JPH0419181B2 - - Google Patents

Info

Publication number
JPH0419181B2
JPH0419181B2 JP59236284A JP23628484A JPH0419181B2 JP H0419181 B2 JPH0419181 B2 JP H0419181B2 JP 59236284 A JP59236284 A JP 59236284A JP 23628484 A JP23628484 A JP 23628484A JP H0419181 B2 JPH0419181 B2 JP H0419181B2
Authority
JP
Japan
Prior art keywords
weight
far
raw material
powder
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59236284A
Other languages
Japanese (ja)
Other versions
JPS61117151A (en
Inventor
Takeshi Tamaoki
Tamotsu Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP59236284A priority Critical patent/JPS61117151A/en
Publication of JPS61117151A publication Critical patent/JPS61117151A/en
Publication of JPH0419181B2 publication Critical patent/JPH0419181B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、遠赤外線放射材料に係り、特に遠赤
外線の放射面積を増大させることができる遠赤外
線放射材料に関するものである。 [従来の技術] 近年、セラミツクス粉末は、各種分野において
広く使用されつつあり、金属セラミツクス等の表
面に酸化防止や耐熱性向上等を目的として被覆す
るための、セラミツクス粉末に適当な無機質バイ
ンダーや硬化剤等を配合した被覆材料、あるい
は、金属やセラミツクス等の無機接着剤等として
利用されており、多種類の材料が市販されてい
る。 一方、セラミツクスは遠赤外線放射材料として
も知られており、例えばジルコニア、チタニア、
アルミナ、その他遷移元素酸化物系セラミツクス
等を使用したヒータは既に実用化されている。 従来、遠赤外線放射ヒータとしては、各種遠赤
外線放射セラミツクス粉末を任意の形状に成形し
たものを高温焼結したもの、任意の形状のセラミ
ツクス等の母材に、遠赤外線放射セラミツクス粉
末を陶磁器のうわぐすりのように塗布し、焼成し
て被覆したもの(例えば、七宝のような方法等)
又は、溶射により被覆したもの等が一般的であ
る。 [発明が解決しようとする問題点] しかしながら、従来の遠赤外線放射材料は、い
ずれも高温域での乾燥又は焼結等の処理が必要で
あり、工業的に有利なものといえなかつた。 また、遠赤外線の放射効率をより向上させるた
めには、得られる放射体の表面積を増大させるこ
とが必要であるが、従来、放射体の表面積を効果
的に増大し得る遠赤外線放射材料は提案されてい
なかつた。 [問題点を解決するための手段] 上記従来の問題点を解決するために、本発明の
遠赤外線の放射材料は、 遠赤外線放射セラミツクス粉末20〜90重量%、
第一燐酸アルミニウム塩粉末5〜20重量%及び平
均粒径50〜800μmの骨材5〜75重量%を配合し
てなる粉体原料100重量部と、 水ガラス及び/又はアルミナゾルからなる液体
原料と、 を該液体原料中の固形分が前記粉体原料100重量
部に対し5〜25重量部となるように混合すると共
に混練し、ペースト状又はスラリー状と成し、塗
布又は成形し、常温ないし300℃以下の温度で乾
燥硬化してなることを特徴とする遠赤外線放射材
料、 及び 遠赤外線放射セラミツクス粉末20〜90重量%、
第一燐酸アルミニウム塩粉末5〜20重量%及び平
均粒径50〜800μmの骨材5〜75重量%を配合し
てなる粉体原料100重量部と、 水ガラス及び/又はアルミナゾルと希釈剤とか
らなる液体原料と、 を該液体原料中の固形分が前記粉末体原料100重
量部に対し5〜25重量部となるように混合すると
共に混練し、ペースト状又はスラリー状と成し、
塗布又は成形し、常温ないし300℃以下の温度で
乾燥硬化してなることを特徴とする遠赤外線放射
材料、 を要旨するものである。 以下に本発明につき詳細に説明する。 なお、本明細書において、%は特記しない限り
重量%を表す。 本発明の遠赤外線放射材料を製造するには、ま
ず遠赤外線放射セラミツクス粉末20〜90%、第一
燐酸アルミニウム塩粉末5〜20%及び骨材5〜75
%を予め混合し、粉体原料とする。遠赤外線放射
セラミツクス粉末の配合割合が20%未満では遠赤
外線の放射量が減少し、90%を超えると第一燐酸
アルミニウムの添加量減少のため白華現象を生
じ、骨材の添加量減少のため表面積増加効果が不
充分となる。また第一燐酸アルミニウム塩粉末の
配合割合が5%未満では白華防止効果が不充分で
あり、20%を超えると遠赤外線放射材の価格が高
価になり実用的でない。さらに、骨材の配合割合
が5%未満では表面積増加効果が充分でなくな
り、また被覆層のクラツク防止作用が期待できな
くなる。骨材の配合割合が75%を超えると遠赤外
線放射セラミツクス粉末が20%以下になり、遠赤
外線放射量が減少する。なお、好ましくは、遠赤
外線放射セラミツクス粉末40〜75%、第一燐酸ア
ルミニウム塩粉末10〜20%及び骨材5〜50%を予
め混合し、粉体原料とする。 次に、水ガラス、アルミナゾル、又は、アルカ
リ珪酸塩とアルミナゾルとの混合液、更に必要に
応じて希釈剤を加えたものを液体原料として調製
し、前記粉体原料に液体原料を加え、所望の粘度
のペースト又はスラリーとする。 粉体原料と液体原料の混合割合は、粉体原料
100重量部に対し、液体原料中の固形分が5〜25
重量部となる割合である。粉体原料100重量部に
対する液体原料中の固形分が5重量部未満では被
覆層の付着強度が小さく、25重量部を超えると、
白華を生ずる。 このようにして調製したペースト又はスラリー
