductive ceramic sintered body can be obtained by adding and mixing, molding this mixture into a predetermined shape, and heating and sintering it in a nitrogen atmosphere.

【0008】原料としては、弗化水素酸により純度99
重量%以上に高純度化された平均粒径1〜10μmの炭
化珪素粉末60〜90重量部と平均粒径1〜10μmの
金属珪素粉末10〜40重量部からなる原料を用いる。 上記炭化珪素粉末の量は、60重量部未満では得られる
導電性セラミックス焼結成形体の比抵抗が大きくなるの
で好ましくなく、90重量部超では強靭性が低下するの
で好ましくない。この中でも特に65〜75重量部が好
ましい。
[0008] As a raw material, purity of 99% is obtained using hydrofluoric acid.
A raw material consisting of 60 to 90 parts by weight of silicon carbide powder with an average particle size of 1 to 10 μm and 10 to 40 parts by weight of silicon carbide powder with an average particle size of 1 to 10 μm, which is highly purified to a weight percent or higher, is used. If the amount of the silicon carbide powder is less than 60 parts by weight, the specific resistance of the resulting conductive ceramic sintered body will increase, which is not preferable, and if it exceeds 90 parts by weight, the toughness will decrease, which is not preferable. Among these, 65 to 75 parts by weight is particularly preferred.

【0009】上記金属珪素粉末の量は、10重量部未満
では得られる導電性セラミックス焼結成形体の強靭性が
低下するので好ましくなく、40重量部超では比抵抗が
大きくなるので好ましくない。この中でも特に25〜3
5重量部が好ましい。上述の原料に成形助剤と水を加え
て混合する。成形助剤は、有機樹脂バインダー、界面活
性剤等が挙げられ、通常炭化珪素粉末と金属珪素粉末の
合計量100重量部に対して5〜20重量部用いること
ができる。水は、通常15〜30重量部用いることがで
きる。
[0009] If the amount of the metal silicon powder is less than 10 parts by weight, the toughness of the resulting conductive ceramic sintered body will decrease, which is not preferable, and if it exceeds 40 parts by weight, the resistivity will increase, which is not preferable. Among these, especially 25-3
5 parts by weight is preferred. A molding aid and water are added to the above raw materials and mixed. Examples of molding aids include organic resin binders, surfactants, and the like, and can be used in an amount of usually 5 to 20 parts by weight based on 100 parts by weight of the total amount of silicon carbide powder and metal silicon powder. Usually 15 to 30 parts by weight of water can be used.

【0010】上記有機樹脂バインダーは、窒素ガス雰囲
気中で1000℃までの加熱で80〜98%が熱分解で
気化され、2〜20%が炭素系物質として残存する有機
樹脂バインダー(例えば高分子セルロース樹脂等)を使
用するのが好ましく、これらのバインダーは焼成時窒素
ガス雰囲気中に微量に含まれる酸素により原料のSiC
及び金属シリコンが酸化されるのを防止することもでき
る。つまり、窒素雰囲気で1000℃まで加熱される時
、2〜20%炭素として残存する有機樹脂系バインダー
を使用するため焼成時窒素ガス雰囲気中に含まれる微量
の酸素と炭素が優先的に反応すると同時に高温時には、
金属シリコンとも反応し一部炭化珪素を生成する。これ
らのことにより原料中の炭化珪素及び金属シリコンが酸
化から防止され、焼成物の比抵抗を下げると共に比抵抗
のバラツキを低減することになる。有機樹脂バインダー
の残存量が2%以下では酸化防止効果が劣り、また20
%以上であると焼結性等に悪影響をおよぼし強度が低下
する。また、界面活性剤としては、例えば脂肪酸ソルビ
タンエステルポリエチレングリコール等の非イオン系界
面活性剤が好ましい。上記混合は、通常ミキサーで混合
し、更にニーダーで混練して行うのが好ましい。
[0010] The above-mentioned organic resin binder is heated to 1000°C in a nitrogen gas atmosphere, and 80 to 98% of the organic resin binder is thermally decomposed and vaporized, and 2 to 20% remains as a carbon-based material (for example, polymer cellulose). It is preferable to use binders such as resins, etc., and these binders are used to bind the raw material SiC due to the trace amount of oxygen contained in the nitrogen gas atmosphere during firing.
It is also possible to prevent metal silicon from being oxidized. In other words, since we use an organic resin binder that remains as 2-20% carbon when heated to 1000°C in a nitrogen atmosphere, the trace amount of oxygen contained in the nitrogen gas atmosphere during firing reacts preferentially with carbon. At high temperatures,
It also reacts with metal silicon to partially produce silicon carbide. These things prevent silicon carbide and metal silicon in the raw materials from being oxidized, lowering the specific resistance of the fired product and reducing variations in the specific resistance. If the residual amount of the organic resin binder is less than 2%, the antioxidant effect will be poor;
% or more, it will have an adverse effect on sinterability, etc., and the strength will decrease. Furthermore, as the surfactant, nonionic surfactants such as fatty acid sorbitan ester polyethylene glycol are preferred. The above mixing is preferably carried out by mixing usually with a mixer and then kneading with a kneader.

【0011】この発明においては、この混合物を、所定
形状に形成し乾燥した後、窒素ガス雰囲気中で加熱焼結
することによって炭化珪素粒子が多孔状に結合されてな
る0.1〜100Ω・cmの比抵抗を有する導電性セラ
ミックス焼結成形体を形成する。 この成形は、例えば
押出成形機、鋳込み成形機等を用いて、例えば板状、ハ
ニカム状、皿状、容器状等の形状として行うことができ
る。
In the present invention, the mixture is formed into a predetermined shape, dried, and then heated and sintered in a nitrogen gas atmosphere to bond silicon carbide particles in a porous form with a diameter of 0.1 to 100 Ω·cm. A conductive ceramic sintered compact having a resistivity of . This molding can be performed using, for example, an extrusion molding machine, a casting molding machine, etc., into a shape such as a plate shape, a honeycomb shape, a dish shape, a container shape, or the like.

