JPH0435879B2 - - Google Patents

Info

Publication number
JPH0435879B2
JPH0435879B2 JP58113094A JP11309483A JPH0435879B2 JP H0435879 B2 JPH0435879 B2 JP H0435879B2 JP 58113094 A JP58113094 A JP 58113094A JP 11309483 A JP11309483 A JP 11309483A JP H0435879 B2 JPH0435879 B2 JP H0435879B2
Authority
JP
Japan
Prior art keywords
far
infrared
radiation layer
zirconium oxide
metal pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113094A
Other languages
Japanese (ja)
Other versions
JPS603885A (en
Inventor
Hidesato Kawanishi
Noboru Naruo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11309483A priority Critical patent/JPS603885A/en
Publication of JPS603885A publication Critical patent/JPS603885A/en
Publication of JPH0435879B2 publication Critical patent/JPH0435879B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、乾燥、加熱、調理、暖房等の熱源と
して使用されるもので、遠赤外線を効率的に放射
する遠赤外線ヒータに関するものである。 従来例の構成とその問題点 従来より遠赤外線ヒータとしては、 (i) 赤外線ランプ (ii) セラミツク中に発熱体を埋め込み焼成したも
の (iii) シーズヒータの表面に遠赤外線放射層を形成
したもの などがあるが、放射特性、機械的強度、寿命など
の観点から、シーズヒータの表面に遠赤外線放射
層を形成したものが多く使用されている。 このシーズヒータタイプの遠赤外線ヒータは、
シーズヒータの金属パイプの表面に、遠赤外線放
射層を形成したものである。 一方、遠赤外線放射層としては、約10μの長波
長側で優れた放射特性を有する酸化ジルコニウム
を主成分とするものが主に使用されている。 しかし、酸化ジルコニウムを主成分とする遠赤
外線ヒータは断続通電による500℃以上の冷熱サ
イクルにおいて、放射層の剥離が生じ易く、500
℃以上の高温で、使用できないという欠点があ
り、使用温度領域が限定されているのが実情であ
る。 発明の目的 本発明はかかる従来の欠点を解決し、500℃以
上ないしは800℃の高温で使用しても、遠赤外線
放射層が剥離しない安定な遠赤外線ヒータを提供
することを目的とする。 発明の構成 本発明は、ステンレス鋼、鉄基合金、ニツケル
基合金のような耐熱鋼からなる金属パイプ表面
に、酸化ニツケルを10重量%〜30重量%の範囲で
含有する酸化ジルコニウムからなる遠赤外線放射
層を設けたもので、酸化ニツケルが金属パイプと
酸化ジルコニウムとの熱膨脹差を緩和させると共
に、金属パイプとの密着性を高めるように作用
し、500℃以上ないし800℃での遠赤外線放射層の
剥離現象を防止できるものである。 実施例の説明 以下、本発明の実施例について第1図〜第2図
を参照し、説明する。 第1図において、両端に端子棒1を備えたコイ
ル状のニクロム線からなる電熱線2をNCF800
(商品名インコロイ800)の金属パイプ3に挿入
し、この金属パイプ3に、電融マグネシア粉末か
らなる電気絶縁粉末4を充填し、金属パイプ3の
両端をガラス5および耐熱性樹脂6で封口し、直
径11mm、長さ500mmの100V−600Wのシーズヒー
タとした。 次に、このシーズヒータの表面を溶融アルミナ
(#60)の研削剤でプラスト処理し、こののち表
面に酸化ニツケルを次の表に示すようにそれぞれ
含有する酸化ジルコニウムをプラズマ溶射法によ
り、被覆し、50μmの遠赤外線放射層7を形成さ
せ、第1図に示した構成の試料番号2〜11の遠赤
外線ヒータを完成した。 一方、比較のために、酸化ニツケルを含有しな
い従来の酸化ジルコニウムを同様に方法により被
膜処理し試料番号1の従来の遠赤外線ヒータを完
成した。 完成したそれぞれの遠赤外線ヒータを500℃お
よび800℃の各温度で20分オン−10分オフを1サ
イクルとする断続通電試験を行ない、遠赤外線放
射層7の剥離について試験を行なつた。 なお、剥離について、100,500,1000,5000、
サイクル後、それぞれ確認した。 この結果を表に同様に示した。 なお、表において、○印は剥離がまつたく見ら
れないことを、×印は1カ所以上の剥離が見られ
ることをそれぞれ示す。 また、試料番号1,4,5,9,10,11、
の各遠赤外線ヒータについて波長2.5μm〜30μm
の赤外線領域における放射率を赤外分光器にて測
定し、第2図に示した。 第2図において、aは試料番号1の測定結果を
示し、b,c,d,e,fはそれぞれ試料番号
4,5,9,10,11の測定結果を示してい
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a far-infrared heater that is used as a heat source for drying, heating, cooking, heating, etc., and that efficiently emits far-infrared rays. Conventional configurations and their problems Conventional far-infrared heaters include (i) infrared lamps, (ii) those in which a heating element is embedded in ceramic and fired, and (iii) those in which a far-infrared radiation layer is formed on the surface of a sheathed heater. However, from the viewpoint of radiation characteristics, mechanical strength, lifespan, etc., sheathed heaters with a far-infrared radiation layer formed on the surface are often used. This sheathed heater type far infrared heater is
A far-infrared radiation layer is formed on the surface of the metal pipe of the sheathed heater. On the other hand, as the far-infrared radiation layer, a material mainly composed of zirconium oxide, which has excellent radiation characteristics on the long wavelength side of about 10 μm, is mainly used. However, in far-infrared heaters whose main component is zirconium oxide, the emissive layer tends to peel off during cooling/heating cycles of 500°C or higher due to intermittent energization.
The disadvantage is that it cannot be used at high temperatures above ℃, and the actual temperature range in which it can be used is limited. OBJECTS OF THE INVENTION It is an object of the present invention to solve these conventional drawbacks and provide a stable far-infrared heater in which the far-infrared radiation layer does not peel off even when used at high temperatures of 500°C or higher or 800°C. Structure of the Invention The present invention provides far infrared rays made of zirconium oxide containing nickel oxide in the range of 10% to 30% by weight on the surface of a metal pipe made of heat-resistant steel such as stainless steel, iron-based alloy, or nickel-based alloy. It has a radiation layer, and the nickel oxide acts to alleviate the difference in thermal expansion between the metal pipe and zirconium oxide, as well as improve the adhesion with the metal pipe, and the far infrared radiation layer at temperatures of 500℃ or higher to 800℃. This can prevent the peeling phenomenon. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. In Figure 1, a heating wire 2 made of a coiled nichrome wire with terminal bars 1 at both ends is connected to an NCF800 wire.
(trade name: Incoloy 800), the metal pipe 3 is filled with electrical insulating powder 4 made of fused magnesia powder, and both ends of the metal pipe 3 are sealed with glass 5 and heat-resistant resin 6. , a 100V-600W sheathed heater with a diameter of 11 mm and a length of 500 mm. Next, the surface of this sheathed heater is blast-treated with a molten alumina (#60) abrasive, and then the surface is coated with zirconium oxide containing nickel oxide and zirconium oxide as shown in the table below using a plasma spraying method. , a far-infrared radiation layer 7 of 50 μm was formed, and far-infrared heaters of sample numbers 2 to 11 having the configuration shown in FIG. 1 were completed. On the other hand, for comparison, a conventional far-infrared heater of Sample No. 1 was completed by coating conventional zirconium oxide containing no nickel oxide using the same method. Each of the completed far-infrared heaters was subjected to an intermittent energization test at each temperature of 500° C. and 800° C., with one cycle of 20 minutes on and 10 minutes off, to test for peeling of the far-infrared radiation layer 7. Regarding peeling, 100, 500, 1000, 5000,
Each was confirmed after each cycle. The results are also shown in the table. In the table, ○ marks indicate that no peeling was observed, and × marks indicate that peeling was observed at one or more places. In addition, sample numbers 1, 4, 5, 9, 10, 11,
Wavelength 2.5μm ~ 30μm for each far infrared heater
The emissivity in the infrared region was measured using an infrared spectrometer and is shown in FIG. In FIG. 2, a indicates the measurement results for sample number 1, and b, c, d, e, and f indicate the measurement results for sample numbers 4, 5, 9, 10, and 11, respectively.

