JPH0238355A - Electrically conductive ceramic heating unit emitting far infrared rays - Google Patents

Electrically conductive ceramic heating unit emitting far infrared rays

Info

Publication number
JPH0238355A
JPH0238355A JP63187898A JP18789888A JPH0238355A JP H0238355 A JPH0238355 A JP H0238355A JP 63187898 A JP63187898 A JP 63187898A JP 18789888 A JP18789888 A JP 18789888A JP H0238355 A JPH0238355 A JP H0238355A
Authority
JP
Japan
Prior art keywords
ceramic
far infrared
heating element
conductive ceramic
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187898A
Other languages
Japanese (ja)
Inventor
Keizo Yamagata
山縣 桂三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dokoo KK
Original Assignee
Dokoo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dokoo KK filed Critical Dokoo KK
Priority to JP63187898A priority Critical patent/JPH0238355A/en
Publication of JPH0238355A publication Critical patent/JPH0238355A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrically conductive ceramic heating unit capable of emitting far infrared rays by adding a binder to a material consisting of a ceramic material containing a far infrared ray emitting ceramic and a ceramic material containing carbon and directly passing a current through the resultant mixture. CONSTITUTION:An electrically conductive ceramic heating unit obtained by adding a binder to an electrically conductive ceramic material consisting of one or plural ceramic materials containing one or plural far infrared ray emitting ceramics and a ceramic material containing carbon. A metallic oxide-based ceramic (e.g., alumina), siliceous ceramic (e.g., silica), etc., are cited as the far infrared ray emitting ceramics used. Quartzite, agalmatolite, bauxite, carborundum, etc., are used as the ceramic materials containing the far infrared ray emitting ceramics. Graphite, coke, charcoal, carbon black, etc., are cited as the ceramic material containing the carbon.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、発熱体自体へ通電することにより加熱され
て、遠赤外線を放射するセラミック発熱体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a ceramic heating element that is heated by supplying electricity to the heating element itself and emits far-infrared rays.

「従来の技術」 遠赤外線の放射エネルギは、自動車の塗装被膜の乾燥、
食品加工、暖房、調理から医療、測定の分野に至るまで
広く利用されている。
"Conventional technology" Far-infrared radiant energy is used to dry automobile paint films,
It is widely used in fields ranging from food processing, heating, and cooking to medical and measurement fields.

この遠赤外線の発熱体としてセラミックが用いられてい
るが、いずれもセラミック発熱体に遠赤外線を放射させ
るためには、外部から熱エネルギを供給して加熱する必
要がある。
Ceramics are used as far-infrared heating elements, but in order to cause the ceramic heating elements to emit far-infrared rays, it is necessary to supply thermal energy from the outside to heat them.

加熱する手段として、例えばセラミックの発熱体にヒー
タを内蔵させるもの(特公昭56−26081、特公昭
57−41794等)、又は加熱された空気、液体の中
にセラミックの発熱体を設けるもの(特公昭50−24
21 、特公昭52−26613等)などがある。
Examples of heating means include those in which a heater is built into a ceramic heating element (Japanese Patent Publication No. 56-26081, Japanese Patent Publication No. 57-41794, etc.), or those in which a ceramic heating element is installed in heated air or liquid (Japanese Patent Publication No. 56-26081, Japanese Patent Publication No. 57-41794, etc.). Kosho 50-24
21, Special Publication No. 52-26613, etc.).

[発明が解決しようとする問題点」 従って遠赤外線を放射するために、外部から熱エネルギ
を供給する必要があり、そのための熱エネルギの損失が
大きい。又、加熱手段を設けるために、遠赤外線放射装
置全体の構造が複雑になるなどの欠点があった。そのう
え、発熱体の形状、構造が限定される不具合もあった。
[Problems to be Solved by the Invention] Therefore, in order to radiate far-infrared rays, it is necessary to supply thermal energy from the outside, which causes a large loss of thermal energy. In addition, the provision of the heating means has the disadvantage that the overall structure of the far-infrared radiation device becomes complicated. Furthermore, there was also the problem that the shape and structure of the heating element were limited.