は、刷毛塗りやスプレー塗装等で被覆したい面に
塗布するか、成形型等に流し込んで成形した後、
常温ないし300℃以下の低温で乾燥して硬化させ
ることにより、本発明の遠赤外線放射材料とす
る。 本発明において、遠赤外線放射セラミツクス粉
末としては、通常用いられるもので良く、特に制
限はないが、例えばジルコニア、アルミナ、チタ
ニア、その他遷移金属酸化物系セラミツクス等の
粉末が挙げられる。これらのうちでも遷移金属酸
化物を50重量%以上含むものが好ましい。この遠
赤外線放射セラミツクス粉末の粒度は、骨材の粒
度よりも小さいものとし、かつなるべく細かいも
のが好ましい。 第一燐酸アルミニウム塩粉末としては、三燐酸
アルミニウム粉末等が好ましい。 骨材としては、シヤモツト、焼結アルミナ、焼
結ジルコニア等のセラミツクスの粗粒や、珪砂、
雲母等の天然鉱物等の無機質骨材が挙げられ、そ
の平均粒径は50〜800μm、好ましくは、200〜
600μmのものとする。骨材の平均粒径が50μm未
満では表面積増加効果、クラツク防止作用共不充
分であり、800μmを超えると被覆層の付着強度
が弱くなり、また、スラリーとしたときに沈澱す
る。スプレー法による場合は、スプレーガンノズ
ル孔を閉塞したりして好ましくない。なお、骨材
粒子は角ばつた形状のものが、球形のものに比較
し、比表面積が大きいので好ましい。 水ガラスとしては、各種の市販のソーダ水ガラ
ス、カリ水ガラス等で、用途に合う種類のものを
適宜選択して用いる。また、アルミナゾルは、ア
ルカリ珪酸塩の白華現象を抑制したい場合に用い
るのが好ましい。 希釈剤としては、コロイダルシリカ、水又はア
ルコール等が挙げられる。 本発明においては、製造過程における原料ペー
スト又はスラリーの粘度調節、あるいは、得られ
る遠赤外線放射材料の耐水性の向上、等のため
に、必要に応じて、層状構造を有するカオリン、
粘土、タルク等の充填材を原料中に配合すること
もできる。 [作用] 本発明の遠赤外線放射材料は、第一燐酸アルミ
ニウム塩、水ガラス、アルミナゾル等を用いてい
るので、常温ないし300℃以下の比較的低温度の
加熱乾燥で製造することができる。 また、第一燐酸アルミニウム塩は耐水性を高
め、白華を抑制すると共に、本発明材料の熱膨張
率を金属の熱膨張率に近づける。 本発明の遠赤外線放射材料を母材の被覆層とし
た場合、その付着性は極めて強固である。 しかも骨材添加により、本発明の遠赤外線放射
材料は得られる外表面が粗となり、その表面積を
大きくすることができる。更に骨材の添加によ
り、ひび割れ、欠け、被覆層の脱落等を防止する
こともできる。 因みに、第1図の如く、本発明の遠赤外線放射
材料を用いて、加熱器板等の母材3に被覆層1を
形成した場合には、骨材2が遠赤外線放射材料の
被覆層1中に分散し、被覆面に凸凹ができ、表面
積が増加するが、その増加割合は、第2図に示す
ような骨材を含まない従来の遠赤外線放射材料に
より被覆層4を形成した場合に比し、20〜35%程
度にも達する。 [実施例及び比較例] 以下に実施例及び比較例(製造例及び試験例)
を挙げて、本発明を更に具体的に説明するが、本
発明はその要旨を超えない限り、以下の実施例に
限定されるものではない。 製造例 1〜8 第1表に示す配合の粉体原料(No.1〜8)100
重量部に、第2表に示す配合の液体原料(No.1〜
8)を各々固形分として第3表(No.1〜8)に示
す割合で加えて、ペーストまたはスラリーとし
た。 これを、第3図に示す如く、電熱線11を内蔵
した金属板12を片側表面に刷毛塗り又はスプレ
ー塗装し、200℃で乾燥硬化させることにより平
均被覆層厚0.5mmの被覆層13を形成し、遠赤外
線ヒータ14を作製した。なお12aは金属板1
2の電熱線11との対向面に設けられた雲母製電
気絶縁層である。 得られた遠赤外線ヒータの被覆層13は、いず
れも金属板に強固に付着していた。 なお、遠赤外線放射セラミツクス粉末の組成は
次の通りである。 MnO2 60% Fe2O3 20% CuO 10% CoO 10% 試験例 1〜9 製造例1〜8の各々の原料を試験例1〜8に示
す割合で混合し、塗布し、乾燥して得られた被覆
層13を形成したまたは、被覆層13を形成しな
い(試験例No.9)の金属板12の内側に配設され
た電熱線11に通電し、遠赤外線ヒータとしての
性能を試験した。 即ち、第4図に示す如き有蓋無底のケーシング
21内の天井面にサンプル取付治具22を吊設し
てなる測定装置の治具22に、製造例1で作製し
た遠赤外線ヒータ14を被覆層13が下向きにな
るように取り付ける。なお、この際治具22との
間に断熱層23を介在させる。そして被覆層13
の中央部に熱電対15を埋め込み、電熱線11に
通電を行ない、表面の温度を連続的に測定した。
交流100Vで1Aの電流を電熱線に流し、ヒータ1
4の表面の温度が一定値(定常状態)になつた時
(約30分後)の温度を熱電対15で測定し、表面
温度測定値とした。 本性能試験の条件は下記の通りである。 ヒータ 金属板 SUS304 金属板大きさ100mm(幅)×100mm(長さ)×5mm
(厚さ) 被覆層厚さ 0.5mm 断熱層厚さ 50mm 消費電力 100W、単相100V(1W/cm2) 絶縁板 マイカ板 ヒータ温度(無被覆時金属板裏面温度)
350℃(第3表試験例No.9) 温度測定 熱電対 IC熱電対 線径50μm 測定箇所 ヒータ表面中心部1点 測定回数 3回 測定温度 常温(23±2℃) 被覆層表面温度の測定結果の平均値を第3表に
示す。