【表】 この表より、800℃での断続通電試験において、
酸化ニツケルの含有量が10重量%以下および従来
の酸化ジルコニウムからなる試料番号1,2,
3,4の遠赤外線ヒータは、遠赤外線放射層の剥
離が見られたが、酸化ニツケルの含有量が10重量
%以上の試料番号5,6,7,8,9,10,1
1の遠赤外線ヒータでは、遠赤外線放射層の剥離
は見られなかつた。 一方、第2図より酸化ニツケルの含有量が30重
量%以上の試料番号10,11の測定結果を示す
曲線e,fでは約10μmの波長での放射率が他の
遠赤外線ヒータに較べ低下し、酸化ジルコニウム
が有する放射特性の特異性が低下した。 このように、酸化ニツケルを10〜30重量%含有
する酸化ジルコニウムを金属パイプ表面に設ける
ことにより、従来の酸化ジルコニウムを使用した
遠赤外線ヒータの実使用温度を高めることができ
る。 なお、本発明において、金属パイプは、実施例
で示したNCF800以外のステンレス鋼、鉄基合
金、ニツケル基合金のいずれかの耐熱鋼であれば
よい。 発明の効果 以上の説明から明らかなように、本発明の遠赤
外線ヒータによれば、酸化ニツケルを10〜30重量
%含有する酸化ジルコニウムからなる遠赤外線放
射層を金属パイプにもうけることにより、500℃
以上ないしは800℃の高温での使用が可能となり、
その工業的価値は大なるものである。
[Table] From this table, in the intermittent current test at 800℃,
Sample numbers 1, 2, with a content of nickel oxide of 10% by weight or less and conventional zirconium oxide,
In far-infrared heaters No. 3 and 4, peeling of the far-infrared radiation layer was observed, but sample numbers 5, 6, 7, 8, 9, 10, and 1 with a nickel oxide content of 10% by weight or more
In far-infrared heater No. 1, no peeling of the far-infrared radiation layer was observed. On the other hand, as shown in Figure 2, in curves e and f showing the measurement results of sample numbers 10 and 11 with a nickel oxide content of 30% by weight or more, the emissivity at a wavelength of about 10 μm is lower than that of other far-infrared heaters. , the specificity of the radiation properties of zirconium oxide decreased. In this way, by providing zirconium oxide containing 10 to 30% by weight of nickel oxide on the surface of the metal pipe, it is possible to increase the actual operating temperature of a conventional far-infrared heater using zirconium oxide. In the present invention, the metal pipe may be any heat-resistant steel such as stainless steel, iron-based alloy, or nickel-based alloy other than NCF800 shown in the examples. Effects of the Invention As is clear from the above description, according to the far-infrared heater of the present invention, by providing a far-infrared radiation layer made of zirconium oxide containing 10 to 30% by weight of nickel oxide on a metal pipe, it is possible to heat up to 500°C.
It can be used at high temperatures of 800℃ or above,
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例による遠赤外線ヒー
タの断面図、第2図は、従来の遠赤外線ヒータと
本発明の実施例の遠赤外線ヒータの波長に対する
放射率を示すグラフである。 3……金属パイプ、7……遠赤外線放射層。
FIG. 1 is a sectional view of a far-infrared heater according to an embodiment of the present invention, and FIG. 2 is a graph showing emissivity versus wavelength of a conventional far-infrared heater and a far-infrared heater according to an embodiment of the present invention. 3...Metal pipe, 7...Far-infrared radiation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 耐熱鋼からなる金属パイプの表面に酸化ニツ
ケルを10重量%〜30重量%含有する酸化ジルコニ
ウムからなる遠赤外線放射層を設けた遠赤外線ヒ
ータ。
1. A far-infrared heater in which a far-infrared radiation layer made of zirconium oxide containing 10% to 30% by weight of nickel oxide is provided on the surface of a metal pipe made of heat-resistant steel.
JP11309483A 1983-06-22 1983-06-22 Far infrared ray heater Granted JPS603885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11309483A JPS603885A (en) 1983-06-22 1983-06-22 Far infrared ray heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11309483A JPS603885A (en) 1983-06-22 1983-06-22 Far infrared ray heater