「問題点を解決するための手段」 この発明は上記のようなセラミックを用いた従来の遠赤
外線発熱体の欠点を解消して、セラミックの発熱体に導
電性を持たせて、発熱体自体へ直接通電することによっ
て、遠赤外線を放射させることを主たる目的とするもの
で、以下の構成をその要旨とする。
"Means for Solving the Problems" This invention solves the drawbacks of the conventional far-infrared heating elements using ceramics as described above, and makes the ceramic heating element conductive so that it can be connected to the heating element itself. Its main purpose is to radiate far-infrared rays by directly energizing it, and its gist is as follows.

即ちこの発明に係る遠赤外線を放射する導電性あるセラ
ミック発熱体は、遠赤外線放射セラミックの1又は複数
を含有する1又は複数のセラミ・ツク材と、炭素分を含
有するセラミック材とからなる導電性セラミック材料に
、結合剤を加えたことを特徴とする。
That is, the conductive ceramic heating element that emits far infrared rays according to the present invention is a conductive ceramic heating element made of one or more ceramic materials containing one or more far infrared ray emitting ceramics and a ceramic material containing carbon. It is characterized by adding a binder to the ceramic material.

さらに詳しく説明すると、遠赤外線放射セラミックとし
て、例えば酸化金属系セラミックの酸化アルミニウム(
アルミナ)、酸化第二鉄、酸化クロム、酸化ジルコニウ
ム、酸化チタン、酸化マグネシウムなど、又、ケイ素系
セラミックの二酸化ケイ素(シリカ)、炭化ケイ素、窒
化ケイ素などが挙げられが、これに限定されるものでは
ない。
To explain in more detail, examples of far-infrared emitting ceramics include aluminum oxide (metal oxide ceramic)
Examples include, but are not limited to, silicon-based ceramics such as silicon dioxide (silica), silicon carbide, and silicon nitride. isn't it.

これら遠赤外線放射セラミックの1又は複数を含有する
セラミック材には、耐火煉瓦原料とじて市販されている
、珪石、ろう石、Aシャモット、ばん土頁岩、コーディ
エライト、フリントクレー合成ムライト、ボーキサイト
、電融アルミナ、クローム鉄鉱、酸化クロム、マグネシ
ア、スピネル、ジルコン、ジルコニア、カーボランダム
等が利用できる。これらのものは、いずれも好ましくは
粒径約0.3鰭以下の粉末状のものを使用する。
Ceramic materials containing one or more of these far-infrared emitting ceramics include silica, waxite, A-chamotte, silica shale, cordierite, flint clay synthetic mullite, bauxite, which are commercially available as raw materials for refractory bricks. Fused alumina, chromite, chromium oxide, magnesia, spinel, zircon, zirconia, carborundum, etc. can be used. All of these materials are preferably used in powder form with a particle size of about 0.3 fins or less.

さらに導電性を与えるための炭素分を含有するセラミッ
ク材には、例えば黒鉛、コークス、木炭、カーボンブラ
ック等があり、好ましくは粒径約0゜5fi以下とする
Ceramic materials containing carbon for imparting electrical conductivity include, for example, graphite, coke, charcoal, carbon black, etc., and preferably have a particle size of about 0.5 fi or less.

なお、遠赤外線放射セラミック材、炭素分を含有するセ
ラミック材を、前記のような粒径の粉末としたのは、材
料をむらなく混合させるためである。
The reason why the far-infrared emitting ceramic material and the carbon-containing ceramic material are made into powders having the above-mentioned particle sizes is to mix the materials evenly.

結合剤としては、液状のフェノール樹脂、粉末状のメラ
ミン樹脂等の合成樹脂系のものの外、ケイ酸ソーダ等が
用いられるが、これに限られるものではない。
As the binder, in addition to synthetic resins such as liquid phenol resin and powdered melamine resin, sodium silicate and the like can be used, but the binder is not limited thereto.

