JPH0147870B2 - - Google Patents
Info
- Publication number
- JPH0147870B2 JPH0147870B2 JP6485083A JP6485083A JPH0147870B2 JP H0147870 B2 JPH0147870 B2 JP H0147870B2 JP 6485083 A JP6485083 A JP 6485083A JP 6485083 A JP6485083 A JP 6485083A JP H0147870 B2 JPH0147870 B2 JP H0147870B2
- Authority
- JP
- Japan
- Prior art keywords
- far
- nickel oxide
- infrared
- powder
- oxide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 22
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000005855 radiation Effects 0.000 description 10
- 238000002845 discoloration Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000007751 thermal spraying Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 229910002065 alloy metal Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Description
産業上の利用分野
本発明は、暖房器、調理器、乾燥機器などの熱
源として使用されるもので、遠赤外線を効率的に
放射する遠赤外線ヒータに関するものである。
従来例の構成とその問題点
従来、遠赤外線を放射する遠赤外線ヒータとし
ては赤外線ランプ、セラミツクス中に発熱線を埋
込み焼成したもの、シーズヒータの表面に遠赤外
放射層を形成したものなどがあつたが、放射特
性、機械的強度、寿命などの観点からシーズヒー
タ表面に遠赤外放射層を形成したものが多く製造
されていた。
一般にシーズヒータは、第1図に示すように両
端に端子棒1を備えたコイル状の電熱線2を金属
パイプ3に挿入し、この金属パイプ3に電融マグ
ネシア等の電気絶縁粉末4を充填し、必要に応じ
て金属パイプ3の両端をガラス5や耐熱性樹脂6
で封口したものであつた。
一方、遠赤外線ヒータとしては、第2図に示す
ようにシーズヒータの表面に遠赤外線放射層7を
形成したものがあつた。そして遠赤外線放射層7
としては、ジルコンを60%以上とし、これに
Fe2O3、CoO、NiO、Cr2O3、MnO2などの酸化物
および粘土を加えたものからなる混合物を焼成し
たもの、あるいは、元素周期律表第2族の元素と
第3族の元素との複合化合物、および珪酸ジルコ
ニウムの群から選ばれた複合酸化物を30重量%以
上含有したものなどがあつた。
しかし、ジルコンを主体とした前者のものは、
一種の磁器であるため機械的に弱く、500℃以上
の冷熱サイクルにおいてクラツクが生じ寿命の点
で好ましくなく、8μm以下の波長領域における
放射率が小さくなる問題があつた。
また、複合酸化物を含有させた後者のものは、
金属との熱膨張率の差が大きく、冷熱サイクルに
より剥離やクラツクが生じ寿命の点から好ましく
ない問題があつた。
発明の
本発明はかかる従来の問題点を解決し、遠赤外
線領域での放射率が大きく、800℃までの高温領
域で使用しても熱的に安定で、金属との密着性に
優れ、冷熱サイクルにも充分に耐えられる遠赤外
線ヒータを提供しようとするものである。
発明の構成
本発明は遠赤外線放射物質として、金属ニツケ
ル粉末を800℃以上の温度でばい焼したのち、
10μ〜44μの大きさに粉砕した酸化ニツケル粉末
を用い、この酸化ニツケル粉末を鉄基合金からな
る金属パイプの表面に被覆処理したものであり、
酸化ニツケルは遠赤外線の放射率が大きく、熱膨
張係数も金属に近くて大きく、さらに、酸化ニツ
ケルは被覆処理する鉄基合金の金属パイプは、従
来からシーズヒータの金属パイプとして用いられ
ているSUS321、SUS304などで代表されるステ
ンレス鋼に比較して高温酸化にすぐれているの
で、800℃の高温で使用しても酸化ニツケルから
なる遠赤外線放射層の剥離は生ぜず遠赤外線放射
率に優れたヒータを得ることができるものであ
る。
実施例の説明
以下本発明の実施例について説明する。
使用する酸化ニツケル粉末は一般的には、金属
ニツケル粉末をばい焼する方法、またはニツケル
塩をばい焼する方法の2つの方法により得られる
が、ニツケル塩をばい焼することにより得られる
酸化ニツケル粉末は高価であると共に、粒径が非
常に細かく後述する被覆処理の代表的な方法であ
る溶射法には、粉末の流動性が非常に悪いため不
向きである。
しかし、金属ニツケルをばい焼することにより
得られた酸化ニツケル粉末は、粒径が比較的大き
くて流動性もよいが、800℃以下の温度でばい焼
された酸化ニツケル粉末を遠赤外線放射物質とし
て、シーズヒータの金属パイプの表面に被覆処理
し、800℃付近の高温で使用すると、色が黒色か
ら緑色に変色する惧れがあるものである。
しかし、800℃以上の温度でばい焼したものは、
上記変色の現象は見られず緑色または黒緑色のま
まで安定であるので、酸化ニツケル粉末として
は、金属ニツケル粉末を800℃以上の高温でばい
焼し、10μ〜44μの大きさに粉砕したものが好ま
しいものである。
なお、酸化ニツケル粉末の被覆処理方法として
は、塗装方法、溶射方法などいずれの方法でもよ
いが、特に溶射方法が最適である。
いま金属パイプ3として、長さ413mm、外径8
mm、肉厚0.46mmのSUS304、SUS321のステンレス
鋼、およびNCF800(JISG4902、商品名インコロ
イ800)の鉄基合金をそれぞれ用いる。
電熱線2として、線径0.29mmのニクロム線第一
種を用い、これを巻径2mmのコイル状とし、両端
に端子棒1を接続して用いた。
それぞれの金属パイプ3上に上記端子棒1を両
端に接続した電熱線2を挿入し、金属パイプ3に
電気絶縁粉末4として、電融マグネシア粉末を充
填し、圧延減径、焼鈍の各工程を経て、金属パイ
プ3を長さ500mm、外径6.6mmとする。
