JPH0420868B2 - - Google Patents

Info

Publication number
JPH0420868B2
JPH0420868B2 JP58138109A JP13810983A JPH0420868B2 JP H0420868 B2 JPH0420868 B2 JP H0420868B2 JP 58138109 A JP58138109 A JP 58138109A JP 13810983 A JP13810983 A JP 13810983A JP H0420868 B2 JPH0420868 B2 JP H0420868B2
Authority
JP
Japan
Prior art keywords
infrared
radiator
material component
weight
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58138109A
Other languages
Japanese (ja)
Other versions
JPS6033249A (en
Inventor
Ken Takahashi
Ryutaro Jinbo
Yasuo Matsushita
Seiichi Yamada
Kosuke Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58138109A priority Critical patent/JPS6033249A/en
Publication of JPS6033249A publication Critical patent/JPS6033249A/en
Publication of JPH0420868B2 publication Critical patent/JPH0420868B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は赤外線放射体に係り、特に耐熱性、化
学的及び構造的安定性に優れる発熱性と放射性を
兼ね備えた赤外線放射体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an infrared radiator, and more particularly to an infrared radiator that has both exothermic and radioactive properties and is excellent in heat resistance, chemical and structural stability.

〔発明の背景〕[Background of the invention]

赤外線放射エネルギーは加熱、乾燥など工業的
にも広く利用されている。電力をエネルギー源と
する場合、従来は放射率の高いセラミツクスなど
で放射体を作り、ニクロム線のような金属抵抗
体、ガラス繊維にカーボンを塗布した抵抗体、
SiC、ランタンクロマイト等のセラミツクスなど
を用いた発熱体と組み合わせ使用してていた。こ
れらは放射体と発熱体とが構造的に一体となつて
いないため、熱伝達が悪く速熱性に欠ける、熱効
率が悪い、使用中構造上の変化やそれに伴う劣化
が生じるなどの欠点があつた。一方発熱体の表面
に放射体材料を焼付けたり、逆に放射体の裏面に
抵抗体を焼付けて放射体と発熱体とを一体化する
試みもあるが、両者の熱膨張係数の違いにより使
用中に応力がかかつて破壊し易い、製造工程が複
雑になるなどの欠点がある。
Infrared radiant energy is widely used in industries such as heating and drying. Conventionally, when electricity is used as an energy source, the radiator is made of ceramics with high emissivity, metal resistors such as nichrome wire, resistors made of glass fiber coated with carbon, etc.
It was used in combination with a heating element made of ceramics such as SiC and lanthanum chromite. Since the radiator and heating element are not structurally integrated, these devices have disadvantages such as poor heat transfer, lack of rapid heating properties, poor thermal efficiency, and structural changes and associated deterioration during use. . On the other hand, attempts have been made to integrate the radiator and heating element by baking the radiator material onto the surface of the heating element, or conversely by baking a resistor onto the back side of the radiator, but these efforts are not being used due to the difference in thermal expansion coefficient between the two. However, there are disadvantages such as high stress, easy breakage, and complicated manufacturing process.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射率が高く、耐熱性、化学
的及び構造的安定性に優れる自己発熱形の赤外線
放射体を提供するにある。
An object of the present invention is to provide a self-heating infrared radiator that has high emissivity, excellent heat resistance, and chemical and structural stability.

〔発明の概要〕[Summary of the invention]

本発明の赤外線放射体は、赤外線放射材成分と
導電材成分との混合組成物より作られて、赤外線
放射面は、実質的に前記赤外線放射材成分のみか
らなり、前記赤外線放射面の反対側の面は、前記
赤外線放射材成分と前記導電材成分との混合物か
らなり、両者は一体化されているものであり、特
に通電による自己発熱で赤外線を放射する自己発
熱型赤外線放射体である。
The infrared radiator of the present invention is made of a mixed composition of an infrared radiating material component and a conductive material component, and the infrared ray radiating surface is substantially made only of the infrared ray radiating material component, and the infrared ray radiating surface is formed on the opposite side of the infrared ray radiating surface. The surface is made of a mixture of the infrared ray emitting material component and the conductive material component, both of which are integrated, and is particularly a self-heating type infrared radiator that emits infrared rays by self-heating when energized.

