JPS607095A - Far infrared ray heater - Google Patents

Far infrared ray heater

Info

Publication number
JPS607095A
JPS607095A JP11370983A JP11370983A JPS607095A JP S607095 A JPS607095 A JP S607095A JP 11370983 A JP11370983 A JP 11370983A JP 11370983 A JP11370983 A JP 11370983A JP S607095 A JPS607095 A JP S607095A
Authority
JP
Japan
Prior art keywords
far
infrared
metal pipe
thermal expansion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11370983A
Other languages
Japanese (ja)
Inventor
英賢 川西
成尾 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11370983A priority Critical patent/JPS607095A/en
Publication of JPS607095A publication Critical patent/JPS607095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、乾燥、加熱、調理、暖房等の熱源として使用
されるもので、遠赤外線を効率的に放射する遠赤外線ヒ
ータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a far-infrared heater that is used as a heat source for drying, heating, cooking, heating, etc., and that efficiently radiates far-infrared rays.

従来例の構成とその問題点 従来より遠赤外線ヒータとしては (1)赤外線ランプ (11)セラミック中に発熱体を埋め込み焼成したもの (iii) シーズヒータの表面に遠赤外線放射層を形
成したもの などがあるが、放射特性2機械的強度、寿命などの観点
から、シーズヒータの表面に遠赤外線放射層を形成した
ものが多く使用されている。
Conventional configurations and their problems Conventional far-infrared heaters include (1) infrared lamps, (11) those in which a heating element is embedded in ceramic and fired, (iii) those in which a far-infrared radiation layer is formed on the surface of a sheathed heater, etc. However, from the viewpoint of radiation characteristics 2 mechanical strength and lifespan, sheathed heaters with a far-infrared radiation layer formed on the surface are often used.

このシーズヒータタイプの遠赤外線ヒータに、一般的に
第1図に示すように、両端に端子棒1を備えたコイル状
の電熱線2を金属パイプ3に挿入し、この金属パイプ3
に電融マグネ7ア等の電気絶縁粉末4を充填してなり、
必要に応じて金属パイプ3の両端をガラスらや耐熱性樹
脂6で封口した従来のシーズヒータの金属パイプ3の表
面に、遠赤外線放射層γを形成したものである〇一方、
遠赤外線放射層7としては、約1o/imの長波長側で
優れた放射特性を有する酸化ジルコニウムを主成分とす
るものが主に使用されている。
In this sheathed heater type far infrared heater, generally, as shown in FIG.
is filled with electrically insulating powder 4 such as electrofused magnet 7a,
A far-infrared emitting layer γ is formed on the surface of the metal pipe 3 of a conventional sheathed heater in which both ends of the metal pipe 3 are sealed with glass or heat-resistant resin 6 as necessary.
As the far-infrared radiation layer 7, a material whose main component is zirconium oxide, which has excellent radiation characteristics on the long wavelength side of about 1 o/im, is mainly used.

しかし、酸化ジルコニウムを主成分とする遠赤外線ヒー
タは、断続通電による500’C以上の高温で、使用で
きないという欠点があり、使用温度領域が限定されてい
るのが実情である。
However, far-infrared heaters containing zirconium oxide as a main component have the disadvantage that they cannot be used at high temperatures of 500'C or higher due to intermittent energization, and the actual temperature range in which they can be used is limited.

発明の目的 本発明は、かかる従来の欠点を解決し、SOO°C以上
の高温で使用しても、遠赤外線放射層が剥離しない安定
な遠赤外線ヒータを提供するものである。
OBJECTS OF THE INVENTION The present invention solves these conventional drawbacks and provides a stable far-infrared heater whose far-infrared radiation layer does not peel off even when used at high temperatures of SOO°C or higher.

発明の構成 本発明は、ステンレス鋼または鉄基合金またはニッケル
基合金のu熱鋼からなる金属パイプ表面に、酸化ニッケ
ル等の、熱膨張係数が金属パイプの熱膨張係数と遠赤外
線放射層の熱膨張係数の中間値である物質からなる下地
層を設け、さらに、その上に、酸化ジルコニウムを主成
分とする遠赤外線放射層を設けることにより、下地層が
、ステンレス鋼重たは鉄基およびニッケル基合金の耐熱
鋼と、酸化ジルコニウムの遠赤外線放射層との熱膨張差
を緩和させるように作用し、500°C以上の高温での
遠赤外線放射層の剥離現象を防止するものである。
Components of the Invention The present invention is characterized in that the surface of a metal pipe made of stainless steel, iron-based alloy, or nickel-based alloy U-heat steel is coated with a material such as nickel oxide, which has a thermal expansion coefficient equal to that of the metal pipe and the heat of a far-infrared emitting layer. By providing a base layer made of a material with an intermediate value of expansion coefficient, and further providing a far-infrared emitting layer containing zirconium oxide as a main component, the base layer is made of stainless steel, iron-based material, and nickel. It acts to alleviate the difference in thermal expansion between the base alloy heat-resistant steel and the zirconium oxide far-infrared radiation layer, and prevents the far-infrared radiation layer from peeling off at high temperatures of 500°C or higher.