こののち、それぞれの金属パイプの表面を、コ
ランダム(#60)の研削剤でブラスト処理し、表
に示す各種酸化ニツケル粉末をプラズマ溶射法に
より直接、金属パイプ表面に被覆処理して遠赤外
線放射層7を形成し、試料番号2〜12の遠赤外線
ヒータ(構成は第2図に示す)を完成した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a far-infrared heater that is used as a heat source for space heaters, cookers, drying equipment, etc., and that efficiently radiates far-infrared rays. Conventional configurations and problems Conventional far-infrared heaters that emit far-infrared rays include infrared lamps, ceramics with heating wires embedded and fired, and sheathed heaters with far-infrared radiation layers formed on the surface. However, from the viewpoint of radiation characteristics, mechanical strength, and longevity, many sheathed heaters were manufactured with a far-infrared radiation layer formed on the surface. Generally, in a sheathed heater, as shown in Fig. 1, a coiled heating wire 2 with terminal rods 1 at both ends is inserted into a metal pipe 3, and this metal pipe 3 is filled with electrically insulating powder 4 such as fused magnesia. If necessary, cover both ends of the metal pipe 3 with glass 5 or heat-resistant resin 6.
It was sealed. On the other hand, as a far-infrared heater, there was one in which a far-infrared radiation layer 7 was formed on the surface of a sheathed heater, as shown in FIG. and far infrared radiation layer 7
In this case, the zircon content should be 60% or more.
A fired mixture of oxides such as Fe 2 O 3 , CoO, NiO, Cr 2 O 3 , MnO 2 and clay, or a mixture of elements from group 2 of the periodic table and elements from group 3 of the periodic table. There were compounds containing 30% by weight or more of complex compounds with elements and complex oxides selected from the group of zirconium silicate. However, the former, which is mainly composed of zircon,
Since it is a type of porcelain, it is mechanically weak and cracks occur during cooling and heating cycles of 500°C or higher, which is unfavorable in terms of lifespan.There was also a problem that the emissivity in the wavelength region of 8 μm or less was low. In addition, the latter containing a complex oxide,
There was a large difference in coefficient of thermal expansion from metal, which caused peeling and cracking during cooling and heating cycles, which was an undesirable problem in terms of lifespan. The present invention solves these conventional problems and has a high emissivity in the far infrared region, is thermally stable even when used in high temperature regions up to 800°C, has excellent adhesion to metals, and has a high emissivity in the far infrared region. The present invention aims to provide a far-infrared heater that can sufficiently withstand cycles. Structure of the Invention The present invention uses metallic nickel powder as a far-infrared emitting material after being roasted at a temperature of 800°C or higher.