これら各材料の組合わせ比率は、使用の目的、条件、及
び形態によって異なるものである。実験上重量比に於い
て、遠赤外線放射セラミック材を30〜98%、炭素分
を含有するセラミック材2〜30%からなる導電性セラ
ミック材料に、結合剤を外掛けで5〜25%を加えたも
のが好ましいが、この混合比率はこれに限定されない。
The combination ratio of each of these materials varies depending on the purpose of use, conditions, and form. In experiments, 5 to 25% of a binder was added externally to a conductive ceramic material consisting of 30 to 98% far infrared emitting ceramic material and 2 to 30% of carbon-containing ceramic material. However, this mixing ratio is not limited to this.

次ぎに成形方法について説明する。Next, the molding method will be explained.

前記重量比の遠赤外線放射セラミ・ツク材、炭素分を含
有するセラミック材からなる導電性セラミック材料と結
合剤をよく混練して型に入れて加圧する。又はペースト
状にして、型に塗り込めて成形、或いはパイプなどの表
面に塗布して成形し、強化のために加熱処理を加える。
A conductive ceramic material consisting of a far-infrared emitting ceramic material, a carbon-containing ceramic material, and a binder having the above weight ratio are thoroughly kneaded, placed in a mold, and pressed. Alternatively, it can be made into a paste and poured into a mold to be molded, or applied to the surface of a pipe or the like to be molded, and then heat treated to strengthen it.

従って、使用目的に応じて自在に成形できるところに、
この発明の大きな特徴の一つがある。
Therefore, where it can be shaped freely according to the purpose of use,
There is one major feature of this invention.

加熱処理には、水分、樹脂の揮発分を除去し、乾燥、固
形化して強度を与えるために、例えば120°C〜30
0℃の低温処理と、非蕩化雰囲気中で例えば1400℃
〜1700℃の高温処理とがある。前者では、通電する
の今で熱処理が可能な場合がある。
The heat treatment is performed at a temperature of, for example, 120°C to 30°C in order to remove moisture and volatile components of the resin, dry it, solidify it, and give it strength.
Low-temperature treatment at 0°C and e.g. 1400°C in a non-oxidizing atmosphere
There is a high temperature treatment of ~1700°C. In the former case, heat treatment may be possible without energizing.

高温処理で焼結を必要とする場合には、焼結材として、
例えばフェロシリコン、金属シリコン、金属アルミニウ
ム、カオリン系粘土などのうち1ないし3種を組合わせ
たものを、好ましくは重量比で2〜30%を加える。
When sintering is required for high-temperature processing, as a sintering material,
For example, a combination of one to three of ferrosilicon, metal silicon, metal aluminum, kaolin clay, etc. is added, preferably in an amount of 2 to 30% by weight.

この発明にかかる導電性セラミック発熱体は、広い温度
範囲で使用でき、又直流、交流を問わず通電できる。
The conductive ceramic heating element according to the present invention can be used in a wide temperature range and can be energized with either direct current or alternating current.

又、この導電性セラミック発熱体の遠赤外線放射特性は
、後述するように標準黒体のそれに極めて近いものであ
り、電気エネルギを有効に利用して、加熱、乾燥、暖房
、調理、医療等に広く利用できるものである。
In addition, the far-infrared radiation characteristics of this conductive ceramic heating element are extremely close to those of a standard black body, as will be described later, and it can be used for heating, drying, room heating, cooking, medical treatment, etc. by effectively utilizing electrical energy. It is widely available.

なお、この導電性セラミック発熱体は、実用上充分な熱
膨張率、熱伝導率、強度を有しており、過大な電流を流
したり、堅い床に落下させるなど不注意な扱いをしない
限り、破損のおそれはない。
Furthermore, this conductive ceramic heating element has a practically sufficient coefficient of thermal expansion, thermal conductivity, and strength, and as long as it is not handled carelessly, such as by passing an excessive current or dropping it on a hard floor, it will not work. There is no risk of damage.