赤外線放射成分としては放射率が高く黒体の放
射特性に近いものから、短波長の放射率が低く長
波長で高くなるいわゆる遠赤外線放射材まで幅広
いものを用いることができる。黒体の放射特性に
近いものとしてはFe2O3やMnO2を主体にして
CoOやCuOを補助剤として添加したものなどがあ
るが、このような遷移元素酸化物を主体にしたセ
ラミツクスは一般に熱膨張が大きいため、ベタラ
イトやコージエライト組成物を添加する必要があ
り、セラミツクス放射体自体は導電性を示さな
い。また遠赤外線放射材として使われるものはア
ルミナ、珪石、ジルコン、コージエライト、スフ
エーン、β−スポンジユーメンなど、非導電性の
ものである。
As the infrared radiation component, a wide range of materials can be used, from materials with high emissivity close to the radiation characteristics of a black body to so-called far-infrared radiation materials whose emissivity is low at short wavelengths and high at long wavelengths. Fe 2 O 3 and MnO 2 are the main materials that have radiation characteristics similar to that of a black body.
There are ceramics with CoO and CuO added as auxiliaries, but ceramics based on transition element oxides generally have large thermal expansion, so it is necessary to add betalite or cordierite compositions. It itself does not exhibit electrical conductivity. Further, materials used as far-infrared radiating materials are non-conductive materials such as alumina, silica, zircon, cordierite, sphene, and β-spongeumene.

これに対して混合させる導電材としては、金
属、高融点ホウ化物、炭化物、窒化物またはケイ
化物、半導体などを用いることができる。好まし
くは、組み合わせる赤外線射材とたとえば混合焼
成する際に、反応を起こさないものがよい。また
使用中に特性の変化が少ないようにするために
は、耐熱性のよい材質、たとえば高融点化合物や
酸化物半導体などを使うことが望ましい。
On the other hand, as the conductive material to be mixed, metals, high melting point borides, carbides, nitrides, silicides, semiconductors, etc. can be used. Preferably, the material does not react with the infrared radiation material to be combined, for example, when mixed and fired. Further, in order to minimize changes in characteristics during use, it is desirable to use a material with good heat resistance, such as a high melting point compound or an oxide semiconductor.

赤外線放射材と導電材との混合割合と両者の抵
抗率に応じて、混合体の抵抗率が定まる。従つて
目的とする赤外線放射体の発熱量にうまく合うよ
うに、導電材の種類と混合割合を選ぶことができ
る。なお導電材の混合割合は赤外線放射体の全体
にわたつて均一である必要はなく、たとえば被放
射体に対向する面の近傍では導電材の混合割合を
少なくすることができる。これにより混合した導
電材がこの面の放射率に与える影響を小さくする
ことができ、しかも連続した導電材の混合割合の
多い部分からの熱の流れにより効率よく加熱され
る。この場合、主に発熱する部分と主に赤外線を
放射する部分とが同種の、しかも連続した物質で
あるため熱膨張の差もほとんどなく、赤外線放射
部分と抵抗体部分を別の材質で作つて一体化した
場合のような応力は発生しない。またこのように
主に赤外線を放射する部分と発熱する部分とを形
成する場合でも、両者を同時に、一体化して作る
ことができる。
The resistivity of the mixture is determined depending on the mixing ratio of the infrared ray emitting material and the conductive material and the resistivity of both. Therefore, the type and mixing ratio of the conductive material can be selected to suit the calorific value of the intended infrared radiator. Note that the mixing ratio of the conductive material does not need to be uniform over the entire infrared radiator; for example, the mixing ratio of the conductive material can be reduced near the surface facing the radiated body. This makes it possible to reduce the influence of the mixed conductive material on the emissivity of this surface, and to efficiently heat the surface due to the flow of heat from the portion where the continuous conductive material is mixed in a large proportion. In this case, the part that mainly generates heat and the part that mainly emits infrared rays are made of the same and continuous material, so there is almost no difference in thermal expansion, so the infrared ray radiating part and the resistor part are made of different materials. The stress that would occur if they were integrated is not generated. Further, even when forming a part that mainly emits infrared rays and a part that generates heat in this way, both can be made simultaneously and integrally.