実施例の説明 以下、本発明の実施例について、第2図を参照し、説明
する。図中従来と同一の部材については従来例と同一の
符号を例しその説明は省略する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIG. In the drawings, the same members as in the conventional example are designated by the same reference numerals as in the conventional example, and the description thereof will be omitted.

金属パイプ3が、鉄基合金であるNCF300(商品名
インコロイ800)のシーズヒータ(直径11M、長さ
5oOM)の表面を溶融アルミナ(#60)の研削剤で
ブラスト処理し、こののちその表面に酸化ニッケルをプ
ラズマ溶射法により被覆し、厚さ50μmの下地層11
を形成した。
The metal pipe 3 blasts the surface of a sheathed heater (diameter 11M, length 5oOM) made of iron-based alloy NCF300 (trade name Incoloy 800) with molten alumina (#60) abrasive, and then blasts the surface. Underlayer 11 coated with nickel oxide by plasma spraying and having a thickness of 50 μm.
was formed.

さらに、下地層11の上に、酸化ジルコニウム(安定化
ジルコニア)を、同様の方法により、被覆し、厚さ5o
μmの遠赤外線放射層12を形成し、1 oov−50
0Wの第2図に示す遠赤外線ヒータを完成した。
Furthermore, zirconium oxide (stabilized zirconia) was coated on the base layer 11 by the same method to a thickness of 50 mm.
Form a far infrared radiation layer 12 of 1 oov-50 μm.
We have completed a 0W far-infrared heater shown in Figure 2.

一方、比較のために、酸化ニッケルの下地層11をもう
けず、いきなり、上記の酸化ジルコニウムをプラズマ溶
射法により金属パイプ3に被覆した従来の遠赤外線ヒー
タも同時に完成した。
On the other hand, for comparison, a conventional far-infrared heater was also completed in which the metal pipe 3 was coated with the above-mentioned zirconium oxide by plasma spraying without forming the base layer 11 of nickel oxide.

完成したそれぞれの遠赤外線ヒータを、500”C,6
00″G 、700″C、aoooC(7)各温度にな
るように、電圧調整し、20分オン−10分オフを1サ
イクルとする断続通電試験を行い、遠赤外線放射層12
の剥離度合について、試験を行なった0 剥離度合は、100.500 、1000 。
Each completed far infrared heater was heated to 500"C, 6
00″G, 700″C, aoooC (7) The voltage was adjusted to each temperature, and an intermittent energization test was conducted with one cycle of 20 minutes on and 10 minutes off, and the far infrared emitting layer 12
The peeling degree of 0, which was tested, was 100.500 and 1000.

5000 、サイクル後について測定した。Measured after 5000 cycles.

この結果を表に示した〇 なお、この表において、○印は剥離がまったく見られな
いことを、Δ印は、数カ所に奈1庸現象が見られること
を、X印はヒータの半分以上において剥離現象が見られ
、実使用に耐えない状況をそれぞれ示している。
The results are shown in the table.〇In this table, ○ marks indicate that no peeling is observed at all, ∆ marks indicate that the phenomenon is observed in several places, and X marks indicate that more than half of the heaters A peeling phenomenon was observed, indicating a situation that could not be used in actual use.

表 表から明らかなように酸化ニッケルの下地層11を有し
ない従来の遠赤外線ヒータでは、500℃での実使用は
可能であるが、それ以上の温度では、剥離が生じている
ことがわかる。
As is clear from the table, the conventional far-infrared heater without the nickel oxide base layer 11 can be used in practice at 500° C., but peeling occurs at temperatures higher than that.

しかし、酸化ニッケルの下地層11を有する本発明の遠
赤線ヒータでは、8oO℃までの温度では剥離が生じな
かった。
However, in the far-infrared heater of the present invention having the nickel oxide base layer 11, no peeling occurred at temperatures up to 800°C.