実施例 1 この実施例は導電性セラミックの発熱体を、焼肉器の熱
源としたものである。
Example 1 In this example, a conductive ceramic heating element was used as the heat source of a yakiniku pot.

その組成は重量比で、 カーボランダム・・・・70% フェロシリコン・・・・15% シリコン   ・・・・5% 黒鉛     ・・・・10% 及び、 フェノール樹脂液・・・25%(外掛け)であり、これ
ら材料を混練機で60分間混練する。
Its composition is by weight: Carborundum: 70% Ferrosilicon: 15% Silicon: 5% Graphite: 10% and Phenol resin liquid: 25% (external coating) ), and these materials are kneaded for 60 minutes using a kneader.

次いで、混練した前記材料を流動乾燥機により、60℃
で30分間乾燥する。
Next, the kneaded materials were heated to 60°C using a fluidized fluid dryer.
Dry for 30 minutes.

乾燥させた材料を金型に投入し、250tブレスを使用
して500 kg/cfflの加圧成形をする。
The dried material is put into a mold and press-molded at 500 kg/cffl using a 250t press.

加圧成形後の成形物を150℃の温度を保ち、24時間
熱風乾燥により乾燥させる。
The molded product after pressure molding is kept at a temperature of 150° C. and dried by hot air drying for 24 hours.

さらに、乾燥させた成形物を角型の耐熱容器に収容し、
成形物の周囲に微粉砕したコークス粉を充填して、17
00℃の温度雰囲気のトンネルキルン炉で4時間焼成す
る。
Furthermore, the dried molded product is stored in a square heat-resistant container,
Fill the periphery of the molded product with finely pulverized coke powder,
It is fired for 4 hours in a tunnel kiln in a temperature atmosphere of 00°C.

第1図には、このように形成した焼肉器用の導電性セラ
ミック発熱体1が示されている。2は接続金具、3はコ
ードである。発熱体1は、幅10鶴、厚さ10鶴の棒状
体を屈曲形成したもので、全体の長さ300鶴、幅16
4Rである。
FIG. 1 shows a conductive ceramic heating element 1 for a yakiniku pot formed in this way. 2 is a connecting fitting, and 3 is a cord. The heating element 1 is made by bending a rod-shaped body with a width of 10 mm and a thickness of 10 mm, and an overall length of 300 mm and a width of 16 mm.
It is 4R.

この発熱体1に交流100 Vを通電した結果は次の通
りである。
The results of applying 100 V AC to this heating element 1 are as follows.

通電5分後 電流(八)電気抵抗(Ω)表面温度(’C)9.6  
 10.4     290通電10分後 電流(Δ)電気抵抗(Ω)表面温度(°C)9.8  
 10.2     370発熱体1に直接肉を載せて
焼いたところ、市販のガスバーナ、ニクロム線を用いた
一般の焼肉器と異なり、肉汁による発煙がなく肉の焼土
がりと食感が非常に優れていた。又、肉表面の炭化が無
かった。これらの効果は、遠赤外線の放射によるもので
ある。
Current after 5 minutes of energization (8) Electrical resistance (Ω) Surface temperature ('C) 9.6
10.4 290 Current after 10 minutes (Δ) Electrical resistance (Ω) Surface temperature (°C) 9.8
10.2 When meat was placed directly on the 370 heating element 1 and grilled, unlike a general yakiniku machine that uses a commercially available gas burner and nichrome wire, there was no smoke from the meat juices, and the meat had a very good texture and texture. was. Also, there was no carbonization on the meat surface. These effects are due to far-infrared radiation.

第2図、第3図は、この発熱体1へ100■の交流を通
電したときの表面温度が370℃に於ける遠赤外線の放
射特性を示す。第2図は放射熱エネルギを、第3図は放
射率をそれぞれ示しており、点線はそれぞれ標準黒体の
それを示す。
FIGS. 2 and 3 show far-infrared radiation characteristics at a surface temperature of 370° C. when an alternating current of 100 square meters is applied to the heating element 1. FIG. 2 shows the radiant heat energy, and FIG. 3 shows the emissivity, and the dotted lines each show that of a standard black body.