【0012】加熱焼結は、上記乾燥した混合物を、窒素
ガス雰囲気中、例えば400〜600℃で2〜6時間加
熱して成形助剤等のガス発生性の物質を除去し、再び窒
素ガス雰囲気中で1300〜1450℃に昇温して2〜
24時間反応焼結させて行うことができる。得られた導
電性セラミックス焼結成形体は、適宜所定の寸法に加工
し、この上に電極を形成して暖房機や調理器等のヒータ
を構成することができる。
Heat sintering is performed by heating the dried mixture in a nitrogen gas atmosphere at, for example, 400 to 600°C for 2 to 6 hours to remove gas-generating substances such as forming aids, and then returning the mixture to a nitrogen gas atmosphere. Raise the temperature to 1300-1450℃ in a 2-
This can be carried out by reaction sintering for 24 hours. The obtained conductive ceramic sintered molded body can be appropriately processed to a predetermined size, and electrodes can be formed thereon to constitute a heater for a space heater, a cooking device, or the like.

【0013】弗化水素酸を含む酸が、炭化珪素粒子表面
に存在する酸化珪素や鉄分を溶解除去して炭化珪素粒子
を高純度化し、高純度化処理された炭化珪素が導電性セ
ラミックス焼結成形体を構成して比抵抗を下げる。また
、窒素ガス雰囲気で炭化珪素粒子と共に金属珪素を加熱
して行う窒化珪素による焼結は炭化珪素粒子が、酸化さ
れることなく、一部窒素原子が炭化珪素粒子内に固溶さ
れ、適度の比抵抗をもつようになり多孔質で軽量かつ強
靭な導電性セラミックス焼結成形体を形成する。
[0013] An acid containing hydrofluoric acid dissolves and removes silicon oxide and iron present on the surface of silicon carbide particles to highly purify the silicon carbide particles, and the highly purified silicon carbide is used to form conductive ceramic sintered materials. Configure the shape to lower specific resistance. In addition, in sintering with silicon nitride, which is performed by heating metal silicon together with silicon carbide particles in a nitrogen gas atmosphere, the silicon carbide particles are not oxidized, and some nitrogen atoms are dissolved in the silicon carbide particles, resulting in a moderate amount of sintering. It has a specific resistance and forms a porous, lightweight, and strong conductive ceramic sintered body.

【0014】この発明においては、導電性セラミックス
焼結成形体に電極部が1対で形設される。この電極部は
上記成形体表面にまず導電層を形成し、その導電層に電
極板を接合して形設されるのが好ましい。導電層の形成
は、例えば上記成形体表面へのアルミニウムの溶射によ
って行う。この発明においては、導電性セラミックス焼
結成形体の表面には上述の電極部形設部分を除いて絶縁
皮膜が形成される。この絶縁皮膜は例えばリチア系とコ
ージライト系釉薬を100μm程度の厚さで塗布し、窒
素ガス雰囲気中で焼成して形成される。
In the present invention, a pair of electrode portions are formed on the conductive ceramic sintered body. This electrode portion is preferably formed by first forming a conductive layer on the surface of the molded body, and then bonding an electrode plate to the conductive layer. The conductive layer is formed, for example, by thermal spraying aluminum onto the surface of the molded body. In this invention, an insulating film is formed on the surface of the conductive ceramic sintered body except for the above-mentioned electrode portion forming portion. This insulating film is formed by applying, for example, a lithium-based and cordierite-based glaze to a thickness of about 100 μm and firing in a nitrogen gas atmosphere.

【0015】[0015]

【 実施例 】以下、図に示す実施例に基づきこの発明
を詳述する。なお、これによってこの発明が限定される
ものではない。まず図1において、セラミックスヒータ
(4)は、板状セラミックス焼結成形体(平面ヒータ素
子)(4a)と、この成形体の裏面の対向二辺に沿って
アルミニウム材の溶射により幅12mm、厚さ100μ
mで形成された電極層(2)(2)と、成形体(4a)
の電極層(2)(2)形成部以外の表面及び裏面に形成
された絶縁部(皮膜)(1)と、電極部(2)(2)表
面に超音波溶接により形成されたアルミニウム製の電極
板(3)(3)とからなる。この電極層(3)(3)と
電極層(2)(2)とで電極部を構成する。
[Embodiments] The present invention will be described in detail below based on embodiments shown in the drawings. Note that this invention is not limited to this. First, in Fig. 1, the ceramic heater (4) consists of a plate-shaped ceramic sintered body (plane heater element) (4a) and an aluminum material sprayed along two opposite sides of the back side of the body to a width of 12 mm and a thickness of 12 mm. 100μ
The electrode layer (2) (2) formed by m and the molded body (4a)
An insulating part (film) (1) formed on the front and back surfaces other than the electrode layer (2) (2) forming part, and an aluminum film formed by ultrasonic welding on the electrode part (2) (2) surface. It consists of electrode plates (3) (3). The electrode layers (3) (3) and the electrode layers (2) (2) constitute an electrode section.