This product uses nickel oxide powder crushed to a size of 10μ to 44μ, and coats the surface of a metal pipe made of an iron-based alloy with this nickel oxide powder.
Nickel oxide has a high emissivity in far-infrared rays, and has a large coefficient of thermal expansion as it is close to that of metal.Furthermore, nickel oxide is coated with iron-based alloy metal pipes, such as SUS321, which has traditionally been used as metal pipes for sheathed heaters. It has excellent high-temperature oxidation compared to stainless steel such as SUS304, so even when used at high temperatures of 800℃, the far-infrared emitting layer made of nickel oxide does not peel off, and it has excellent far-infrared emissivity. It is possible to obtain a heater. Description of Examples Examples of the present invention will be described below. The nickel oxide powder used is generally obtained by two methods: roasting metal nickel powder or roasting nickel salt, but nickel oxide powder obtained by roasting nickel salt In addition to being expensive, it is not suitable for thermal spraying, which is a typical method of coating treatment described below, because the particle size is very fine and the fluidity of the powder is very poor. However, nickel oxide powder obtained by roasting nickel metal has a relatively large particle size and good fluidity, but nickel oxide powder roasted at temperatures below 800°C can be used as a far-infrared emitting material. If the surface of the metal pipe of a sheathed heater is coated and used at high temperatures around 800°C, the color may change from black to green. However, those baked at a temperature of 800℃ or higher,
The above-mentioned discoloration phenomenon is not observed and the nickel oxide powder remains green or blackish green, so nickel oxide powder is prepared by roasting metallic nickel powder at a high temperature of 800°C or higher and pulverizing it to a size of 10μ to 44μ. is preferred. The coating method for the nickel oxide powder may be any method such as a coating method or a thermal spraying method, but the thermal spraying method is particularly suitable. Currently, metal pipe 3 has a length of 413 mm and an outer diameter of 8.
SUS304, SUS321 stainless steel, and iron-based alloy NCF800 (JISG4902, trade name Incoloy 800) with a wall thickness of 0.46 mm are used. As the heating wire 2, a first class nichrome wire with a wire diameter of 0.29 mm was used, which was formed into a coil shape with a winding diameter of 2 mm, and the terminal rod 1 was connected to both ends. A heating wire 2 with the terminal rod 1 connected to both ends is inserted onto each metal pipe 3, and the metal pipe 3 is filled with fused magnesia powder as an electrical insulating powder 4, and the steps of rolling diameter reduction and annealing are performed. After that, the metal pipe 3 was made to have a length of 500 mm and an outer diameter of 6.6 mm. After that, the surface of each metal pipe is blasted with corundum (#60) abrasive, and various nickel oxide powders shown in the table are directly coated on the metal pipe surface by plasma spraying to form a far-infrared emitting layer. 7 was formed, and far infrared heaters of sample numbers 2 to 12 (the configuration is shown in FIG. 2) were completed.
【表】【table】
【表】
一方、比較のために、酸化ニツケル粉末を溶射
しない従来のシーズヒータも同様に完成し、試料
番号1とした。
以上のようにして完成した試料番号1〜12の遠
赤外線ヒータを100V―400Wの条件で20分オン―
10分オフのサイクルにて通電し、(パイプ温度は
約800℃)、遠赤外線放射層7の剥離テストおよび
変色度合について評価し、結果は表に示した通り
である。剥離については、100サイクル、500サイ
クル、1000サイクル後についてチエツクし、変色
は100サイクル後についてチエツクした。
また、試料番号1および5についてパイプ表面
温度を750℃に設定した時の各波長における放射
率を測定した結果は第3図に示す通りである。
なお、表において、剥離テストの欄の〇印は剥
離が生じてないことを、×印は剥離が生じたこと
をそれぞれ示し、また、変色の欄の〇印は変色が
生じなかつたことを、×印は変色が生じたことを
それぞれ示すものである。
また、第3図において、aは試料番号1、bは
試料番号5の測定結果を示すものである。
表より明らかなように、金属パイプにNCF800
を用い、酸化ニツケル粉末として10μ〜44μの粒
径のものを用いた試料番号2、3、5、7、8