この実施例のように形成した導電性セラミック発熱体は
、調理器以外に広く暖房器、乾燥器、加熱器等に利用で
きる。
The conductive ceramic heating element formed as in this example can be used not only in cooking devices but also in a wide variety of applications such as space heaters, dryers, heaters, and the like.

実施例2 導電性セラミック発熱体を温灸用熱源とした実施例を次
に示す。
Example 2 An example using a conductive ceramic heating element as the heat source for moxibustion is shown below.

組成(重量比)は、 ジルコン   ・・・・50% ジルコニア  ・・・・15% アルミナ   ・・・・15% シリカ    ・・・・5% 黒鉛     ・・・・15% 及び、 フェノール樹脂液・・・25%(外掛け)である。The composition (weight ratio) is Zircon...50% Zirconia...15% Alumina...15% Silica...5% Graphite...15% as well as, Phenol resin liquid: 25% (external).

これら材料を混練機で60分間混練したのち、第4図に
示すように、内径201mの円筒状金型12の中に入れ
て、加圧棒13をハンマでたたいて、直径20鶴、高さ
10龍の円柱状の形成物11’に成形する。
After kneading these materials in a kneading machine for 60 minutes, as shown in Fig. 4, they were placed in a cylindrical mold 12 with an inner diameter of 201 m, and the pressure rod 13 was hit with a hammer to form a mold with a diameter of 20 m and a height of 20 m. It is formed into a cylindrical shape 11' having a diameter of 10 mm.

14.14は、導線を入れる穴を形成するための外径1
重囲のピアノ線である。
14.14 is the outer diameter 1 for forming the hole for inserting the conductor
It is a heavy piano wire.

成形後、ピアノ線14.14を抜き取り、260℃で2
4時間熱風乾燥させる。
After forming, the piano wire 14.14 was pulled out and heated at 260℃ for 2 hours.
Dry with hot air for 4 hours.

最後に、この成形物11′の前記穴に導線15と次の組
成の導線固定用ベースl−16とを挿入し、導線15.
15に立ぢ上がり6■、0.3Aの電流を流して、高温
にならないようペースト16をゆっくり乾燥させる。
Finally, the conducting wire 15 and a conducting wire fixing base l-16 having the following composition are inserted into the hole of this molded product 11', and the conducting wire 15.
A current of 0.3 A is applied to the paste 15 to slowly dry the paste 16 so as not to reach a high temperature.

第5図はこのようにして形成された温灸用発熱体11を
示す。
FIG. 5 shows the moxibustion heating element 11 formed in this manner.

導線固定用ペーストの組成(重量比) ジルコニア(44μ以下)  ・・・50%黒鉛   
       ・・・50%さらに外掛けで液状フェノ
ール樹脂 ・・・30〜35% このようにして形成した温灸用発熱体11に柄を取付け
て、サーモスイッチで適温を保ちながら使用する。
Composition of conductor fixing paste (weight ratio) Zirconia (44μ or less)...50% graphite
...50% and liquid phenol resin applied externally...30 to 35% A handle is attached to the heating element 11 for moxibustion thus formed, and it is used while maintaining an appropriate temperature with a thermoswitch.

この温灸用発熱体11に3.5V、0.5Aの直流を流
した場合の表面温度は96℃、4.OV、 0.7 A
の場合の表面温度は123℃である。
When a direct current of 3.5V and 0.5A is applied to this heating element 11 for moxibustion, the surface temperature is 96°C, 4. OV, 0.7A
The surface temperature in this case is 123°C.

上述の温灸用発熱体11へ直流6Vを通電したときの、
表面温度122℃に於ける遠赤外線放射特性を第6図、
第7図に示す。第6図は熱エネルギを、第7図は放射率
をそれぞれ示し、点線はいれも標準黒体のそれである。
When DC 6V is applied to the above-mentioned moxibustion heating element 11,
Figure 6 shows the far infrared radiation characteristics at a surface temperature of 122°C.
It is shown in FIG. FIG. 6 shows thermal energy, and FIG. 7 shows emissivity, and the dotted lines are those of a standard blackbody.