【0016】なお、セラミックス焼結成形体(4a)の
作成は詳しく後述するが、その成形体の表面に成型され
た絶縁部(1)はリチア系とコージライト系釉薬を10
0μmの厚さで塗布し窒素ガス雰囲気中で焼成される。 炭化珪素粉末の作成 炭化粉末(コークス)と珪石粉末との混合物に直線電流
を通ずることによって1800〜1900℃に強熱して
生成した炭化珪素のかたまりを破砕、粉砕、水洗いして
粒度をそろえ、更に、この炭化珪素粉末を弗化水素酸水
溶液で処理して、炭化珪素粉末の表面に製造工程中(炭
化珪素の合成時あるいは粉砕時)生成付着される二酸化
珪素や鉄等の不純物を除去し、平均粒径5.5μm、純
度99%以上の高純度炭化珪素粉末を作製する。得られ
た炭化珪素粉末と比較のための2種市販炭化珪素粉末の
それぞれの平均粒径と純度は、第1表に示すとおりであ
る。
The preparation of the ceramic sintered body (4a) will be described in detail later, but the insulating part (1) molded on the surface of the body is coated with lithium and cordierite glazes.
It is applied to a thickness of 0 μm and fired in a nitrogen gas atmosphere. Preparation of silicon carbide powder A mixture of carbonized powder (coke) and silica powder is ignited to 1,800 to 1,900°C by passing a linear current through it, and the produced silicon carbide lumps are crushed, crushed, and washed with water to make the particle size uniform, and then This silicon carbide powder is treated with an aqueous hydrofluoric acid solution to remove impurities such as silicon dioxide and iron that are generated and adhered to the surface of the silicon carbide powder during the manufacturing process (during the synthesis or pulverization of silicon carbide), High purity silicon carbide powder with an average particle size of 5.5 μm and a purity of 99% or more is produced. The average particle diameter and purity of the obtained silicon carbide powder and two types of commercially available silicon carbide powder for comparison are as shown in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】導電性セラミックス焼結成形体の作製炭化
珪素粉末(純度99%以上、平均粒径5.5μm)70
重量部、金属シリコン粉末(平均粒5.9μm)30重
量部、成形助剤としてメチルセルロース系有機樹脂バイ
ンダー及び脂肪酸ソルビタンエステルポリエチレングリ
コール(非イオン系界面活性剤)合計12重量部、それ
に水21重量部加え、ミキサーで約5分混合する。この
混合物をコンティニアスニーダーで十分混練した後に高
圧真空押出成型機で、厚み1mm、巾70mmのシート
を成形圧力30kg/cm2で押出成形し、板状テスト
ピースとする。これらの乾燥グリーンを窒素ガス雰囲気
中で500℃、3時間脱バインダーした後に窒素ガス雰
囲気中1400℃で6時間反応焼結させて板状のセラミ
ックス焼結成形体を形成した。 導電性セラミックス焼結成形体の物性と電気持性上述の
ように得られた板状導電性セラミックス焼結成形体の物
性値及び比抵抗値は、第2表に示すとおりである。
Production of conductive ceramic sintered compact Silicon carbide powder (purity 99% or more, average particle size 5.5 μm) 70
Parts by weight, 30 parts by weight of metallic silicon powder (average grains 5.9 μm), 12 parts by weight in total of methylcellulose-based organic resin binder and fatty acid sorbitan ester polyethylene glycol (nonionic surfactant) as molding aids, and 21 parts by weight of water. Add and mix with a mixer for about 5 minutes. After thoroughly kneading this mixture using a continuous kneader, a sheet having a thickness of 1 mm and a width of 70 mm is extruded using a high-pressure vacuum extrusion molding machine at a molding pressure of 30 kg/cm 2 to form a plate-shaped test piece. These dried greens were debindered in a nitrogen gas atmosphere at 500°C for 3 hours, and then reacted and sintered in a nitrogen gas atmosphere at 1400°C for 6 hours to form a plate-shaped ceramic sintered body. Physical properties and electrical resistance of the conductive ceramic sintered body The physical properties and specific resistance values of the plate-shaped conductive ceramic sintered body obtained as described above are as shown in Table 2.

【0019】[0019]

【表2】[Table 2]

【0020】上記板状セラミックス焼結成形体は、直径
20mmに切断して電極を形成した後、温度に対する比
抵抗を測定した。この結果、得られた導電性セラミック
ス焼結成形体は、後述の比較例と比べて比抵抗が低くそ
のバラツキが著しく改善されていることが確認された。 比較例1 実例1において、上述のように作成された炭化珪素粉末
を用いる代わりに、第1表に示す市販品Aの炭化珪素粉
末を用い、この他は実例1と同様にして導電性セラミッ
クス焼結成形体を作成した。
The plate-shaped sintered ceramic body was cut into 20 mm diameter pieces to form electrodes, and then the specific resistance with respect to temperature was measured. As a result, it was confirmed that the obtained conductive ceramic sintered compact had a lower resistivity and significantly improved variation in resistivity than the comparative example described below. Comparative Example 1 In Example 1, instead of using the silicon carbide powder prepared as described above, silicon carbide powder of commercial product A shown in Table 1 was used, and conductive ceramics were fired in the same manner as in Example 1. Created a formation.

【0021】この導電性セラミックス焼結成体の比抵抗
は、常温において150Ω・cmであり、高いものであ
った。 比較例2 実例1において、上述のように作成された炭化珪素粉末
を用いる代わりに、第1表に示す市販品Bの炭化珪素粉
末を用い、この他は実例1と同様にして導電性セラミッ
クス焼結成形体の比抵抗は、常温において1940Ω・
cmであり、著しく高いものであった。
The specific resistance of this conductive ceramic sintered body was 150 Ω·cm at room temperature, which was high. Comparative Example 2 In Example 1, instead of using the silicon carbide powder prepared as described above, silicon carbide powder of commercial product B shown in Table 1 was used, and conductive ceramics were fired in the same manner as in Example 1. The specific resistance of the formed body is 1940Ω・at room temperature.
cm, which was extremely high.