は、1000サイクルまで剥離は生じなかつたが、酸
化ニツケル粉末のばい焼温度が800℃以下の試料
番号2および3においては、剥離は生じないが、
遠赤外線放射層の著しい変色が見られた。
一方800℃以上で処理した試料番号5、7およ
び9は剥離が生じなく、変色も見られなかつた。
さらにニツケル粉末を800℃でばい焼し、酸化
ニツケル粉末の粒度が10μ〜44μの範囲外の試料
番号4および6は、溶射がうまくできなかつたも
のである。
なお、NCF800以外の金属パイプを用いた試料
番号9、10、11および12では、800℃以上の温度
でばい焼した酸化ニツケル粉末を用いても、
SUS304では100サイクル以内で、またSUS321で
は、500サイクル以内で遠赤外線放射層の剥離が
生じ、実使用に耐えないものであつた。
また、第3図から明らかなように、試料番号5
で代表される遠赤外線ヒータは、従来のシーズヒ
ータである試料番号1と比較して、各波長におい
て高い放射率を示すことがわかる。
以上の説明から明らかなように、金属ニツケル
粉末を800℃以上の温度でばい焼した10μ〜44μの
酸化ニツケル粉末をNCF800の金属パイプに溶射
した遠赤外線ヒータは、従来のシーズヒータに比
較して遠赤外線の放射率が大きく、800℃の高温
で使用しても、剥離、変色のないものである。
発明の効果
以上のように本発明は、金属パイプとして鉄基
合金の金属パイプの表面を、金属ニツケル粉末を
800℃以上の温度でばい焼し、10μ〜44μの大きさ
に粉砕して得た酸化ニツケル粉末を用いて被覆処
理することにより、遠赤外線領域の放射率が大き
く、800℃までの高温領域で使用しても、熱的に
安定で冷熱サイクルにも充分に耐え、遠赤外線放
射層の剥離しない遠赤外線ヒータを提供すること
ができその実用的価値は大なるものである。[Table] On the other hand, for comparison, a conventional sheathed heater without thermal spraying of nickel oxide powder was also completed and designated as sample number 1. The far infrared heaters for sample numbers 1 to 12 completed as above were turned on for 20 minutes at 100V-400W.
Electricity was applied in a 10-minute off cycle (pipe temperature was about 800°C), and the far-infrared radiation layer 7 was tested for peeling and the degree of discoloration was evaluated, and the results are shown in the table. Peeling was checked after 100 cycles, 500 cycles, and 1000 cycles, and discoloration was checked after 100 cycles. Furthermore, the results of measuring the emissivity at each wavelength when the pipe surface temperature was set at 750° C. for sample numbers 1 and 5 are shown in FIG. In addition, in the table, the ○ mark in the peel test column indicates that no peeling occurred, the × mark indicates that peeling occurred, and the ○ mark in the discoloration column indicates that no discoloration occurred. The x mark indicates that discoloration has occurred. Further, in FIG. 3, a indicates the measurement results of sample number 1, and b indicates the measurement results of sample number 5. As is clear from the table, NCF800 is applied to metal pipes.
Sample numbers 2, 3, 5, 7, and 8 using nickel oxide powder with a particle size of 10μ to 44μ
No peeling occurred up to 1000 cycles, but sample numbers 2 and 3, where the baking temperature of the nickel oxide powder was 800°C or lower, did not peel off, but
Significant discoloration of the far-infrared radiation layer was observed. On the other hand, sample numbers 5, 7, and 9 treated at 800° C. or higher did not peel off and no discoloration was observed. Further, Sample Nos. 4 and 6, in which the nickel powder was roasted at 800° C. and the particle size of the nickel oxide powder was outside the range of 10 μm to 44 μm, could not be successfully thermally sprayed. In addition, in sample numbers 9, 10, 11 and 12, which used metal pipes other than NCF800, even if nickel oxide powder baked at a temperature of 800℃ or higher was used,
In SUS304, the far-infrared emitting layer peeled off within 100 cycles, and in SUS321, within 500 cycles, so they were unusable. Also, as is clear from Figure 3, sample number 5
It can be seen that the far-infrared heater represented by 1 shows a higher emissivity at each wavelength compared to sample number 1, which is a conventional sheathed heater. As is clear from the above explanation, far infrared heaters in which 10μ to 44μ nickel oxide powder, which is obtained by roasting metal nickel powder at a temperature of 800°C or more, is sprayed onto NCF800 metal pipes, are more effective than conventional sheathed heaters. It has a high far-infrared emissivity and will not peel or discolor even when used at high temperatures of 800℃. Effects of the Invention As described above, the present invention provides a method for coating the surface of an iron-based alloy metal pipe with metal nickel powder.