実施例3 この実施例では、自動二輪車、原動機付き自転車などの
ハンドル保温用熱源として利用する導電性セラミック発
熱体を示す。
Example 3 This example shows a conductive ceramic heating element used as a heat source for keeping the handles of motorcycles, motorized bicycles, etc. warm.

第8図のように、縦横各100+n、厚さ2鶴のゴム板
32に、長さ80鰭、幅5鰭の2本の溝33.33を貫
設して、両溝33.33の中に実施例2で示した導線固
定用ペースト31′、31′を、よく混練して塗り込む
。34は導線、35は紐通し大群である。
As shown in Fig. 8, two grooves 33.33 with a length of 80 fins and a width of 5 fins are provided in a rubber plate 32 measuring 100+n in length and width and 2 fins in thickness. The conducting wire fixing pastes 31' and 31' shown in Example 2 are thoroughly kneaded and applied. 34 is a conductor, and 35 is a large group of strings.

導線34に立ち上がり6vの直流を流して材料を乾燥さ
せればハンドル保温用発熱体31.31となるので、第
9図のように、紐通し穴35群を設けたO05鶴の保護
ゴム板36.36を、ゴム板32の表裏に貼り合わせる
。なお、紐通し穴35群を予め設けず、保護ゴム板36
.36をゴム板32に貼り付けたのち一度に設けてもよ
い。
If a direct current of 6V is applied to the conductor wire 34 to dry the material, it will become the heating element 31.31 for keeping the handle warm.As shown in Fig. 9, the protective rubber plate 36 of the O05 crane is provided with 35 groups of string holes. .36 are pasted on the front and back sides of the rubber plate 32. In addition, the protective rubber plate 36 is not provided with the 35 groups of string holes in advance.
.. 36 may be attached to the rubber plate 32 and then provided at once.

これをハンドルに巻きつけ、紐通し穴35へ紐を通して
固定する。電源は自動二輪車の6vバツテリを使用する
This is wrapped around the handle, and the string is passed through the string hole 35 and fixed. The power source uses a 6v battery from a motorcycle.

このハンドル保温用発熱体31の表面温度は60℃〜8
0℃である。なお、ハンドル保温用発熱体31の厚みを
薄くすれば、使用電流は少なくなり、表面温度が上昇す
る。
The surface temperature of this heating element 31 for heating the handle is 60°C to 8°C.
It is 0°C. Note that, if the thickness of the heating element 31 for heat retention of the handle is made thinner, the current used will be reduced and the surface temperature will increase.

実施例4 耐熱、絶縁コーティングを施したパイプの表面に実施例
2の組成のペーストを、スプレーガンで塗布する。導線
を取付けて通電乾燥させれば、給湯パイプが形成できる
Example 4 A paste having the composition of Example 2 is applied to the surface of a pipe coated with a heat-resistant and insulating coating using a spray gun. A hot water pipe can be formed by attaching conductive wires and drying with electricity.

実施例5 耐熱、絶縁コーティングを施した鉄板に、実施例4と同
様のペーストをスプレーガンで塗布し、導線を取付けて
通電乾燥させれば、面状の導電性セラミック発熱体が形
成されるので、暖房器として使用できる。
Example 5 By applying the same paste as in Example 4 to a heat-resistant and insulating coated iron plate with a spray gun, attaching conductive wires and drying with electricity, a planar conductive ceramic heating element is formed. , can be used as a heater.

実施例6 実施際5と同様にして、瓦表面に導電性セラミック発熱
体を設ければ、融雪可能な瓦が形成される。
Example 6 Similar to Example 5, a tile capable of melting snow can be formed by providing a conductive ceramic heating element on the surface of the tile.