【0022】このようにして作られた導電性セラミック
ス焼結成形体は、安価なSiC及び金属シリコンを使用
し、比較的簡単な製造工程で大量生産ができるため低コ
ストで、電気特性のバラツキが極めて少なく低熱膨張率
で耐久性の良い発熱ヒータとなる。 実例2 実例1において、炭化珪素粉末と金属シリコン粉末との
配合比率を70/30とする代わりに、80/20、7
5/25、70/30、65/35と変化させ、この他
は実例1と同様にして導電性セラミックス焼結体を作成
した。得られた板状セラミックス焼結成形体の物性値及
び比抵抗値は、第3表に示すとおりである。
The conductive ceramic sintered compact made in this way uses inexpensive SiC and metal silicon and can be mass-produced through a relatively simple manufacturing process, so it is low cost and has very little variation in electrical properties. It becomes a durable heat generating heater with low coefficient of thermal expansion. Example 2 In Example 1, instead of setting the blending ratio of silicon carbide powder and metal silicon powder to 70/30, it was changed to 80/20, 7
A conductive ceramic sintered body was produced in the same manner as in Example 1 except that the values were changed to 5/25, 70/30, and 65/35. The physical properties and specific resistance values of the obtained plate-shaped ceramic sintered body are as shown in Table 3.

【0023】[0023]

【表3】[Table 3]

【0024】このように、炭化珪素と金属シリコンの配
合比を変化させることにより必要に応じて比抵抗の異な
る焼結体をつくることが可能となる。なお、炭化珪素の
配合率を90%以上にすると強度が著しく低下するため
ヒータ材料としては不適であり、また60%以下にする
と比抵抗が著しく高くなりヒータ材料としては適さない
。 実例3 実例1と同様の原料配合したものを大型押出成形機を用
い厚み2.5mm、 280mmカクのシートを成形圧
力35kg/cm2で押出成形する。これらの成形品を
乾燥後適当な寸法に切断し実例1と同様の条件で焼成す
る。
[0024] Thus, by changing the blending ratio of silicon carbide and metal silicon, it is possible to produce sintered bodies having different specific resistances as required. Note that if the blending ratio of silicon carbide is 90% or more, the strength will drop significantly, making it unsuitable as a heater material, and if it is less than 60%, the specific resistance will become extremely high, making it unsuitable as a heater material. Example 3 A sheet having a thickness of 2.5 mm and a width of 280 mm is extruded using a large extrusion molding machine using the same blend of raw materials as in Example 1 at a molding pressure of 35 kg/cm2. After drying, these molded products were cut into appropriate sizes and fired under the same conditions as in Example 1.

【0025】次に、以上のごとく作成された説明図をセ
ラミックスヒータ(4)を2枚用いると、図2に示すご
とき壁掛用パネルヒータ(11)が得られる。すなわち
、この壁掛用パネルヒータ(11)は、2つのセラミッ
クスヒータ(4)(4)と、これらのセラミックスパネ
ルヒータと重ねられたセラミック繊維からなる断熱板(
5)と、この断熱板とセラミックスヒータ(4)(4)
をそれらの周縁を囲撓し重ねた状態で保持する枠体(6
)とから主としてなる。
Next, when two ceramic heaters (4) are used in the explanatory diagram created as described above, a wall-mounted panel heater (11) as shown in FIG. 2 is obtained. That is, this wall-mounted panel heater (11) includes two ceramic heaters (4) (4) and a heat insulating board (made of ceramic fibers) stacked on these ceramic panel heaters (
5) and this insulation board and ceramic heater (4) (4)
A frame body (6
) and becomes the main character.

【0026】2つのセラミックスヒータ(4)(4)は
、図3の(A)のごとく同一平面内で電極部(2)(2
)が対接するよう接触して並べられ、対接する電極部(
2)(2)に電極板(3)を橋わたしさせ、両ヒータ(
4)(4)を直列接続している。断熱板(5)は、図3
の(B)のごとくセラミックスヒータ(4)(4)をは
め込む凹段部(7)と、電極板(3)を反対側へ突き抜
けさせるための通孔(8)を電極板(3)との接触をさ
けるために備えている。断熱板(5)の外形寸法は、5
95×295×20mmである。
The two ceramic heaters (4) (4) are connected to each other in the same plane as shown in FIG. 3(A).
) are arranged in contact so that they face each other, and the opposing electrode parts (
2) Bridge the electrode plate (3) to (2) and connect both heaters (
4) (4) are connected in series. The insulation board (5) is shown in Figure 3.
As shown in (B), there is a recessed part (7) into which the ceramic heater (4) (4) is fitted, and a through hole (8) for passing the electrode plate (3) through to the opposite side. Prepared to avoid contact. The external dimensions of the heat insulating board (5) are 5
The size is 95 x 295 x 20 mm.

【0027】枠体(6)は、図4において横断面略コ型
のチャンネル形状でアルミニウム又は耐熱合成樹脂の押
出成形によって得られたものを4分割(または2分割)
して構成される。図4の(B)においてa=25mm,
b=15mm,c=2mm である。 製作例1 以上のようにして得られたセラミックパネルヒータ(1
1)は、適当な無機接着剤層(2mm程度)で断熱板(
5)の凹段部(7)内に接着され、外周部に枠体(6)
が嵌め込まれて一体化され完成される。
The frame (6) has a channel shape with a substantially U-shaped cross section in FIG. 4, and is obtained by extrusion molding of aluminum or heat-resistant synthetic resin, and is divided into four parts (or two parts).
It is composed of In FIG. 4(B), a=25mm,
b=15mm, c=2mm. Production example 1 Ceramic panel heater obtained as above (1
1) is a heat insulating board (about 2 mm thick) with a suitable inorganic adhesive layer
5) is glued into the recessed step (7), and the frame (6) is attached to the outer periphery.
are fitted, integrated, and completed.