これは、酸化ニッケルの下地層11が鉄基合金であるN
CF300の熱膨張係数170〜180x 1o−’ 
(室温〜1o○0℃)と酸化ジルコニラムノ熱膨張係数
50〜60X10−’(g温〜1oQO℃)のほぼ中間
の値、すなわち120〜15o×1o であるため、金
属パイプ3と遠赤外線放射層12の熱膨張差を緩和する
ように作用していると推定される。
This is because the base layer 11 of nickel oxide is an iron-based alloy.
Thermal expansion coefficient of CF300 170-180x 1o-'
(Room temperature ~ 1o○0℃) and zirconium oxide rhamnothermal expansion coefficient 50~60X10-' (g temperature ~ 1oQO℃). It is estimated that this acts to alleviate the difference in thermal expansion between the two.

さらに、酸化ニソケルルは、NCF300の成分元素で
あるクロム元素と、なんらかの化学結合により密着性を
高める作用をしていると推定される。
Furthermore, it is presumed that Nisoquerl oxide has the effect of increasing adhesion with the chromium element, which is a component element of NCF300, through some kind of chemical bond.

以上の理由により、本発明の構造を有する遠赤外線ヒー
タは、高温で使用しても、剥離現象が生じず、優れた特
性を有する。
For the above reasons, the far-infrared heater having the structure of the present invention does not cause a peeling phenomenon even when used at high temperatures, and has excellent characteristics.

他の実施例として金属パイプ3が5US321の7−ズ
ヒー)゛(直径6.6腸、長さ600韻)の表面を前述
した実施例と同様にブラスト処理し、以下、同様にして
、第2図に示す本発明の遠赤外線ヒータを完成した。完
成した遠赤外線ヒータを700℃で2o分オンー10分
オフの断続通電試験を行なったところ、500サイクル
まで、酸化ジルコニウムの遠赤外線放射層12の剥離は
確認されなかった。
As another example, the surface of the metal pipe 3 is a 5US321 7-mm pipe (diameter: 6.6 mm, length: 600 rhymes), which is blasted in the same manner as in the above-mentioned example. The far-infrared heater of the present invention shown in the figure was completed. When the completed far-infrared heater was subjected to an intermittent energization test of 20 minutes on and 10 minutes off at 700° C., no peeling of the zirconium oxide far-infrared emitting layer 12 was observed up to 500 cycles.

上記実施例から明らかなように、金属パイプ3と遠赤外
線放射層120間に、これら両者の中間の熱膨張係数を
有し、金属パイプ3と化学結合を形成する酸化ニッケル
からなる下地層11を設けることにより従来の酸化ジル
コニウムを使用した遠赤外線ヒータの実使用温度を高め
ることができる。
As is clear from the above embodiment, a base layer 11 made of nickel oxide, which has a coefficient of thermal expansion between the two and forms a chemical bond with the metal pipe 3, is provided between the metal pipe 3 and the far-infrared emitting layer 120. By providing this, the actual operating temperature of a conventional far-infrared heater using zirconium oxide can be increased.

なお、本発明に下地層11として、酸化ニッケルに限定
されることなく、金属パイプの熱膨張係数と遠赤外線放
射層の熱膨張係数の中間値の熱膨張係数を有する物質で
あればよく、捷た酸化ニッケルの純度においても、金属
バイブ3に悪影響を与える不純物(アルカIJ−jたは
アルカリ土類金属丑たはこれらの酸化物等)を含有しな
ければ、特に実施例に限定されるものでfiない。
Note that the base layer 11 of the present invention is not limited to nickel oxide, and may be any material having a thermal expansion coefficient that is intermediate between the thermal expansion coefficient of the metal pipe and the thermal expansion coefficient of the far-infrared emitting layer. The purity of the nickel oxide used is also limited to the examples as long as it does not contain impurities (alkaline IJ-j or alkaline earth metals or oxides thereof, etc.) that adversely affect the metal vibe 3. It's not fi.

寸た、金属パイプ3として、実施例で示した5US32
1 、NCF300以外ノステンレス鋼。
5US32 shown in the example as the metal pipe 3.
1. Stainless steel other than NCF300.

鉄基合金あるいはニッケル基合金のいずれかの耐熱鋼で
あればよい。
Any heat-resistant steel of iron-based alloy or nickel-based alloy may be used.