尚、本発明の製品形状は板状でも円柱状、棒状
でも良く、この他用途に応じて適宜選択される。
The shape of the product of the present invention may be plate-like, cylindrical, or rod-like, and may be appropriately selected depending on the intended use.

〔発明の実施例〕[Embodiments of the invention]

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 ジルコン(ZrO2・SiO2)70重量%、粘土30重
量%から成る組成物を混合粉砕し、1000℃で仮焼
して赤外線放射材組成物(A)とした。またこれとは
別にコージエライト(2MgO・2Al2O3・5SiO2
組成物を用意し、赤外線放射材組成物(B)とした。
Example 1 A composition consisting of 70% by weight of zircon (ZrO 2 .SiO 2 ) and 30% by weight of clay was mixed and ground, and calcined at 1000°C to obtain an infrared radiation material composition (A). Apart from this, cordierite (2MgO・2Al 2 O 3・5SiO 2 )
A composition was prepared and designated as an infrared radiation material composition (B).

(a):酸化チタン(TiO2)40重量%、組成物(A)60
重量%の割合で混合し、混合粉末を1000Kg/cm2
の圧力で成形した後、温度1200℃、時間1hの
条件で真空中で焼成した。焼結体から厚さ5
mm、幅10cm、長さ10cmの板を切り出し、赤外線
放射体とした。
(a): Titanium oxide (TiO 2 ) 40% by weight, composition (A) 60
Mix at a weight% ratio of 1000Kg/cm 2 of mixed powder
After molding at a pressure of 1,200°C, it was fired in a vacuum at a temperature of 1200°C for 1 hour. Thickness 5 from sintered body
A plate measuring 10 cm wide and 10 cm long was cut out and used as an infrared emitter.

(b):酸化ニツケル(NiO)45重量%、組成物(B)55
重量%の割合で混合し、この混合粉末を厚さ5
mmのシート状にした上を組成物(B)の粉末で1mm
の厚さにおおい、両者を一体成形した。次いで
成形体を温度1200℃、時間1hの条件で大気中
で焼成し、焼結体から幅10cm、長さ10cmの板を
切り出して赤外線放射体とした。
(b): Nickel oxide (NiO) 45% by weight, composition (B) 55
% by weight, and this mixed powder was mixed to a thickness of 5% by weight.
1 mm sheet with powder of composition (B)
Both were integrally molded to a thickness of . The molded body was then fired in the air at a temperature of 1200° C. for 1 hour, and a plate with a width of 10 cm and a length of 10 cm was cut from the sintered body to form an infrared radiator.

(c):炭化チタン(TiO)30重量%、組成物(A)70重
量%の割合で混合し、混合粉末を1000Kg/cm2
圧力で成形した後、温度1200℃、時間1hの条
件でArガス中で焼成した。焼結体の厚さは3
mmであつた。この焼結体から幅5cm、長さ10cm
の板を切り出し、赤外線放射体とした。
(c): Mix 30% by weight of titanium carbide (TiO) and 70% by weight of composition (A), mold the mixed powder at a pressure of 1000Kg/ cm2 , and then mold it at a temperature of 1200℃ for 1 hour. Calcined in Ar gas. The thickness of the sintered body is 3
It was warm in mm. From this sintered body, the width is 5 cm and the length is 10 cm.
The board was cut out and used as an infrared emitter.