【0028】なおセラミックパネルヒータ(11)に電
圧が印加されると接着層が乾燥され、一体化される。 製作例2 別製作例として、図5のごとくセラミックパネルヒータ
(11)を離型性の良好な型に置き、更に2mm程度の
半練状の無機接着層(10)を設け、その上に半練状の
セラミック繊維、 断熱材(5)を充填した後、電極板
(3)が通孔(8)を通るように、嵌め込む。電極板(
3)(3)に通電すれば、接着剤層(10)が乾燥して
全体構成が一体化され完成される。  得られた壁掛用
パネルヒータ(11)は、その表面温度が80℃、断熱
板(5)を介した表面温度が50℃以下であった(定格
電圧100V、出力250W)。使用状態を図7の(A
)に示す。壁掛用パネルヒータのアートデザインとして (1)シリコン耐熱塗料等の塗布によるカラー化。 (2)陶器用絵つけによるデザイン模様化。 (3)耐熱顔料によるシルクスクリーン、転写によるデ
ザイン化。 などのアートデザインを施すことができる。
Note that when a voltage is applied to the ceramic panel heater (11), the adhesive layer is dried and integrated. Production Example 2 As another production example, as shown in Fig. 5, a ceramic panel heater (11) is placed in a mold with good mold releasability, a semi-kneaded inorganic adhesive layer (10) of about 2 mm is further provided, and a semi-kneaded inorganic adhesive layer (10) of about 2 mm is placed on top of the ceramic panel heater (11). After filling with kneaded ceramic fibers and a heat insulating material (5), the electrode plate (3) is inserted so as to pass through the through hole (8). Electrode plate (
3) When electricity is applied to (3), the adhesive layer (10) dries and the entire structure is integrated and completed. The obtained wall-mounted panel heater (11) had a surface temperature of 80° C. and a surface temperature of 50° C. or less through the heat insulating plate (5) (rated voltage 100 V, output 250 W). The state of use is shown in Figure 7 (A
). Art design for wall-mounted panel heaters: (1) Colorization by applying silicone heat-resistant paint, etc. (2) Design patterning by painting on pottery. (3) Designing by silkscreening and transfer using heat-resistant pigments. You can apply art designs such as

【0029】壁掛用パネルヒータ(11)は、図6のご
とく多数個を同一平面内で組み合わせて大型パネルヒー
タとすることができる。図6の(A)は外形寸法600
×283mm、図6の(B)は外形寸法300×283
mmでありこれらのパネルヒーターを組み合わせて標準
的な窓の下に組み込めるように、長辺の寸法1800m
短辺の寸法849mの大型ユニットを作り、パネルヒー
ターの暖房機能、断熱機能、防音機能、を合わせ持つ内
装建材として部屋の窓下に埋め込んだ。かくして定格電
圧100V、出力1200W、の大型パネルヒーターが
得られ表面温度60℃、断熱材を介した裏面温度は30
℃であった。このパネルヒーターはそのドラフト効果に
より温かいエアーカーテンの働きをするので上部の窓か
ら侵入する冷気を防ぐことが出来、有効な暖房効果があ
る。使用例を図7の(B)に示す。
As shown in FIG. 6, a large number of wall-mounted panel heaters (11) can be combined in the same plane to form a large-sized panel heater. Figure 6 (A) shows external dimensions of 600
×283mm, (B) in Figure 6 has external dimensions 300×283
mm, and the long side dimension is 1800 m so that these panel heaters can be combined and installed under a standard window.
A large unit with the short side dimension of 849 m was created and embedded under the window of a room as an interior building material that has the heating function, insulation function, and soundproofing function of a panel heater. In this way, a large panel heater with a rated voltage of 100 V and an output of 1200 W was obtained, with a surface temperature of 60°C and a back temperature of 30°C through the insulation material.
It was ℃. This panel heater acts as a warm air curtain due to its draft effect, which prevents cold air from entering through the upper windows and has an effective heating effect. An example of use is shown in FIG. 7(B).

【0030】図7の(C)のごとくユニットを天井の内
装建材として使用することにより、遠赤外線の効果によ
るほのぼのとした快適な暖房効果を得ることもできる。 さらに図7の(D)のごとくユニットを床材に使用して
床面暖房を行うこともできる。なお、以上の実施例での
パネルは抵抗値を変えることにより出力を任意に選ぶこ
とができる。
By using the unit as an interior building material for the ceiling as shown in FIG. 7C, a warm and comfortable heating effect can be obtained due to the effect of far infrared rays. Furthermore, as shown in FIG. 7(D), the unit can be used for flooring to perform floor heating. Note that the output of the panel in the above embodiment can be arbitrarily selected by changing the resistance value.

【0031】以上の説明より明らかなように、パネルヒ
ータは、机の下に設置するパネルヒータ、壁掛け式パネ
ルヒータ、壁面、天井、床面、などに埋め込み暖房機能
、断熱機能、防音機能、を合わせ持った経済的な内装建
材として利用でき、自由に寸法を設定し各場所に応じた
暖房を行うことができる。また種々のアートデザインを
施すことによりアート感覚に富んだ商品を提供すること
ができる。
As is clear from the above explanation, panel heaters include panel heaters installed under desks, wall-mounted panel heaters, and embedded heating, insulation, and soundproofing functions on walls, ceilings, floors, etc. It can be used as an economical interior building material, and the dimensions can be set freely to provide heating according to each location. Furthermore, by applying various art designs, it is possible to provide products with a rich sense of art.

【0032】以上の実施例とは異なり、導電性セラミッ
クス焼結成形体を、均一な厚みの板状ではなく、図8〜
9のごとく放射方向に肉厚を減少する円盤状に形成し、
その成形体(23)の相対する方向に金属溶射電極(2
4a)(24b)を形成するとともに、成形体(23)
表面の電極(24a)(24b)を除いた全面に絶縁皮
膜(26)を形成してもよい。成形体(23)は鋳込み
成形方法で形成された(他の成形方法、例えば可塑成形
法の採用も可能)。
Unlike the above embodiments, the conductive ceramic sintered molded body is not shaped like a plate with a uniform thickness, but is shaped like a plate having a uniform thickness.
9, it is formed into a disk shape whose thickness decreases in the radial direction,
The metal spray electrode (2
4a) (24b) and the molded body (23)
An insulating film (26) may be formed on the entire surface except for the electrodes (24a) and (24b) on the surface. The molded body (23) was formed by a cast molding method (other molding methods, such as plastic molding methods, can also be employed).