発明の効果 以上の説明から明らかなように、本発明の遠赤外線ヒー
タによれば、金属パイプと酸化ジルコニウムを主成分と
する遠赤外線放射層との間に、金属パイプの熱膨張係数
と遠赤外線放射層の熱膨張係数との中間値の熱膨張係数
を有する下地層を設けることにより、遠赤外線放射層の
剥離が生ぜず、500°C以上の高温での使用が可能と
なり、その工業的効果は犬なるものである。
Effects of the Invention As is clear from the above explanation, according to the far-infrared heater of the present invention, there is a gap between the metal pipe and the far-infrared radiation layer mainly composed of zirconium oxide. By providing a base layer with a thermal expansion coefficient intermediate to that of the radiation layer, the far-infrared radiation layer does not peel off, making it possible to use it at high temperatures of 500°C or higher, and its industrial effects. is a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の遠赤外線ヒータの断面図、第2図は本発
明の実施例による遠赤外線ヒータの断面図、第3図は第
2図におけるA部拡大図である。 3・・・・金属パイプ、11・−下地層、12−遠赤外
線放射層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図
FIG. 1 is a sectional view of a conventional far-infrared heater, FIG. 2 is a sectional view of a far-infrared heater according to an embodiment of the present invention, and FIG. 3 is an enlarged view of section A in FIG. 2. 3...metal pipe, 11--base layer, 12-far-infrared radiation layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)耐熱鋼からなる金属パイプ表面に酸化ジルコニウ
ムを主成分とする遠赤外線放射層を下地層を介して設け
、この下地層の熱膨張係数は前記金属パイプの熱膨張係
数と前記遠赤外線放射層の熱膨張係数との中間値とした
遠赤外線ヒータ。
(1) A far-infrared radiation layer mainly composed of zirconium oxide is provided on the surface of a metal pipe made of heat-resistant steel via a base layer, and the thermal expansion coefficient of this base layer is the thermal expansion coefficient of the metal pipe and the far-infrared radiation. A far-infrared heater with a thermal expansion coefficient intermediate to that of the layer.
(2)下地層は酸化ニッケルを主成分とした特許請求の
範囲第1項記載の遠赤外線ヒータ。
(2) The far-infrared heater according to claim 1, wherein the base layer is mainly composed of nickel oxide.
JP11370983A 1983-06-23 1983-06-23 Far infrared ray heater Pending JPS607095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11370983A JPS607095A (en) 1983-06-23 1983-06-23 Far infrared ray heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11370983A JPS607095A (en) 1983-06-23 1983-06-23 Far infrared ray heater

Publications (1)

Publication Number Publication Date
JPS607095A true JPS607095A (en) 1985-01-14

Family

ID=14619170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11370983A Pending JPS607095A (en) 1983-06-23 1983-06-23 Far infrared ray heater

Country Status (1)

Country Link
JP (1) JPS607095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243420A (en) * 1988-07-26 1990-02-14 Sa Soletanche Soil removing device at time of excavation of deep ditch
JPH03127482A (en) * 1989-10-09 1991-05-30 Matsushita Electric Ind Co Ltd Extreme infrared radiation heater and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428030A (en) * 1977-08-03 1979-03-02 Hitachi Heating Appliance Co Ltd Method for manufacturing far infrared rays radiating element
JPS5713114A (en) * 1980-06-28 1982-01-23 Nippon Steel Corp Method of heating cold material using tuyere for smelting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428030A (en) * 1977-08-03 1979-03-02 Hitachi Heating Appliance Co Ltd Method for manufacturing far infrared rays radiating element
JPS5713114A (en) * 1980-06-28 1982-01-23 Nippon Steel Corp Method of heating cold material using tuyere for smelting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243420A (en) * 1988-07-26 1990-02-14 Sa Soletanche Soil removing device at time of excavation of deep ditch
JPH03127482A (en) * 1989-10-09 1991-05-30 Matsushita Electric Ind Co Ltd Extreme infrared radiation heater and manufacture thereof

Similar Documents

Publication Publication Date Title
US3197335A (en) Surface-mounted electrical resistance structure and method for producing same
JPS607095A (en) Far infrared ray heater
JPS603885A (en) Far infrared ray heater
JPS603884A (en) Far infrared ray heater
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPS6087A (en) Far infrared ray heater
JPS60130088A (en) Far infrared ray heater
JPS6060990A (en) Far infrared ray radiation heater
JPH02120624A (en) Production of detection element
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPS6093794A (en) Far infrared ray heater
JPS63292591A (en) Infrared heater
JP2712478B2 (en) Far infrared heater and method of manufacturing the same
JPS6093796A (en) Far infrared ray heater
JPS59207585A (en) Far infrared ray heater
JPS6093795A (en) Far infrared ray heater
JP2819646B2 (en) Far infrared halogen heater
JPS59191282A (en) Far infrared ray heater
JPS6093793A (en) Far infrared ray heater
JPS6093797A (en) Far infrared ray heater
JPS59177887A (en) Far infrared ray heater
JPH03127482A (en) Extreme infrared radiation heater and manufacture thereof
US863293A (en) Electric resistance device.
JPS61190881A (en) Far infrared heater
JPS61110989A (en) Far infrared heater