Publications (2)

Publication Number Publication Date
JPS603885A JPS603885A (en) 1985-01-10
JPH0435879B2 true JPH0435879B2 (en) 1992-06-12

Family

ID=14603325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11309483A Granted JPS603885A (en) 1983-06-22 1983-06-22 Far infrared ray heater

Country Status (1)

Country Link
JP (1) JPS603885A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483140A (en) * 1977-12-15 1979-07-03 Hitachi Heating Appliance Co Ltd Extreme infra-red ray radiating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483140A (en) * 1977-12-15 1979-07-03 Hitachi Heating Appliance Co Ltd Extreme infra-red ray radiating device

Also Published As

Publication number Publication date
JPS603885A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
JPH0435879B2 (en)
JPS5836821B2 (en) far infrared radiation device
JPH0311072B2 (en)
JPH0148625B2 (en)
JPH01227376A (en) Far infrared-ray heater
JPS607095A (en) Far infrared ray heater
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPS603884A (en) Far infrared ray heater
JP2532358B2 (en) Tubular heating element
JPH0311071B2 (en)
JP2861699B2 (en) Electric heater
JPS6093793A (en) Far infrared ray heater
JPS60130088A (en) Far infrared ray heater
JPH02204991A (en) Far infrared heater and manufacture thereof
JPH0536471A (en) Electric heater
JPS59207585A (en) Far infrared ray heater
JPH0147870B2 (en)
JPS61110989A (en) Far infrared heater
JPH03127482A (en) Extreme infrared radiation heater and manufacture thereof
JPH048907B2 (en)
JPS61190881A (en) Far infrared heater
JPH05205855A (en) Electric heater
JPH09289072A (en) Manufacture of far infrared radiation heater
JPS6057662B2 (en) heating element
JPS5932875B2 (en) far infrared radiation device