By coating with nickel oxide powder obtained by roasting at a temperature of 800℃ or higher and pulverizing it to a size of 10μ to 44μ, it has a high emissivity in the far infrared region and can be used in high temperature regions up to 800℃. It is possible to provide a far-infrared heater that is thermally stable and sufficiently resistant to cooling and heating cycles even when used, and whose far-infrared radiation layer does not peel off, and has great practical value.
第1図は従来のシーズヒータの断面図、第2図
は本発明の一実施例におけるシーズヒータの断面
図、第3図は同シーズヒータの放射特性線図であ
る。
2…電熱線、3…金属パイプ、4…電気絶縁粉
末、7…遠赤外線放射層。
FIG. 1 is a sectional view of a conventional sheathed heater, FIG. 2 is a sectional view of a sheathed heater according to an embodiment of the present invention, and FIG. 3 is a radiation characteristic diagram of the sheathed heater. 2... Heating wire, 3... Metal pipe, 4... Electrical insulation powder, 7... Far-infrared radiation layer.
Claims (1)
焼して粉砕した酸化ニツケル粉末により被覆した
鉄基合金からなる金属パイプに、コイル状の電熱
線を挿入し、この金属パイプと電熱線との間にマ
グネシア粉末を充填してなる遠赤外線ヒータ。 2 酸化ニツケル粉末は、10μ〜44μの粒度から
なる特許請求の範囲第1項記載の遠赤外線ヒー
タ。[Scope of Claims] 1. A coiled heating wire is inserted into a metal pipe made of an iron-based alloy coated with nickel oxide powder obtained by roasting and pulverizing nickel metal powder at a temperature of 800°C or higher. A far-infrared heater made by filling magnesia powder between the and heating wire. 2. The far infrared heater according to claim 1, wherein the nickel oxide powder has a particle size of 10μ to 44μ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6485083A JPS59191282A (en) | 1983-04-13 | 1983-04-13 | Far infrared ray heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6485083A JPS59191282A (en) | 1983-04-13 | 1983-04-13 | Far infrared ray heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59191282A JPS59191282A (en) | 1984-10-30 |
JPH0147870B2 true JPH0147870B2 (en) | 1989-10-17 |
Family
ID=13270082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6485083A Granted JPS59191282A (en) | 1983-04-13 | 1983-04-13 | Far infrared ray heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59191282A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3809492C1 (en) * | 1987-10-12 | 1989-04-27 | Emil 3501 Niestetal De Feder |
-
1983
- 1983-04-13 JP JP6485083A patent/JPS59191282A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59191282A (en) | 1984-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4426570A (en) | Infrared radiative body and a method for making the same | |
JPS6325465B2 (en) | ||
JPH0147870B2 (en) | ||
US2966430A (en) | Electric resistance elements | |
JPS6311298B2 (en) | ||
JPS5856236B2 (en) | Manufacturing method of far-infrared radiating element | |
JPH0311072B2 (en) | ||
US3055084A (en) | Method of making covered electrical resistors | |
US1442910A (en) | Electrically-heated vessel | |
JPH0148625B2 (en) | ||
JPS5934233B2 (en) | far infrared radiation device | |
JPS6021448B2 (en) | Electrical insulating material for burying metal heater wires and method for manufacturing the same | |
US3645784A (en) | Vitreous enamel resistor | |
JPS6052552B2 (en) | Manufacturing method of far-infrared radiation element | |
JPS61190881A (en) | Far infrared heater | |
JPH0311071B2 (en) | ||
JPH0435879B2 (en) | ||
JPH02204991A (en) | Far infrared heater and manufacture thereof | |
JPS6057662B2 (en) | heating element | |
JPS59207585A (en) | Far infrared ray heater | |
JPH0535558B2 (en) | ||
JPS6054750B2 (en) | Manufacturing method of far infrared heater | |
JPH0534797B2 (en) | ||
JPS6325466B2 (en) | ||
JPS5932875B2 (en) | far infrared radiation device |