実施例7 布、不織布などの小片に実施例5と同様にして導電性セ
ラミック発熱体を設けて患部に貼れば、温灸に用いるこ
とができる。又、衣服の裏地に設ければ保温層を形成で
きる。
Example 7 If a conductive ceramic heating element is provided on a small piece of cloth, nonwoven fabric, etc. in the same manner as in Example 5 and applied to the affected area, it can be used for moxibustion. Also, if it is provided on the lining of clothing, it can form a heat retaining layer.

実施例8 植物栽培用の鉢の内面に実施例5と同様にして導電性セ
ラミック発熱体を設ければ、来季に於ける根の保温に効
果がある。
Example 8 If a conductive ceramic heating element is provided on the inner surface of a plant cultivation pot in the same manner as in Example 5, it will be effective in keeping the roots warm next season.

「効果」 この発明の効果を列挙すれば以下のとおりである。"effect" The effects of this invention are listed below.

(1)発熱体が導電性を有するため発熱体へ直接通電で
きるので、外部から熱エネルギを供給する従来の遠赤外
線放射発熱体に比し、エネルギ効率が極めて高い。
(1) Since the heating element has conductivity, electricity can be directly applied to the heating element, so energy efficiency is extremely high compared to conventional far-infrared radiation heating elements that supply thermal energy from the outside.

(2)従って、外部から熱エネルギを供給する手段を必
要としないので、遠赤外線放射装置ないし器具の構造が
簡単になる。
(2) Therefore, since there is no need for means for supplying thermal energy from the outside, the structure of the far-infrared radiation device or instrument becomes simple.

(3)発熱体を任意の形状に形成できるので、利用範囲
が広い。
(3) Since the heating element can be formed into any shape, it can be used in a wide range of applications.

(4)遠赤外線の放射効率が高い。(4) High radiation efficiency of far infrared rays.

(5)耐火煉瓦材料を使用できるので、低コストで提供
できる。
(5) Since firebrick material can be used, it can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼肉器用熱源として形成された導電性セラミッ
ク発熱体の平面図、第2図はその遠赤外線放射熱エネル
ギと波長との関係を、第3図は遠赤外線放射率と波長と
の関係をそれぞれ示す遠赤外線放射特性図である。 第4図は温灸用熱源として導電性セラミック発熱体を成
形する装置の断面図、第5図は温灸用発熱体の断面拡大
図、第6図はその遠赤外線放射熱エネルギと波長との関
係を、第7図は遠赤外線放耐重と波長との関係をそれぞ
れ示す遠赤外線放射特性図である。 第8図は導電性セラミック発熱体を使用して、自動二輪
車等のハンドル保温具を形成する状態を示す斜視図、第
9図は完成品の一部欠截正面図である。
Figure 1 is a plan view of a conductive ceramic heating element formed as a heat source for a yakiniku pot, Figure 2 shows the relationship between its far-infrared radiant heat energy and wavelength, and Figure 3 shows the relationship between far-infrared emissivity and wavelength. FIG. Figure 4 is a cross-sectional view of a device for forming a conductive ceramic heating element as a heat source for moxibustion, Figure 5 is an enlarged cross-sectional view of the heating element for moxibustion, and Figure 6 shows the relationship between far-infrared radiant heat energy and wavelength. , and FIG. 7 are far-infrared radiation characteristic diagrams showing the relationship between far-infrared radiation weight and wavelength, respectively. FIG. 8 is a perspective view showing a state in which a handle heat insulating device for a motorcycle or the like is formed using a conductive ceramic heating element, and FIG. 9 is a partially cutaway front view of the finished product.

