JPS62285385A - Electric wire heater - Google Patents
Electric wire heaterInfo
- Publication number
- JPS62285385A JPS62285385A JP12757386A JP12757386A JPS62285385A JP S62285385 A JPS62285385 A JP S62285385A JP 12757386 A JP12757386 A JP 12757386A JP 12757386 A JP12757386 A JP 12757386A JP S62285385 A JPS62285385 A JP S62285385A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- core wire
- heat
- electric wire
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010937 tungsten Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 claims 4
- 210000003092 coiled body Anatomy 0.000 claims 1
- 239000000463 material Substances 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910001120 nichrome Inorganic materials 0.000 description 4
- 238000005485 electric heating Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003905 indoor air pollution Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- -1 nickel Chemical compound 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
産業上の利用分野
本発明は、電気ストーブ、電気コンロ等の暖房あるいは
加熱機器の熱源として使用される電熱線ヒータに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an electric wire heater used as a heat source for heating or heating equipment such as electric stoves and electric stoves.
従来の技術
従来より電気ストーブ、電気77口等の暖房あ、るいは
加熱器の熱源として、通電により発熱するニクロム線等
よりなる電熱線ヒータが広く使用されており、特に、起
動および停止操作が簡単なことおよび室内の空気汚染が
少ないことから密閉性の高い室内の熱源として使用さi
ている。Conventional technology Electric wire heaters made of nichrome wire, etc., which generate heat when energized, have been widely used as a heat source for electric stoves, electric heaters, etc., and are especially easy to start and stop. Because of its simplicity and low indoor air pollution, it is used as a heat source in highly airtight rooms.
ing.
発明が解決しようとする問題点
しかしながら、従来の電熱線ヒータは、電熱線の単位長
あたりの発熱量が比較的小さく、大容量の熱源としては
必ずしも満足のいくものではなかった。Problems to be Solved by the Invention However, conventional heating wire heaters have a relatively small amount of heat generated per unit length of the heating wire, and are not necessarily satisfactory as a large-capacity heat source.
すなわち、下表にJIS規格のニッケル・クロウム電熱
線と鉄・クロウム電熱線の体積抵抗率。In other words, the table below shows the volume resistivity of JIS standard nickel-chromium heating wire and iron-chromium heating wire.
線膨張係数および溶融温度を示すように、その溶融点は
約14oO°Cおよび1500’C1また体積抵抗率も
約1oO〜150程度であり、大容量の熱源としては満
足のいくものではなかった。As shown in the linear expansion coefficient and melting temperature, the melting point was about 14 oO<0>C and 1500'C1, and the volume resistivity was about 1 oO to about 150, which was not satisfactory as a large-capacity heat source.
(以下余白)
一方、タングステンやモリブデンは、前表に示すように
溶融点も高く、かつ体積抵抗率も小さいので、この両者
が電熱線ヒータとして使用できれば、従来の電熱線に比
べてはるかに犬容景の熱源が得られることとなる。(Left below) On the other hand, as shown in the previous table, tungsten and molybdenum have high melting points and low volume resistivities, so if both can be used as electric heating wire heaters, they will be far more effective than conventional electric heating wires. This will provide a source of heat for Yokei.
しかしながら、タングステンおよびモリブデンは周知の
ように空気中において通電加熱すると燃焼してしまい空
気中での発熱材としては使用できないものであシ、した
がってこれらは不活性ガスとともに石英ガラス管に封入
した赤外線電球として使用されている。この赤外線電球
は、その形状−が限定され、また、ニクロム線電熱器の
ように被加熱物に近接あるいは密接して使用することは
困難であり、加熱効率が悪いものであった。However, as is well known, tungsten and molybdenum burn when heated with electricity in the air and cannot be used as heat generating materials in the air. It is used as. This infrared light bulb has a limited shape, and unlike a nichrome wire electric heater, it is difficult to use it close to or in close contact with the object to be heated, resulting in poor heating efficiency.
本発明は、このタングステンおよびモリブデンが有する
特長を生かし、かつ、前述の欠点を除去した電熱線ヒー
タを提供するものである。The present invention provides a wire heater that takes advantage of the features of tungsten and molybdenum and eliminates the above-mentioned drawbacks.
問題点を解決するだめの手段
本発明の電熱線ヒータは、タングステンとモリブデンの
一方を主成分とする芯線の表面に、鉄。Means for Solving the Problems The electric wire heater of the present invention uses iron on the surface of a core wire whose main component is either tungsten or molybdenum.