【0033】かくして100Vの交流電圧(25)を成
形体(23)の電極(24a)(24b)に印加するこ
とによって、成形体(23)全体が均一に発熱され出力
は500Wである。つまり電極(24b)上部の成形体
(23)部分の電流密度を均一にするため肉厚を大きく
調整しているので(最大21.5〜最小3mm)、成形
体(23)上部の平面部表面温度がほぼ均一の300℃
に得られ、かつ平面部175φmmの温度差が約10℃
に収まるので良好な温度分布が得られる。
[0033] Thus, by applying an AC voltage (25) of 100V to the electrodes (24a) (24b) of the molded body (23), the entire molded body (23) is uniformly heated and the output is 500W. In other words, in order to make the current density uniform in the part of the molded body (23) above the electrode (24b), the wall thickness is largely adjusted (maximum 21.5 to minimum 3 mm). Almost uniform temperature of 300℃
and the temperature difference in the flat part 175φmm is about 10℃
Good temperature distribution can be obtained.

【0034】なお、従来の技術として図16〜17に示
す板厚4mm直径175φmmからなる熱板21に直径
140φmm絶縁パイプ状内に組み込まれたシーズヒー
タ22からなり上記従来例と同様の出力が発生された例
では、シーズヒータ22から熱板21に熱伝導され上部
平面状の温度差つまりシーズヒータ21周囲部分とシー
ズヒータ21無き部分との温度差が約30℃であり、極
めて大きい。さらに成形体23はかさ密度2.1g/c
m3、曲げ強度10kg/mm2は熱伝導率0.03c
al/cm・sec℃と高く、熱膨張率は4×10 6
と低いので耐熱衝撃に強く発熱体としてすぐれている。
[0034] As a conventional technique, as shown in Figs. 16 and 17, a heat plate 21 having a plate thickness of 4 mm and a diameter of 175 φ mm has a sheathed heater 22 built into an insulating pipe shape with a diameter of 140 φ mm, and the same output as the above conventional example is generated. In this example, heat is conducted from the sheathed heater 22 to the hot plate 21, and the temperature difference in the upper plane, that is, the temperature difference between the area surrounding the sheathed heater 21 and the area without the sheathed heater 21 is about 30° C., which is extremely large. Furthermore, the molded body 23 has a bulk density of 2.1 g/c.
m3, bending strength 10kg/mm2, thermal conductivity 0.03c
The thermal expansion coefficient is as high as al/cm・sec°C and is 4×10 6
Because of its low thermal shock resistance, it is excellent as a heating element.

【0035】また、 上記においては、成形体23にS
iC(70)−Si3N4(30)系セラミックを用い
た場合の実測結果を示したが、 高純度SiC系セラミ
ックスや再結晶型SiCセラミックスを用いても同様の
効果を得ることができる。 さらに立体的構造体(器型
)の全面に絶縁皮膜(26)が形成されているので全く
漏電の危険がなく調理器等としても利用が可能な構造体
を示している。 即ち、 均熱形の発熱体としての機能
と調理物等の器としての機能を合わせもつことができる
。 これは調理器や液体状のものを加熱する発熱体とし
て、 非常に適したものである。
[0035] Furthermore, in the above, the molded body 23 is
Although actual measurement results are shown using iC(70)-Si3N4(30) ceramic, similar effects can be obtained using high-purity SiC ceramics or recrystallized SiC ceramics. Furthermore, since an insulating film (26) is formed on the entire surface of the three-dimensional structure (container shape), there is no risk of electrical leakage and the structure can be used as a cooking device or the like. That is, it can have both the function of a uniform heating type heating element and the function of a container for cooking food. This is extremely suitable for use as a heating element for cooking appliances or for heating liquids.

【0036】以上のごとく、図8〜9の導電性セラミッ
クス焼結成形体によれば、発熱体の電流密度を肉厚調整
によって均一化が可能であり、鋳込み成形等の成形体構
造(3次元的成形体構造)が可能であり、商品用途に合
った発熱体として利用ができ更に発熱体全体に絶縁皮膜
を形成することによって通電中手に触れても漏電の危険
のない安全で効率の良い発熱体を提供することができる
As described above, according to the conductive ceramic sintered bodies shown in FIGS. 8 and 9, it is possible to make the current density of the heating element uniform by adjusting the wall thickness, and it is possible to Molded structure), it can be used as a heating element suitable for the product application, and by forming an insulating film on the entire heating element, it generates heat safely and efficiently without the risk of leakage even if it is touched with the hand while energized. You can donate your body.

【0037】そのほか導電性セラミック焼結成形体は図
10〜11のごとく皿状に図12〜13のごとく容器状
に成形できる。図12〜13の場合には図8〜9と同様
、電流密度を均一にするため肉厚を調整している。
In addition, the conductive ceramic sintered body can be formed into a dish shape as shown in FIGS. 10-11 or a container shape as shown in FIGS. 12-13. In the case of FIGS. 12 and 13, as in FIGS. 8 and 9, the wall thickness is adjusted to make the current density uniform.