[Industrial Field of Application] The present invention relates to a far-infrared ray emitting material, and particularly to a far-infrared ray emitting material that can increase the far-infrared radiation area. [Prior Art] In recent years, ceramic powders have been widely used in various fields, and inorganic binders and hardeners suitable for ceramic powders are used to coat the surfaces of metal ceramics etc. for the purpose of preventing oxidation and improving heat resistance. It is used as a coating material containing a compounding agent, etc., or as an inorganic adhesive for metals, ceramics, etc., and many types of materials are commercially available. On the other hand, ceramics are also known as far-infrared emitting materials, such as zirconia, titania,
Heaters using alumina and other transition element oxide ceramics have already been put into practical use. Conventionally, far-infrared radiation heaters have been made by molding various far-infrared-emitting ceramic powders into arbitrary shapes and sintering them at high temperatures, or by applying far-infrared-emitting ceramic powders to ceramic base materials of arbitrary shapes, etc. Something that is applied like a medicine and then baked to cover it (for example, a method like cloisonné)
Alternatively, it is generally coated by thermal spraying. [Problems to be Solved by the Invention] However, all conventional far-infrared emitting materials require processing such as drying or sintering in a high temperature range, and cannot be said to be industrially advantageous. In addition, in order to further improve the radiation efficiency of far-infrared rays, it is necessary to increase the surface area of the resulting radiator, but so far, far-infrared radiating materials that can effectively increase the surface area of the radiator have not been proposed. It had not been done. [Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the far-infrared emitting material of the present invention comprises: 20 to 90% by weight of far-infrared emitting ceramic powder;
100 parts by weight of a powder raw material made by blending 5 to 20 weight % of monobasic aluminum phosphate powder and 5 to 75 weight % of aggregate with an average particle size of 50 to 800 μm, and a liquid raw material made of water glass and/or alumina sol. , are mixed and kneaded so that the solid content in the liquid raw material is 5 to 25 parts by weight based on 100 parts by weight of the powder raw material, formed into a paste or slurry, coated or molded, and heated at room temperature to A far-infrared emitting material characterized by drying and curing at a temperature of 300°C or less, and a far-infrared emitting ceramic powder of 20 to 90% by weight,
100 parts by weight of a powder raw material made by blending 5-20% by weight of monophosphoric acid aluminum salt powder and 5-75% by weight of aggregate with an average particle size of 50-800 μm, water glass and/or alumina sol, and a diluent. and a liquid raw material, and are mixed and kneaded so that the solid content in the liquid raw material is 5 to 25 parts by weight based on 100 parts by weight of the powdered raw material to form a paste or slurry,