(d):上記(c)と同様にして、ホウ化ジルコニウム
(ZrB2)25重量%、組成物(B)75重量%から成る
厚さ3mm、幅5cm、長さ10cmの赤外線放射体を
作製した。
(d): In the same manner as in (c) above, an infrared radiator with a thickness of 3 mm, width of 5 cm, and length of 10 cm was prepared, consisting of 25% by weight of zirconium boride (ZrB 2 ) and 75% by weight of composition (B). did.

以上の(a)〜(d)の赤外線放射体の抵抗値を測定し
た。電流は面に平行に流し、(c)、(d)の場合は長尺
方向に流して測定した。結果は(a)約100Ω、(b)約
200Ω、(c)約50Ω、(d)約70Ωであつた。
The resistance values of the infrared radiators (a) to (d) above were measured. The current was passed parallel to the surface, and in the case of (c) and (d), the current was passed in the longitudinal direction for measurement. The results are (a) about 100Ω, (b) about
They were 200Ω, (c) approximately 50Ω, and (d) approximately 70Ω.

これらの赤外線放射体に通電して表面温度を
500℃一定にし、赤外線放射スペクトルを測定し
た結果を第1図に示した。図には(e)として疑似黒
体(米国・テンピル社製黒色塗料)についての測
定結果もあわせて示した。
These infrared emitters are energized to increase their surface temperature.
Figure 1 shows the results of measuring the infrared radiation spectrum at a constant temperature of 500°C. The figure also shows the measurement results for a pseudo-black body (black paint manufactured by Tempil, USA) as (e).

この結果からわかるように、本実施例の赤外線
放射体は良好な遠赤外線放射体である。特に(b)の
赤外線放射体は、コージエライト質のみで作つた
赤外線放射体の裏面に発熱体を装着したものと比
べると同等の放射特性を示し、電力消費量は約10
%少なく、通電時の昇温速度が速かつた。(a)、
(c)、(d)の赤外線放射体も、導電材を混合しないも
のとほぼ同様の放射特性を示す。
As can be seen from this result, the infrared radiator of this example is a good far-infrared radiator. In particular, the infrared radiator in (b) shows the same radiation characteristics as an infrared radiator made only of cordierite with a heating element attached to the back, and the power consumption is approximately 10%.
% less, and the rate of temperature rise during energization was faster. (a),
The infrared radiators (c) and (d) also exhibit radiation characteristics almost similar to those not mixed with a conductive material.

以上の赤外線放射体について、600℃と20℃の
温度サイクル(1サイクル10分)を1万回継続し
た後も、特性の変化は認められなかつた。
No change in the characteristics of the above infrared radiator was observed even after 10,000 temperature cycles of 600°C and 20°C (1 cycle of 10 minutes) were continued.

実施例 2 酸化鉄(Fe2O3)20重量%、酸化マンガン
(MnO2)60重量%、酸化コバルト(CoO)10重
量%、酸化銅(CuO)10%の混合物を1100℃で仮
焼した後粉砕し、コージエライト(2MgO・
2Al2O3・5SiO2)組成物と重量比が3:1になる
ように混合して赤外線放射材組成物(C)とした。
Example 2 A mixture of 20% by weight of iron oxide (Fe 2 O 3 ), 60% by weight of manganese oxide (MnO 2 ), 10% by weight of cobalt oxide (CoO), and 10% by weight of copper oxide (CuO) was calcined at 1100°C. After crushing, cordierite (2MgO・
2Al 2 O 3 .5SiO 2 ) composition at a weight ratio of 3:1 to obtain an infrared radiation material composition (C).