Claims (1)

【特許請求の範囲】 1 遠赤外線放射セラミックの1又は複数を含有する1
又は複数のセラミック材と、炭素分を含有するセラミッ
ク材とからなる導電性セラミック材料に、結合剤を加え
たことを特徴とする遠赤外線を放射する導電性セラミッ
ク発熱体。 2 前記導電性セラミック材料に、焼結材を加えたこと
を特徴とする請求項1記載の遠赤外線を放射する導電性
セラミック発熱体。
[Claims] 1. 1 containing one or more far-infrared emitting ceramics
Alternatively, a conductive ceramic heating element that emits far infrared rays is characterized in that a binder is added to a conductive ceramic material made of a plurality of ceramic materials and a ceramic material containing carbon. 2. The conductive ceramic heating element that radiates far infrared rays according to claim 1, characterized in that a sintered material is added to the conductive ceramic material.
JP63187898A 1988-07-27 1988-07-27 Electrically conductive ceramic heating unit emitting far infrared rays Pending JPH0238355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187898A JPH0238355A (en) 1988-07-27 1988-07-27 Electrically conductive ceramic heating unit emitting far infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187898A JPH0238355A (en) 1988-07-27 1988-07-27 Electrically conductive ceramic heating unit emitting far infrared rays

Publications (1)

Publication Number Publication Date
JPH0238355A true JPH0238355A (en) 1990-02-07

Family

ID=16214127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187898A Pending JPH0238355A (en) 1988-07-27 1988-07-27 Electrically conductive ceramic heating unit emitting far infrared rays

Country Status (1)

Country Link
JP (1) JPH0238355A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989460A (en) * 1994-11-21 1999-11-23 Garland Floor Co. Electrically conductive coating
KR20030059602A (en) * 2002-01-03 2003-07-10 이선구 Electro-Conductive Heating Mortar using Graphite and Nonorganic Binder
US6730892B2 (en) 2002-05-09 2004-05-04 Mitsubishi Pencil Co., Ltd. Resistive heating element and production method
KR100446019B1 (en) * 2001-11-30 2004-08-30 (주)인창바이오 carbon consolidation matter manufacturing method
JP2008267784A (en) * 2007-03-22 2008-11-06 Bridgestone Corp In-line heater
JP2012097942A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Heating cooker
JP2014501433A (en) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Reduced ceramic heating element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989460A (en) * 1994-11-21 1999-11-23 Garland Floor Co. Electrically conductive coating
KR100446019B1 (en) * 2001-11-30 2004-08-30 (주)인창바이오 carbon consolidation matter manufacturing method
KR20030059602A (en) * 2002-01-03 2003-07-10 이선구 Electro-Conductive Heating Mortar using Graphite and Nonorganic Binder
US6730892B2 (en) 2002-05-09 2004-05-04 Mitsubishi Pencil Co., Ltd. Resistive heating element and production method
JP2008267784A (en) * 2007-03-22 2008-11-06 Bridgestone Corp In-line heater
JP2012097942A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Heating cooker
JP2014501433A (en) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Reduced ceramic heating element
US9320085B2 (en) 2010-12-24 2016-04-19 Philip Morris Products S.A. Reduced ceramic heating element

Similar Documents

Publication Publication Date Title
US3718497A (en) Heater coil support
JPH0238355A (en) Electrically conductive ceramic heating unit emitting far infrared rays
JPH118049A (en) Molten metal heating heater and assembling method thereof
CN2195745Y (en) Strong radiative transfer energy-saving industral furnace
JP2002509513A (en) Infrared emitting ceramic material
JPH0321501B2 (en)
JPS60134126A (en) Far infrared ray radiant material
JP2685370B2 (en) Ceramics heater
JPH0420868B2 (en)
CN1052843C (en) Heat conductive thermo-resisting compound electric heated body and manufacturing method thereof
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
Makris Function of cermet elements in heat treating furnaces
JPS5934233B2 (en) far infrared radiation device
CN2267595Y (en) High efficiency infrared radiation ceramic electric heating disc
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPS6124770B2 (en)
JP2955127B2 (en) Ceramic heater
JPS58151380A (en) Far infrared ray radiator and manufacture
JPH0679982B2 (en) Ceramic spray material
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JPS6217976A (en) Far infrared radiating body
JPS61151986A (en) Ceramic far infrared ray heater
JPS5836156Y2 (en) infrared heating element
JPH08153572A (en) Far infrared radiation heater
JPH0229638B2 (en)