A far-infrared emitting material characterized by being formed by coating or molding and drying and curing at a temperature ranging from room temperature to 300°C or less. The present invention will be explained in detail below. In addition, in this specification, % represents weight % unless otherwise specified. To produce the far-infrared emitting material of the present invention, first, 20-90% of far-infrared-emitting ceramic powder, 5-20% of monobasic aluminum phosphate powder, and 5-75% of aggregate
% is mixed in advance and used as a powder raw material. If the blending ratio of far-infrared emitting ceramic powder is less than 20%, the amount of far-infrared radiation will decrease, and if it exceeds 90%, an efflorescence phenomenon will occur due to a decrease in the amount of monobasic aluminum phosphate added, resulting in a decrease in the amount of aggregate added. Therefore, the surface area increasing effect becomes insufficient. Furthermore, if the blending ratio of the monobasic aluminum phosphate powder is less than 5%, the effect of preventing efflorescence will be insufficient, and if it exceeds 20%, the far-infrared radiating material will become expensive and impractical. Furthermore, if the blending ratio of aggregate is less than 5%, the surface area increasing effect will not be sufficient and the crack prevention effect of the coating layer will not be expected. When the blending ratio of aggregate exceeds 75%, the amount of far-infrared emitting ceramic powder becomes less than 20%, and the amount of far-infrared radiation decreases. Preferably, 40 to 75% of far infrared emitting ceramic powder, 10 to 20% of monobasic aluminum phosphate powder, and 5 to 50% of aggregate are mixed in advance to form a powder raw material. Next, water glass, alumina sol, or a mixed solution of alkali silicate and alumina sol, further adding a diluent as necessary, is prepared as a liquid raw material, and the liquid raw material is added to the powder raw material to obtain the desired amount. Make a viscous paste or slurry. The mixing ratio of powder raw material and liquid raw material is
The solid content in the liquid raw material is 5 to 25 parts by weight per 100 parts by weight.
This is the ratio in parts by weight. If the solid content in the liquid raw material is less than 5 parts by weight relative to 100 parts by weight of the powder raw material, the adhesion strength of the coating layer will be low, and if it exceeds 25 parts by weight,
Produces efflorescence. The paste or slurry prepared in this way is applied to the surface to be coated by brushing or spray painting, or after being poured into a mold and shaped.