【0038】[0038]

【発明の効果】この発明によれば、構成体のほぼ全体が
発熱体(ヒータ)であるため温度差がほとんどなく、す
ぐれたパネルヒータとして机の下、壁掛け、天井、床面
などに用いることができる。
[Effects of the Invention] According to the present invention, since almost the entire structure is a heating element, there is almost no temperature difference, and it can be used as an excellent panel heater under a desk, on a wall, on a ceiling, on a floor, etc. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明に係るセラミックヒータの実施例を説
明する構成説明図であり、(A)は正面、(B)裏面、
(C)はC−C断面を示す。
FIG. 1 is a configuration explanatory diagram illustrating an embodiment of a ceramic heater according to the present invention, in which (A) is a front side, (B) is a back side,
(C) shows a CC cross section.

【図2】他の実施例としてのセラミックスパネルヒータ
を説明する構成説明図であり、(A)は正面、(B)は
断面を示す。
FIG. 2 is a configuration explanatory diagram illustrating a ceramic panel heater as another example, in which (A) shows a front view and (B) shows a cross section.

【図3】図2に示すセラミックスパネルヒータの構成体
説明図であり、(A)は導電性セラミックス焼結成形体
の正面、(B)は断熱板の正面、(C)は(B)のC−
C断面を示す。
3 is an explanatory diagram of the structure of the ceramic panel heater shown in FIG. 2, in which (A) is the front of the conductive ceramic sintered body, (B) is the front of the heat insulating plate, and (C) is the C of (B). −
C section is shown.

【図4】同じく図2に示すセラミックスパネルヒータの
構成説明図であり、(A)は枠体の正面、(B)は断面
を示す。
4 is an explanatory view of the configuration of the ceramic panel heater also shown in FIG. 2, in which (A) shows the front of the frame, and (B) shows the cross section.

【図5】図2に示すセラミックスパネルヒータの製作方
法を説明する装置構成説明図である。
FIG. 5 is an explanatory diagram of an apparatus configuration for explaining a method of manufacturing the ceramic panel heater shown in FIG. 2;

【図6】他の実施例としての大型パネルヒータを説明す
る正面図である。
FIG. 6 is a front view illustrating a large panel heater as another example.

【図7】種々のセラミックパネルヒータの部屋での使用
例を示す説明図である。
FIG. 7 is an explanatory diagram showing examples of how various ceramic panel heaters are used in a room.

【図8】他の実施例としてのセラミックヒータの断面図
である。
FIG. 8 is a sectional view of a ceramic heater as another example.

【図9】図8のセラミックヒータの底面図である。9 is a bottom view of the ceramic heater of FIG. 8. FIG.

【図10】もう1つの他の実施例の図8相当図であるFIG. 10 is a diagram corresponding to FIG. 8 of another embodiment.


図11】同じく図9の相当図である。
[
FIG. 11 is a diagram corresponding to FIG. 9;

【図12】更にもう1つの他の実施例の図8相当図であ
る。
FIG. 12 is a diagram corresponding to FIG. 8 of still another embodiment.

【図13】同じく図9相当図である。FIG. 13 is a diagram corresponding to FIG. 9;

【図14】従来例を示す図8相当図である。FIG. 14 is a diagram corresponding to FIG. 8 showing a conventional example.

【図15】同じく図9相当図である。FIG. 15 is a diagram corresponding to FIG. 9;

【図16】他の従来例を示す図8相当図である。FIG. 16 is a diagram corresponding to FIG. 8 showing another conventional example.

【図17】同じく図9相当図である。FIG. 17 is a diagram corresponding to FIG. 9;

【符号の説明】[Explanation of symbols]

1  絶縁部(皮膜) 2  電極層 3  電極板 4  セラミックスヒータ 5  断熱板 6  枠体 1 Insulating part (film) 2 Electrode layer 3 Electrode plate 4 Ceramic heater 5 Insulation board 6 Frame

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  弗化水素酸を含む酸により高純度化処
理された炭化珪素粒子が金属シリコンの窒化により生成
する窒化珪素で多孔状に結合されてなる、0.1〜10
0Ω・cmの比抵抗を有する導電性セラミックス焼結成
形体と、この成形体に形設された1対の電極部とからな
るセラミックスヒータ。
1. Silicon carbide particles highly purified with an acid containing hydrofluoric acid are bonded in a porous manner with silicon nitride produced by nitriding metal silicon, 0.1 to 10.
A ceramic heater consisting of a conductive ceramic sintered molded body having a specific resistance of 0 Ω·cm and a pair of electrode parts formed on this molded body.
【請求項2】  導電性セラミックス焼結成形体が板状
、皿状又は容器状であり、その成形体表面の電極部形設
部分を除いて絶縁皮膜を形成してなる請求項1のセラミ
ックスヒータ。
2. The ceramic heater according to claim 1, wherein the conductive ceramic sintered molded body is plate-shaped, dish-shaped, or container-shaped, and an insulating film is formed on the surface of the molded body except for a portion where the electrode portion is formed.
【請求項3】  導電性セラミックス焼結成形体が板状
であり、その成形体表面の電極部形設部分を除いて絶縁
皮膜を形成してなる請求項1のセラミックスヒータと、
セラミックス繊維からなる断熱板と、この断熱板及びセ
ラミックスヒータを重ねてそれらの周縁を囲撓する枠体
とからなるセラミックスパネルヒータ。
3. The ceramic heater according to claim 1, wherein the conductive ceramic sintered molded body is plate-shaped, and an insulating film is formed on the surface of the molded body except for the electrode part forming part;
A ceramic panel heater consisting of a heat insulating plate made of ceramic fibers and a frame that overlaps the heat insulating plate and the ceramic heater and surrounds their periphery.
JP3129901A 1991-05-31 1991-05-31 Ceramics heater Expired - Fee Related JP2685370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3129901A JP2685370B2 (en) 1991-05-31 1991-05-31 Ceramics heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3129901A JP2685370B2 (en) 1991-05-31 1991-05-31 Ceramics heater

Publications (2)