(f):ホウ化ハウニウム(HfB2)50重量%、組成
物(C)50重量%の割合で混合し、混合粉末を1000
Kg/cm2の圧力で成形した後、温度1200℃、時間
1hの条件でAr中で焼成した。焼結体から厚さ
3mm、幅5cm、長さ10cmの赤外線放射体を得
た。
(f): Mix 50% by weight of haunium boride (HfB 2 ) and 50% by weight of composition (C), and add 1000% of the mixed powder.
After molding at a pressure of Kg/cm 2 , temperature 1200℃, time
It was fired in Ar for 1 h. An infrared radiator having a thickness of 3 mm, a width of 5 cm, and a length of 10 cm was obtained from the sintered body.

(g):窒化タンタル(TaN)粉末と組成物(C)の粉
末とを5mmの厚さのシート状にした。この時シ
ートの下面ではTaN45重量%、組成物(C)55重
量%となり、シートの上面では組成物(C)100%
となるように、ほぼ連続的に混合割合を変化さ
せた。このシートを成形した後、温度1200℃、
時間1hの条件でN2中で焼成し、焼結体から幅
が5mm、長さが10cmの赤外線放射体を得た。
(g): Tantalum nitride (TaN) powder and powder of composition (C) were formed into a sheet with a thickness of 5 mm. At this time, the bottom surface of the sheet contains 45% TaN and 55% composition (C), and the top surface of the sheet contains 100% composition (C).
The mixing ratio was changed almost continuously so that After forming this sheet, the temperature is 1200℃,
The sintered body was fired in N 2 for 1 h to obtain an infrared radiator with a width of 5 mm and a length of 10 cm.

以上の(f)、(g)の赤外線放射体の長尺方向に電流
を流して抵抗値を測定したところ、それぞれ(f)約
40Ω、(g)約100Ωであつた。
When we measured the resistance value by passing a current in the longitudinal direction of the infrared radiators in (f) and (g) above, we found that (f) was approximately
It was 40Ω, (g) about 100Ω.

これらの赤外線放射体に通電して表面温度を
500℃一定にし、赤外線放射スペクトルを疑似黒
体の場合と比較した。結果を第2図に示した。
These infrared emitters are energized to increase their surface temperature.
The temperature was kept constant at 500℃, and the infrared radiation spectrum was compared with that of a pseudo black body. The results are shown in Figure 2.

この結果からわかるように、本実施例の赤外線
放射体は、黒体の放射特性に近い高能率赤外線放
射体である。また速熱性に優れ、短時間で定温状
態に達した。耐久性にも優れていた。
As can be seen from this result, the infrared radiator of this example is a highly efficient infrared radiator with radiation characteristics close to that of a black body. It also has excellent heating properties and reaches a constant temperature state in a short period of time. It also had excellent durability.

尚、第3図は本発明の放射体の一例を示すもの
で、この例示図では板状の本発明セラミツクス焼
結体1の両端に電2が形成され、更に各電極2に
リード線3が接続されている。
FIG. 3 shows an example of the radiator of the present invention. In this illustration, electrodes 2 are formed at both ends of the plate-shaped ceramic sintered body 1 of the present invention, and lead wires 3 are connected to each electrode 2. It is connected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば耐熱性、
化学的及び構造的安定性に優れる上、自己発熱す
るため速熱性や熱効率にも優れた赤外線放射体を
得ることができる。またこの効果は、実施例に限
らず赤外線放射材と導電材の組み合せや組成を変
えた他の多くの場合にも、同様に得られる。
As explained above, according to the present invention, heat resistance,
In addition to being excellent in chemical and structural stability, it is possible to obtain an infrared radiator that has excellent rapid heating properties and thermal efficiency because it generates heat by itself. Moreover, this effect is similarly obtained not only in the example but also in many other cases in which the combination or composition of the infrared ray emitting material and the conductive material is changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例に係る赤外
線放射体の特性図、第3図は本発明の実施例に係
る赤外線放射体の斜視図である。
1 and 2 are characteristic diagrams of an infrared radiator according to an embodiment of the present invention, and FIG. 3 is a perspective view of an infrared ray radiator according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 赤外線放射材成分と導電材成分との混合組成
物より作られてなる赤外線放射体であつて、赤外
線放射面は、実質的に前記赤外線放射材成分のみ
からなり、前記赤外線放射面の反対側の面は、前
記赤外線放射材成分と前記導電材成分との混合物
からなり、両者は一体化されていることを特徴と
する赤外線放射体。 2 通電による自己発熱で赤外線を放射すること
を特徴とする特許請求の範囲第1項記載の赤外線
放射体。 3 赤外線放射材成分及び導電材成分が共にセラ
ミツクスであることを特徴とする特許請求の範囲
第1項記載の赤外線放射体。
[Scope of Claims] 1. An infrared radiator made of a mixed composition of an infrared radiating material component and a conductive material component, wherein the infrared ray radiating surface consists essentially only of the infrared ray radiating material component, An infrared radiator characterized in that a surface opposite to an infrared ray radiating surface is made of a mixture of the infrared ray radiating material component and the conductive material component, and the two are integrated. 2. The infrared radiator according to claim 1, which emits infrared rays by self-heating due to energization. 3. The infrared radiator according to claim 1, wherein both the infrared ray radiating material component and the conductive material component are ceramics.
JP58138109A 1983-07-27 1983-07-27 Infrared ray radiator Granted JPS6033249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138109A JPS6033249A (en) 1983-07-27 1983-07-27 Infrared ray radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138109A JPS6033249A (en) 1983-07-27 1983-07-27 Infrared ray radiator