The far-infrared emitting material of the present invention is obtained by drying and curing at a low temperature of room temperature to 300° C. or less. In the present invention, the far-infrared emitting ceramic powder may be any commonly used ceramic powder, and is not particularly limited, but examples thereof include powders of zirconia, alumina, titania, and other transition metal oxide ceramics. Among these, those containing 50% by weight or more of transition metal oxides are preferred. The particle size of this far-infrared emitting ceramic powder is smaller than the particle size of the aggregate, and is preferably as fine as possible. As the aluminum monophosphate powder, aluminum triphosphate powder is preferred. As aggregate, coarse particles of ceramics such as sintered aluminum, sintered alumina, and sintered zirconia, silica sand,
Examples include inorganic aggregates such as natural minerals such as mica, and the average particle size thereof is 50 to 800 μm, preferably 200 to 800 μm.
It shall be 600μm. When the average particle size of the aggregate is less than 50 μm, both the surface area increasing effect and crack prevention effect are insufficient, and when it exceeds 800 μm, the adhesion strength of the coating layer becomes weak, and when it is made into a slurry, it precipitates. If the spray method is used, the spray gun nozzle hole may be clogged, which is not preferable. It should be noted that angular shaped aggregate particles are preferred since they have a larger specific surface area than spherical ones. As the water glass, there are various types of commercially available soda water glass, potash water glass, etc., and the type suitable for the purpose is appropriately selected and used. Further, alumina sol is preferably used when it is desired to suppress the efflorescence phenomenon of alkali silicates. Examples of the diluent include colloidal silica, water, alcohol, and the like. In the present invention, in order to adjust the viscosity of the raw material paste or slurry in the manufacturing process, or to improve the water resistance of the obtained far-infrared emitting material, if necessary, kaolin having a layered structure,
Fillers such as clay and talc can also be blended into the raw materials. [Function] Since the far-infrared emitting material of the present invention uses monophosphoric acid aluminum salt, water glass, alumina sol, etc., it can be manufactured by heating and drying at a relatively low temperature of room temperature to 300° C. or less. Furthermore, the monobasic aluminum phosphate increases water resistance, suppresses efflorescence, and brings the coefficient of thermal expansion of the material of the present invention close to that of metal. When the far-infrared emitting material of the present invention is used as a coating layer on a base material, its adhesion is extremely strong. Moreover, by adding aggregate, the outer surface of the far-infrared emitting material of the present invention becomes rough, and its surface area can be increased. Furthermore, by adding aggregate, cracking, chipping, and falling off of the coating layer can be prevented. Incidentally, as shown in FIG. 1, when the far-infrared emitting material of the present invention is used to form a coating layer 1 on a base material 3 such as a heater plate, the aggregate 2 forms the coating layer 1 of the far-infrared emitting material. When the coating layer 4 is formed using a conventional far-infrared emitting material that does not contain aggregate, the rate of increase is greater than when the coating layer 4 is formed using a conventional far-infrared emitting material that does not contain aggregate, as shown in Fig. 2. Compared to that, it reaches about 20-35%. [Examples and Comparative Examples] Below are Examples and Comparative Examples (Production Examples and Test Examples)
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Production examples 1 to 8 Powder raw materials (No. 1 to 8) with the composition shown in Table 1 100
Add liquid raw materials (No. 1 to
8) were added as solid contents in the proportions shown in Table 3 (Nos. 1 to 8) to form a paste or slurry. As shown in Fig. 3, a metal plate 12 containing a heating wire 11 is brush-coated or spray-coated on one side of the surface, and dried and cured at 200°C to form a coating layer 13 with an average coating layer thickness of 0.5 mm. Then, a far-infrared heater 14 was manufactured. Note that 12a is the metal plate 1
This is an electric insulating layer made of mica provided on the surface facing the heating wire 11 of No. 2. The coating layer 13 of the obtained far-infrared heater was firmly adhered to the metal plate. The composition of the far-infrared emitting ceramic powder is as follows. MnO 2 60% Fe 2 O 3 20% CuO 10% CoO 10% Test Examples 1 to 9 The raw materials of Production Examples 1 to 8 were mixed in the proportions shown in Test Examples 1 to 8, applied, and dried to obtain a The performance as a far-infrared heater was tested by energizing the heating wire 11 disposed inside the metal plate 12 with the coated layer 13 formed thereon or without the coated layer 13 (Test Example No. 9). . That is, the far-infrared heater 14 produced in Manufacturing Example 1 is coated on the jig 22 of the measuring device, which has a sample mounting jig 22 suspended from the ceiling of a casing 21 with a lid and bottomless structure as shown in FIG. Attach with layer 13 facing downward. Note that at this time, a heat insulating layer 23 is interposed between the jig 22 and the jig 22 . and coating layer 13
A thermocouple 15 was embedded in the center of the tube, and the heating wire 11 was energized to continuously measure the surface temperature.