Publication Number Publication Date
JPH04357167A true JPH04357167A (en) 1992-12-10
JP2685370B2 JP2685370B2 (en) 1997-12-03

Family

ID=15021187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3129901A Expired - Fee Related JP2685370B2 (en) 1991-05-31 1991-05-31 Ceramics heater

Country Status (1)

Country Link
JP (1) JP2685370B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039647A (en) * 2003-08-20 2004-02-05 K-Tech Devices Corp Resistive heating element and its manufacturing method
JP2012209021A (en) * 2011-03-29 2012-10-25 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method for porous heating element, and gas decomposition element
JP2017031036A (en) * 2015-08-06 2017-02-09 信越化学工業株式会社 SiC CRUCIBLE AND SiC SINTERED BODY, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTALS
CN114739161A (en) * 2022-04-02 2022-07-12 合肥真萍电子科技有限公司 Quartz vertical tube furnace with air curtain cooling structure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108043U (en) * 1974-02-09 1975-09-04
JPS5467598A (en) * 1977-11-09 1979-05-31 Ngk Insulators Ltd Manufacture of silicon carbide powder and manufacture of silicon carbide sintered body using said powder
JPS5467599A (en) * 1977-11-09 1979-05-31 Ngk Insulators Ltd Manufacture of silicon carbide powder to be sintered and manufacture of silicon carbide sintered body using said powder
JPS5562856A (en) * 1978-11-01 1980-05-12 Ibigawa Electric Ind Co Ltd Manufacture of silicon carbide sintered body
JPS61201662A (en) * 1985-03-04 1986-09-06 株式会社日立製作所 Manufacture of composite ceramics
JPS62241872A (en) * 1986-04-10 1987-10-22 黒崎窯業株式会社 Manufacture of reaction sintered si3n4-sic composite body
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material
JPS6358491U (en) * 1986-10-04 1988-04-19
JPS6380788U (en) * 1986-11-15 1988-05-27
JPS63307686A (en) * 1987-06-05 1988-12-15 Shikoku Electric Power Co Inc Heating element for cooking electric heater
JPS6477890A (en) * 1987-09-18 1989-03-23 Toshiba Corp Ceramics heating unit and its manufacture
JPH0279592U (en) * 1988-12-07 1990-06-19

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108043U (en) * 1974-02-09 1975-09-04
JPS5467598A (en) * 1977-11-09 1979-05-31 Ngk Insulators Ltd Manufacture of silicon carbide powder and manufacture of silicon carbide sintered body using said powder
JPS5467599A (en) * 1977-11-09 1979-05-31 Ngk Insulators Ltd Manufacture of silicon carbide powder to be sintered and manufacture of silicon carbide sintered body using said powder
JPS5562856A (en) * 1978-11-01 1980-05-12 Ibigawa Electric Ind Co Ltd Manufacture of silicon carbide sintered body
JPS61201662A (en) * 1985-03-04 1986-09-06 株式会社日立製作所 Manufacture of composite ceramics
JPS62241872A (en) * 1986-04-10 1987-10-22 黒崎窯業株式会社 Manufacture of reaction sintered si3n4-sic composite body
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material
JPS6358491U (en) * 1986-10-04 1988-04-19
JPS6380788U (en) * 1986-11-15 1988-05-27
JPS63307686A (en) * 1987-06-05 1988-12-15 Shikoku Electric Power Co Inc Heating element for cooking electric heater
JPS6477890A (en) * 1987-09-18 1989-03-23 Toshiba Corp Ceramics heating unit and its manufacture
JPH0279592U (en) * 1988-12-07 1990-06-19

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039647A (en) * 2003-08-20 2004-02-05 K-Tech Devices Corp Resistive heating element and its manufacturing method
JP2012209021A (en) * 2011-03-29 2012-10-25 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method for porous heating element, and gas decomposition element
JP2017031036A (en) * 2015-08-06 2017-02-09 信越化学工業株式会社 SiC CRUCIBLE AND SiC SINTERED BODY, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTALS
US11440849B2 (en) 2015-08-06 2022-09-13 Shin-Etsu Chemical Co., Ltd. SiC crucible, SiC sintered body, and method of producing SiC single crystal
CN114739161A (en) * 2022-04-02 2022-07-12 合肥真萍电子科技有限公司 Quartz vertical tube furnace with air curtain cooling structure
CN114739161B (en) * 2022-04-02 2023-12-26 合肥真萍电子科技有限公司 Quartz standpipe stove with air curtain cooling structure

Also Published As

Publication number Publication date
JP2685370B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JP2013541812A (en) Planar heating element using ceramic glass
TWI236527B (en) Ceramic susceptor
JPH04357167A (en) Ceramics heater
JP2004108767A (en) Ceramic cooking system and its manufacturing method
JPH05198356A (en) Plane heating element and manufacture thereof
JP2507151B2 (en) Conductive ceramics sintered body and method for producing the same
JP2955127B2 (en) Ceramic heater
KR101931254B1 (en) Planar heater structure containing carbon
TW200416879A (en) Ceramic susceptor for semiconductor manufacturing equipment
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
JP2004006194A (en) Porous ceramics resistance heater and its manufacturing method
JP2732708B2 (en) Conductive ceramic sintered body
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
JPH08153572A (en) Far infrared radiation heater
TWI310371B (en) Composite ceramics and method of preparing the same
KR20060011550A (en) Silicon carbide with clay, preparation method thereof, and ceramic heater using the same
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same
JP3138393B2 (en) Method of forming thin film conductive layer
JPH01286974A (en) Electrically energizable ceramic structure and production thereof
JPH11214129A (en) Far infrared ceramic heater
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPS6213302B2 (en)
JPH0419181B2 (en)
CN113056045B (en) Graphene heating mixture, heating element, heating tube and preparation process
JPH01298068A (en) Production of ceramic formed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees