JPS5934233B2 - far infrared radiation device - Google Patents

far infrared radiation device

Info

Publication number
JPS5934233B2
JPS5934233B2 JP53075229A JP7522978A JPS5934233B2 JP S5934233 B2 JPS5934233 B2 JP S5934233B2 JP 53075229 A JP53075229 A JP 53075229A JP 7522978 A JP7522978 A JP 7522978A JP S5934233 B2 JPS5934233 B2 JP S5934233B2
Authority
JP
Japan
Prior art keywords
infrared radiation
radiation
cobalt oxide
radiation device
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075229A
Other languages
Japanese (ja)
Other versions
JPS556401A (en
Inventor
明夫 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Netsu Kigu KK
Original Assignee
Hitachi Netsu Kigu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Netsu Kigu KK filed Critical Hitachi Netsu Kigu KK
Priority to JP53075229A priority Critical patent/JPS5934233B2/en
Publication of JPS556401A publication Critical patent/JPS556401A/en
Publication of JPS5934233B2 publication Critical patent/JPS5934233B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は塗料の焼付乾燥、食品の加熱保温、暖房などに
適し、かつデザイン的にも優れた遠赤外線放射装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a far-infrared radiation device that is suitable for baking and drying paint, heating and keeping foods warm, space heating, etc., and also has an excellent design.

一般に遠赤外線放射装置は、次の性質が要求される。In general, a far-infrared radiation device is required to have the following properties.

1)強力な遠赤外線を放射するためには、4〜50μの
波長領域において放射物質の放射率が1に近いこと。
1) In order to emit strong far-infrared rays, the emissivity of the emissive material must be close to 1 in the wavelength range of 4 to 50μ.

2) 500〜700℃の高温において放射物質が熱的
に安定であること。
2) The radioactive substance must be thermally stable at high temperatures of 500 to 700°C.

3)熱放射体との密着性が大きく、冷熱サイクル使用に
おいて剥離やクラックを生じないこと。
3) It has great adhesion to the heat radiator and does not peel or crack during use in cooling and heating cycles.

4)機械的な衝撃に対して強いこと。4) Strong against mechanical shock.

5)放射物質がガラフルでデザイン的に良いこと。5) The radioactive material is colorful and has a good design.

一方、従来の遠赤外線放射装置には、石英管ヒータ、陶
磁器管ヒータ、溶射ヒータなどがある。石英管ヒータお
よび陶磁器ヒータは石英管あるいは陶磁器管状の中にニ
クロム線をコイリングした構造のものであり、溶射ヒー
タは第1図に示すシーズヒータすなわち鉄やステンレス
パイプの熱放射体1の中に両端に電極ターミナル2を有
するら線状発熱体3を押通し、MVOなどの耐熱絶縁性
充填剤4を充填した両端を気密材5でシールした構造を
有する発熱体と、熱放射体1の表面にFe2O3、Co
O、NiO、Mn0などの酸化物をプラズマ溶射法によ
り、ライニングせしめた放射層6とからなる。しかし、
上記石英管ヒータは4μ以上の波長において放射率が0
.5以下となり遠赤外線放射装置として性能的に劣る他
、機械的な衝撃に弱い他に発熱線が空気中にさらされて
いるため酸化による断線等の欠点があつた。
On the other hand, conventional far-infrared radiation devices include quartz tube heaters, ceramic tube heaters, thermal spray heaters, and the like. Quartz tube heaters and ceramic heaters have a structure in which a nichrome wire is coiled inside a quartz tube or a ceramic tube, and a thermal spray heater has a structure in which a nichrome wire is coiled inside a quartz tube or a ceramic tube. A heating element having a structure in which a linear heating element 3 having an electrode terminal 2 is pushed through and filled with a heat-resistant insulating filler 4 such as MVO and sealed with an airtight material 5 at both ends, and a heat radiating element 1 on the surface. Fe2O3, Co
It consists of a radiation layer 6 lined with oxides such as O, NiO, Mn0, etc. by plasma spraying. but,
The above quartz tube heater has an emissivity of 0 at wavelengths of 4μ or more.
.. 5 or less, which results in poor performance as a far-infrared radiating device, and in addition to being weak against mechanical shock, the heating wire is exposed to the air, resulting in drawbacks such as wire breakage due to oxidation.

また陶磁器管ヒータは6μ〜15μにおける放射率が大
きく、特性的に優れる反面、機械的な衝撃に弱くかつ発
熱線が空気中にさらされているため酸化進行による断線
の問題があり寿命的に短い欠点があつた。更に溶射ヒー
タは4〜50μの放射率に優れ、機械的衝撃にも強く、
寿命の長い長所があるが、放射層がFe2O3、COO
、NiO3Mn0等の放射物質なため黒系の色調しか得
られず、食品の加熱保温や暖房等でデザイン的に黒系で
は好ましくとい用途には不向きであつた。本発明は、上
述の欠点を考慮してなされたもので、アルミナと酸化コ
バルトのスピネル構造を有するブルー系の放射物質を少
なくとも3重量%以上と他のセラミックとの混合粉を溶
射法により、熱放射体表面にライニングすることにより
4〜50μの波長領域において放射率が大きく、500
〜700℃において安定で熱放射体との密着性が良好か
つ機械的衝撃性が強く、更に色調的にも優れた遠赤外線
放射装置を提供できる。
Ceramic tube heaters have a high emissivity between 6μ and 15μ, and while they have excellent characteristics, they are weak against mechanical shock, and because the heating wire is exposed to the air, there is a problem of wire breakage due to progressing oxidation, resulting in a short lifespan. There were flaws. Furthermore, thermal spray heaters have excellent emissivity of 4 to 50μ, are resistant to mechanical shock,
It has the advantage of long life, but the emissive layer is Fe2O3, COO
, NiO3Mn0, etc., only a blackish color tone can be obtained, and blackish colors are preferable in terms of design, such as heating and keeping food warm, space heaters, etc., but are not suitable for applications such as heating and heating. The present invention has been made in consideration of the above-mentioned drawbacks, and is made by thermally spraying a mixed powder of at least 3% by weight or more of a blue radioactive material having a spinel structure of alumina and cobalt oxide and other ceramics. By lining the surface of the radiator, the emissivity is high in the wavelength range of 4 to 50μ, and the
It is possible to provide a far-infrared radiation device that is stable at temperatures of up to 700° C., has good adhesion to the heat radiator, has strong mechanical impact resistance, and is also excellent in color tone.

以下、本発明の一実施例につき図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.

放射物質として使用するアルミナと酸化コバルトの化合
物は次のようにして作る。まず、100〜300メッシ
ュのアルミナ粉末と250〜500メツシユの酸化コバ
ルト粉末を重量比に換算して7:3に均一に混合した後
1000〜1400℃の温度で1〜5時間焼成しアルミ
ナと酸化コバルトの固相反応を行なわせる。固相反応に
より、酸化コバルトがアルミナ中に拡散し、一種の固溶
体を作る。焼成後、固相反応にあずからない余分な酸化
コバルトを酸性溶剤、例えば塩酸中に浸漬し溶解除去す
る。溶解除去したアルミナと酸化コバルトの固溶体は、
中性処理あるいは水洗い後乾燥させる。なお、アルミナ
と酸化コバルトの固相反応が進行するのに適した温度と
して焼成時の温度を1000〜1400℃に限定した。
The compound of alumina and cobalt oxide used as a radioactive substance is made as follows. First, 100 to 300 mesh alumina powder and 250 to 500 mesh cobalt oxide powder are mixed uniformly at a weight ratio of 7:3, and then fired at a temperature of 1000 to 1400°C for 1 to 5 hours to oxidize the alumina and A solid phase reaction of cobalt is carried out. Through a solid-state reaction, cobalt oxide diffuses into alumina, creating a type of solid solution. After firing, excess cobalt oxide that does not participate in the solid phase reaction is dissolved and removed by immersing it in an acidic solvent, such as hydrochloric acid. The solid solution of alumina and cobalt oxide that was dissolved and removed is
Dry after neutral treatment or washing with water. Note that the temperature during firing was limited to 1000 to 1400°C as a temperature suitable for the solid phase reaction between alumina and cobalt oxide to proceed.

また、焼成後の混合粉末は必ずしも酸性溶剤処理を行う
必要はなく、本発明はこれに限定しないが、酸性溶剤処
理を行つた方が鮮明なブルーあるいはコバルトブルー色
が得られる特長がある。得られた固溶体はAt,cO,
Oの各原子がセラミツク化したスピネル構造となり、熱
的にも安定でかつアルミナと酸化コバルトを単に機械的
に混合したものより、4〜50μにおいて放射率が優れ
ていることがわかつた。
Further, the mixed powder after firing does not necessarily need to be treated with an acidic solvent, and the present invention is not limited thereto, but the acidic solvent treatment has the advantage that a clearer blue or cobalt blue color can be obtained. The obtained solid solution contains At, cO,
It was found that each O atom forms a ceramic spinel structure, which is thermally stable and has an emissivity superior to that obtained by simply mechanically mixing alumina and cobalt oxide at a range of 4 to 50μ.

次に熱放射体表面に得られたアルミ−コバルトの酸化物
である放射物質を溶射法により、ライニングする方法に
ついて説明する。
Next, a method of lining the surface of the thermal radiator with a radiation material, which is an aluminum-cobalt oxide, by thermal spraying will be described.

先ず、前処理として熱放射体表面を30〜80メツシユ
のアルミナ、スチール、炭化ケイ素などのいずれかによ
りブラスト処理を行う。次に150〜300メツシユの
Ni−Cr合金を溶射法により50〜150μの厚さに
下地層をライニングする。以上述べた前処理においてブ
ラスト処理の目的は熱放射体表面の油や汚れ除去ど機械
的に粗化することにより、Ni−Crの投描効果を向上
する結果としてNi−Crの密着性を向上する。またN
i−Crの下地処理は次の理由から必要となる。放射層
としてライニングされるセラミツクは熱膨張率が小さい
ため熱放射体表面にNi−Crを介さず被着すると、冷
熱使用の際放射物質の剥離を生ずることがある。しかし
、Ni−Crの中間層を設けることにより、熱放射体と
放射層との熱膨張率で生じた・熱応力を吸収する役割を
する。Ni−Cr下地層の上に例えば次に示すセラミツ
ク粉を溶射法により、ライニングすることにより放射層
が得られる。
First, as a pretreatment, the surface of the heat radiator is blasted with 30 to 80 mesh of alumina, steel, silicon carbide, or the like. Next, the base layer is lined with 150 to 300 meshes of Ni-Cr alloy to a thickness of 50 to 150 microns by thermal spraying. In the pretreatment mentioned above, the purpose of the blasting treatment is to mechanically roughen the surface of the heat radiator by removing oil and dirt, thereby improving the projection effect of Ni-Cr and, as a result, improving the adhesion of Ni-Cr. do. Also N
The i-Cr surface treatment is necessary for the following reasons. Since the ceramic lining for the radiation layer has a small coefficient of thermal expansion, if it is adhered to the surface of the heat radiator without Ni--Cr intervening, the radiation material may peel off during cold use. However, by providing the Ni--Cr intermediate layer, it serves to absorb thermal stress caused by the thermal expansion coefficients of the heat radiator and the radiation layer. A radiation layer is obtained by lining the Ni--Cr underlayer with, for example, the following ceramic powder by thermal spraying.

上記実施例の混合物をシーズヒータ(長さ500」直径
12fm.100V、500W)パイプ表面に30〜1
00μの厚さに溶射ライニングし、通電してその放射特
性を調べた。
The mixture of the above example was applied to the surface of a sheathed heater (length 500" diameter 12fm, 100V, 500W) at 30 to 1
Thermal spray lining was applied to a thickness of 00 μm, and the radiation characteristics were investigated by applying electricity.

放射特性は第2図に示すように赤外線分光々度計により
25〜50μにおける比放射エネルギーを測定したもの
で、従来例のCOOを主成分とする陶磁器管ヒータより
も優れた放射特性を有する。更に塗料の乾燥焼付の効果
を調べた結果表1のようになり、従来品例より、優れて
いることが判明した。また、冷熱使用条件を考慮して使
用時の温度である600℃と室温との冷熱テストを行な
つた結果、1000サイクル以上のテストにも剥離やク
ラツクが発生せず、寿命的にも問題ないことが判明した
As shown in FIG. 2, the radiation characteristics were determined by measuring the specific radiation energy at 25 to 50 .mu. using an infrared spectrophotometer, and the radiation characteristics were superior to the conventional ceramic tube heater mainly composed of COO. Furthermore, the effect of dry baking of the paint was investigated, and the results shown in Table 1 were shown, and it was found that the paint was superior to the conventional example. In addition, taking into consideration the conditions of use in cold and heat, we conducted a cold and heat test between the operating temperature of 600℃ and room temperature, and as a result, no peeling or cracking occurred even after over 1000 cycles, and there was no problem with the product's lifespan. It has been found.

放射層の機械的衝撃強度はスピネル構造なため非常に優
れている。放射層申のAl2O3COOのスピネル構造
を有するセラミツクスを3重量係以上とした理由は以下
の通りである。スピネル構造を有するセラミツクスが3
重量%未満では、放射特性上劣る他に顔料効果もなく、
色調を要求される用途には不適切である。好ましくは1
0重量%以上が良く100(f)スピネル構造を有した
セラミツクスであつても良い。以上のように、遠赤外線
放射装置として具備すべき放射特性、冷熱撒、寿命、機
械的強度などに優れ、かつデザイン的にもコバルトブル
ーの色調を有したユニークな放射装置を提供できる特徴
を有する。
The mechanical impact strength of the radiation layer is very good due to its spinel structure. The reason why ceramics having a spinel structure of Al2O3COO, which is a radiation layer, is made to have a weight ratio of 3 or more is as follows. Ceramics with spinel structure are 3
If it is less than % by weight, the radiation properties are inferior and there is no pigment effect.
It is unsuitable for applications that require color tone. Preferably 1
The content is preferably 0% by weight or more, and ceramics having a 100(f) spinel structure may be used. As mentioned above, it has the characteristics of being able to provide a unique radiating device that has excellent radiation characteristics, cooling and heating properties, lifespan, mechanical strength, etc. that a far-infrared radiating device should have, and also has a cobalt blue color tone in terms of design. .

Claims (1)

【特許請求の範囲】 1 アルミナと酸化コバルトとの混合粉末を1000〜
1400℃で焼成して得た少なくとも3重量%。 以上のスピネル構造を有するアルミ−コバルトの酸化物
を溶射法により、熱放射体表面にライニングしたことを
特徴とする遠赤外線放射装置。
[Claims] 1 Mixed powder of alumina and cobalt oxide
At least 3% by weight obtained by calcination at 1400°C. A far-infrared radiation device characterized in that the surface of a thermal radiator is lined with an aluminum-cobalt oxide having the spinel structure described above by a thermal spraying method.
JP53075229A 1978-06-21 1978-06-21 far infrared radiation device Expired JPS5934233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075229A JPS5934233B2 (en) 1978-06-21 1978-06-21 far infrared radiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075229A JPS5934233B2 (en) 1978-06-21 1978-06-21 far infrared radiation device

Publications (2)

Publication Number Publication Date
JPS556401A JPS556401A (en) 1980-01-17
JPS5934233B2 true JPS5934233B2 (en) 1984-08-21

Family

ID=13570179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075229A Expired JPS5934233B2 (en) 1978-06-21 1978-06-21 far infrared radiation device

Country Status (1)

Country Link
JP (1) JPS5934233B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8320639D0 (en) * 1983-07-30 1983-09-01 Emi Plc Thorn Incandescent lamps
JPS6089520U (en) * 1983-11-25 1985-06-19 大阪瓦斯株式会社 heating device
JPS60125418U (en) * 1984-02-01 1985-08-23 大阪瓦斯株式会社 combustion appliances
ATE457369T1 (en) * 2003-12-17 2010-02-15 Sulzer Metco Us Inc FLUID MACHINE WITH A CERAMIC SCRUB LAYER
CN115745571A (en) * 2022-10-27 2023-03-07 南京工业大学 Material type selective radiator and preparation method thereof

Also Published As

Publication number Publication date
JPS556401A (en) 1980-01-17

Similar Documents

Publication Publication Date Title
JP2624291B2 (en) Far infrared heater
EP0043682B1 (en) Infrared radiative element
JPS5934233B2 (en) far infrared radiation device
JPS635340B2 (en)
JPS6325465B2 (en)
JPH0362798B2 (en)
JPS5836821B2 (en) far infrared radiation device
JPS5932875B2 (en) far infrared radiation device
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPH0238355A (en) Electrically conductive ceramic heating unit emitting far infrared rays
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPS5826794B2 (en) far infrared radiation device
JPS6124770B2 (en)
JPS6113353B2 (en)
JPH0151463B2 (en)
JPS58184285A (en) Infrared ray radiator
JPH02204991A (en) Far infrared heater and manufacture thereof
JPS61190881A (en) Far infrared heater
JPS61179882A (en) Far infrared radiator with metallic base material and its production
JPH0148625B2 (en)
JPS5923428B2 (en) far infrared radiation element
JPH0363192B2 (en)
JPS6325466B2 (en)
JPH0147870B2 (en)
JPH0532872B2 (en)