A current of 1A at 100V AC is passed through the heating wire, and heater 1
When the temperature on the surface of No. 4 reached a constant value (steady state) (about 30 minutes later), the temperature was measured with a thermocouple 15, and this was taken as the surface temperature measurement value. The conditions for this performance test are as follows. Heater metal plate SUS304 Metal plate size 100mm (width) x 100mm (length) x 5mm
(Thickness) Covering layer thickness 0.5mm Insulating layer thickness 50mm Power consumption 100W, single phase 100V (1W/ cm2 ) Insulating plate Mica plate heater temperature (temperature on the back side of metal plate when not coated)
350℃ (Test Example No. 9 in Table 3) Temperature measurement thermocouple IC thermocouple Wire diameter 50μm Measurement point Number of measurements at one point at the center of the heater surface 3 times Measurement temperature Room temperature (23±2℃) Measurement result of coating layer surface temperature The average values of are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】 ※4:第1表及び第2表の製造例の各No.に対応。
※5:被覆層のないとき。
而して、本試験例においては、消費電力一定条
件下で試験しているので、ヒータの表面温度の測
定値が、低い程、熱エネルギーが遠赤外線放射エ
ネルギーに変換されて放出されたこととなり、ヒ
ータの性能が優れていることとなる。 第3表より、No.1のヒータ(被覆層は骨材を含
まない)に比し、実施例に係るNo.2〜8(被覆層
は骨材を含む)のヒータは表面温度が低く、エネ
ルギー変換効率が高いことが認められる。即ち、
骨材の配合による放射面積の増大により、エネル
ギー変換効率が向上されたのである。 また、刷毛塗りよりもスプレー塗装の方が粒状
噴霧として被覆層が形成されるので、より放射面
積が増大され、更に温度の低下が大きくなり、エ
ネルギーの変換効率が良くなることも認められ
る。 [効果] 以上詳述した通り、本発明の遠赤外線放射材料
は、アルカリ珪酸塩(水ガラス)やアルミナゾ
ル、コロイダルシリカ等の無機質バインダー、硬
化剤としての第一燐酸アルミニウム塩及び骨材を
混練し、乾燥硬化してなるものであり、常温ない
し300℃以下の比較的低温度の加熱乾燥で製造す
ることができる。 本発明の遠赤外線放射材料をセラミツクス又は
金属等の母材の被覆層とした場合、その付着性は
極めて強固である。 しかも骨材添加により、本発明の遠赤外線放射
材料は得られる外表面が粗となり、その表面積を
大きくすることができるので、遠赤外線、効率は
大幅に向上する。 更に骨材の添加により、ひび割れ、欠け、被覆
層の脱落等を防止することもできる。
[Table] *4: Corresponds to each number of manufacturing examples in Tables 1 and 2.
*5: When there is no coating layer.