Publications (2)

Publication Number Publication Date
JPS6033249A JPS6033249A (en) 1985-02-20
JPH0420868B2 true JPH0420868B2 (en) 1992-04-07

Family

ID=15214157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138109A Granted JPS6033249A (en) 1983-07-27 1983-07-27 Infrared ray radiator

Country Status (1)

Country Link
JP (1) JPS6033249A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136299U (en) * 1985-02-12 1986-08-25
EP0204530B1 (en) 1985-05-31 1991-09-11 Konica Corporation Method for forming direct positive color image
JPH0314191Y2 (en) * 1987-01-27 1991-03-29
JPH0440713Y2 (en) * 1987-12-18 1992-09-24
JPH0616462Y2 (en) * 1987-12-23 1994-04-27 北川工業株式会社 Far infrared heater
JPH01215871A (en) * 1988-02-23 1989-08-29 Takano:Kk Coating material containing far infrared radiating material

Also Published As

Publication number Publication date
JPS6033249A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JP2627506B2 (en) Far infrared heater
US4634837A (en) Sintered ceramic heater element
WO2002039027A1 (en) Fluid heating heater
JP2000058237A5 (en)
CN215347058U (en) Heater and heating atomization device
US5086210A (en) Mo5 Si3 C ceramic material and glow plug heating element made of the same
JP2011514645A (en) Heating element with temperature control
JPH0420868B2 (en)
JP2000156275A (en) Heating resistor for ceramic heater, ceramic heater, and manufacture of ceramic heater
JPH0238355A (en) Electrically conductive ceramic heating unit emitting far infrared rays
JPS61225801A (en) Far infrared radiation heat generating body
KR20050112597A (en) Heater for instant boiling system and manufacturing method thereof
JPS6217976A (en) Far infrared radiating body
CN107135558A (en) A kind of new PTC-ceramic heating element heater heated suitable for curved surface
JP2537606B2 (en) Ceramic Heater
JPH08153572A (en) Far infrared radiation heater
US3295090A (en) Electrical resistor having a core element with high heat dissipating properties
JPS62264588A (en) Infrared heater
JP2001313156A (en) Electrode structure of thin plate for infrared ray heater
KR100740923B1 (en) Round-type ceramic heater and manufacture method thereof
JPH05217663A (en) Heat emitting body of ceramic material and manufacture of the same
JPS6116755B2 (en)
JPH04174990A (en) High efficiency infrared-ray radiating ceramic heating element
JPS6180784A (en) Making of far infrared radiation heat generating body
JP3425097B2 (en) Resistance element