In this test example, the test was conducted under conditions of constant power consumption, so the lower the measured value of the surface temperature of the heater, the more thermal energy was converted to far-infrared radiant energy and emitted. , the performance of the heater is excellent. From Table 3, compared to heater No. 1 (covering layer does not contain aggregate), heaters No. 2 to 8 (covering layer contains aggregate) according to Examples have lower surface temperatures; It is recognized that the energy conversion efficiency is high. That is,
Energy conversion efficiency was improved by increasing the radiation area by adding aggregate. It is also recognized that since the coating layer is formed as granular atomization in spray coating compared to brush coating, the radiation area is increased, the temperature decreases further, and the energy conversion efficiency is improved. [Effect] As detailed above, the far-infrared emitting material of the present invention is produced by kneading an inorganic binder such as an alkali silicate (water glass), alumina sol, or colloidal silica, a monobasic aluminum phosphate salt as a hardening agent, and an aggregate. It is produced by drying and curing, and can be produced by heating and drying at a relatively low temperature of room temperature to 300°C or less. When the far-infrared emitting material of the present invention is used as a coating layer on a base material such as ceramics or metal, its adhesion is extremely strong. Moreover, by adding aggregate, the outer surface of the far-infrared emitting material of the present invention becomes rough, and its surface area can be increased, so far-infrared ray efficiency is greatly improved. Furthermore, by adding aggregate, cracking, chipping, and falling off of the coating layer can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の遠赤外線放射材料の被覆層を
設けた状態を説明する断面図、第2図は従来の遠
赤外線放射材料の被覆層を設けた状態を説明する
断面図である。第3図は製造例1で製造した遠赤
外線放射ヒータを示す断面図、第4図は試験例1
で用いた測定装置を示す断面図である。 1,4,13……被覆層、2……骨材、3……
母材、11……電熱線、12……金属板、14…
…遠赤外線ヒータ、15……熱電対。
FIG. 1 is a sectional view illustrating a state in which a coating layer of the far-infrared ray emitting material of the present invention is provided, and FIG. 2 is a sectional view illustrating a state in which a coating layer of a conventional far-infrared ray emitting material is provided. Figure 3 is a cross-sectional view showing the far-infrared radiant heater manufactured in Manufacturing Example 1, and Figure 4 is Test Example 1.
FIG. 1, 4, 13...covering layer, 2...aggregate, 3...
Base material, 11... Heating wire, 12... Metal plate, 14...
...far infrared heater, 15... thermocouple.

Claims (1)

【特許請求の範囲】 1 遠赤外線放射セラミツクス粉末20〜90重量
%、第一燐酸アルミニウム塩粉末5〜20重量%及
び平均粒径50〜800μmの骨材5〜75重量%を配
合してなる粉体原料100重量部と、 水ガラス及び/又はアルミナゾルからなる液体
原料と、 を該液体原料中の固形分が前記粉体原料100重量
部に対し5〜25重量部となるように混合すると共
に混練し、ペースト状又はスラリー状と成し、塗
布又は成形し、常温ないし300℃以下の温度で乾
燥硬化してなることを特徴とする遠赤外線放射材
料。 2 骨材はセラミツクス又は天然鉱物であること
を特徴とする特許請求の範囲第1項に記載の遠赤
外線放射材料。 3 粉体原料が遠赤外線放射セラミツクス粉末40
〜75重量%、第一燐酸アルミニウム塩粉末10〜20
重量%及び平均粒径50〜800μmの骨材5〜50重
量%を配合してなる粉体原料であることを特徴と
する特許請求の範囲第1項又は第2項に記載の遠
赤外線放射料材。 4 遠赤外線放射セラミツクス粉末20〜90重量
%、第一燐酸アルミニウム塩粉末5〜20重量%及
び平均粒径50〜800μmの骨材5〜75重量%を配
合してなる粉体原料100重量部と、 水ガラス及び/又はアルミナゾルと希釈剤とか
らなる液体原料と、 を該液体原料中の固形分が前記粉末体原料100重
量部に対し5〜25重量部となるように混合すると
共に混練し、ペースト状又はスラリー状と成し、
塗布又は成形し、常温ないし300℃以下の温度で
乾燥硬化してなることを特徴とする遠赤外線放射
材料。 5 希釈剤はコロイダルシリカ、水又はアルコー
ルであることを特徴とする特許請求の範囲第4項
に記載の遠赤外線放射料材。
[Scope of Claims] 1. Powder made by blending 20 to 90% by weight of far-infrared emitting ceramic powder, 5 to 20% by weight of monobasic aluminum phosphate powder, and 5 to 75% by weight of aggregate with an average particle size of 50 to 800 μm. 100 parts by weight of the powder raw material and a liquid raw material consisting of water glass and/or alumina sol are mixed and kneaded so that the solid content in the liquid raw material is 5 to 25 parts by weight based on 100 parts by weight of the powder raw material. A far-infrared emitting material characterized in that it is formed into a paste or slurry form, coated or molded, and dried and cured at a temperature of room temperature to 300°C or less. 2. The far-infrared emitting material according to claim 1, wherein the aggregate is ceramics or natural minerals. 3 Powder raw material is far infrared emitting ceramic powder 40
~75% by weight, primary aluminum phosphate salt powder 10-20
The far-infrared radiation material according to claim 1 or 2, which is a powder raw material containing 5 to 50% by weight of aggregate with an average particle size of 50 to 800 μm. Material. 4. 100 parts by weight of a powder raw material prepared by blending 20 to 90% by weight of far-infrared emitting ceramic powder, 5 to 20% by weight of monobasic aluminum phosphate powder, and 5 to 75% by weight of aggregate with an average particle size of 50 to 800 μm. , a liquid raw material consisting of water glass and/or alumina sol and a diluent, and are mixed and kneaded so that the solid content in the liquid raw material is 5 to 25 parts by weight based on 100 parts by weight of the powdered raw material, Formed into a paste or slurry form,
A far-infrared emitting material characterized by being coated or molded, dried and cured at room temperature to 300°C or less. 5. The far-infrared radiation material according to claim 4, wherein the diluent is colloidal silica, water, or alcohol.
JP59236284A 1984-11-08 1984-11-08 Far infrared ray radiative material Granted JPS61117151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236284A JPS61117151A (en) 1984-11-08 1984-11-08 Far infrared ray radiative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236284A JPS61117151A (en) 1984-11-08 1984-11-08 Far infrared ray radiative material

Publications (2)

Publication Number Publication Date
JPS61117151A JPS61117151A (en) 1986-06-04
JPH0419181B2 true JPH0419181B2 (en) 1992-03-30

Family

ID=16998505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236284A Granted JPS61117151A (en) 1984-11-08 1984-11-08 Far infrared ray radiative material

Country Status (1)

Country Link
JP (1) JPS61117151A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134553A (en) * 1986-11-26 1988-06-07 日産化学工業株式会社 Composition for forming far infrared radiator and far infrared ray radiator
JP2689577B2 (en) * 1989-03-09 1997-12-10 株式会社ノリタケカンパニーリミテド Steam heater
CN107759221B (en) * 2016-08-18 2020-06-30 叶耀南 Terahertz (Tera Hertz, THz) composite material and manufacturing method thereof
JP6614563B2 (en) * 2017-03-10 2019-12-04 株式会社遊心 Silicate mixture and combustion accelerator using the same

Also Published As

Publication number Publication date
JPS61117151A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
KR0159278B1 (en) Ceramic material and method for producing the same
CN1052877A (en) High-temperature-resistant composite insulating coating
KR890001897A (en) Application method of coloring coating on the surface of window glass
JPH0419181B2 (en)
JPH0374483A (en) Inorganic adhesive having high strength
CN108738170A (en) Graphene nano coating PTC electric heater and its manufacturing method
CN103396705A (en) Anti-oxidation coating and preparation method thereof
CN110628244B (en) High-temperature energy-saving anticorrosive paint for metal baffle of sintering trolley and application thereof
JPH08897B2 (en) Heat-resistant binder as coating material or adhesive
JPH11514393A (en) Method for producing ceramic coating and coating powder therefor
US20080196627A1 (en) Vitreous enamel coating powder
JPS6220276A (en) Surface heat generating body element
US6060114A (en) Process for applying waterproof ceramic coating compositions
CN103951442B (en) Furnace retaining infra-red china furnace charge and preparation method thereof
JPH0684270B2 (en) Infrared radiation coating
JP2581291B2 (en) Construction method of concrete lining
JPS63303870A (en) Coating material
JPS61200682A (en) Far infrared radiation body
JPH04357167A (en) Ceramics heater
JPS62211888A (en) Far-infrared radiating ceramic unit and manufacture of the same
JPH02238222A (en) Steam heater
US4670101A (en) Aqueous suspension of bentonite and its use for coating thermal insulating molded articles
CN106085093B (en) High temperature high efficiency heat insulating coatings, preparation method and high temperature high efficiency heat-insulating heat-preserving material
JP2004500988A (en) Insulating material and method for coating spouts, pouring tubes, melt flow protection tubes, and other workpieces for pouring or transferring molten metal
JPH06243956A (en) Heater