ニッケル、クロウム、アルミニュウムの少なくとも1つ
を拡散浸透せしめ、その芯線の外側を前記拡散浸透せし
めた金属の1つを主成分とする発熱合金でモールドした
線材により構成したものである。It is constructed of a wire material into which at least one of nickel, chromium, and aluminum is diffused and infiltrated, and the outside of the core wire is molded with a heat-generating alloy whose main component is one of the metals into which the above-described diffusion and infiltration is made.
作用
タングステンあるいはモリブデンを空気中において通電
加熱すると燃焼する問題を解決しつつ、ニクロム線と同
様に比較的自由な形状に構成可能で、かつ、被加熱物を
近接せしめて使用するためには、タングステンあるいは
モリブデンを芯線としてその外周をニッケル・クロウム
合金等で被覆し、前記芯線が直接空気に触れることのな
いようにすることが考えられるが、前表に示すようにタ
ングステンやモリブデンとニッケル・クロウム合金の熱
膨張係数が大きく異なるため、加熱時に剥離したシ亀裂
が生じたりあるいは変形が生じる。Tungsten or molybdenum can be constructed into relatively free shapes like nichrome wire, and can be used in close proximity to the heated object, while solving the problem of combustion when tungsten or molybdenum is heated in air with electricity. Alternatively, it is possible to use molybdenum as a core wire and cover its outer periphery with a nickel-chromium alloy to prevent the core wire from coming into direct contact with the air. Because the thermal expansion coefficients of the two materials differ greatly, peeling and cracking may occur during heating, or deformation may occur.
しかしながら、本発明の構成は、芯線の表面に被覆すべ
き金属の主成分を拡散浸透しているため、被覆後に被覆
した金属の融点近くまで加熱すれば、密着境界面は融合
結合して合金状態となり、芯線と被覆金属との熱膨張率
の差による応力も順次段階的に吸収され、前述のような
加熱時に生じる不都合はなくなるものである。However, in the structure of the present invention, since the main component of the metal to be coated is diffused and permeated onto the surface of the core wire, if the core wire is heated to near the melting point of the coated metal after coating, the adhesion interface will be fused and bonded to form an alloy state. Therefore, the stress due to the difference in coefficient of thermal expansion between the core wire and the coating metal is absorbed step by step, and the above-mentioned inconveniences that occur during heating are eliminated.
実施例
以下図面を参照して本発明の電熱線ヒータの一実施例を
説明する。EXAMPLE Hereinafter, an example of the electric wire heater of the present invention will be described with reference to the drawings.
第1図は本発明に使用される電熱線の一実施例の断面図
であり、1はタングステンあるいはモリブデンよりなる
芯線であり、その表面には、鉄。FIG. 1 is a cross-sectional view of one embodiment of a heating wire used in the present invention. Reference numeral 1 indicates a core wire made of tungsten or molybdenum, and the surface thereof is coated with iron.
ニッケル、クロウム、アルミニュウムの少なくとも1種
の金属、例えばニッケルがCV D (ChemICa
lVapor Deposition )法等により拡
散浸透され、拡散浸透層2が形成されている。3は前記
拡散浸透された金属(例えばニッケル)を主成分とする
空気中で発熱可能な発熱材層で、例えばニッケル・クロ
ウム電熱線の1種(JIS規格)の発熱材層であり、前
記芯線1の外周に密着してこの芯線1をモールドしてい
る。At least one metal of nickel, chromium, and aluminum, such as nickel, is used in CVD (ChemICa
The diffusion permeation layer 2 is formed by diffusion permeation using a vapor deposition method or the like. Reference numeral 3 denotes a heat generating material layer that can generate heat in the air and is mainly composed of the diffused metal (for example, nickel), and is, for example, a heat generating material layer of a type of nickel-chromium heating wire (JIS standard); This core wire 1 is molded in close contact with the outer periphery of the core wire 1.
発熱材層3により芯線1をモールドした後、これを不活
性ガス雰囲気中でその発熱材層3の融点近くまで加熱処
理する。この加熱処理により、芯線1と発熱材層3との
境界面は融合結合して合金が形成される。4は前記発熱
材層3の表面に従来公知の手段により形成された酸化ア
ルミニュウム層である。After molding the core wire 1 with the heat-generating material layer 3, it is heat-treated in an inert gas atmosphere to near the melting point of the heat-generating material layer 3. Through this heat treatment, the interface between the core wire 1 and the heat generating material layer 3 is fused and bonded to form an alloy. 4 is an aluminum oxide layer formed on the surface of the heat generating material layer 3 by conventionally known means.
以上の構成によりなる線材を、従来のニクロム線と同様
にコイル形状に巻回して電熱線ヒータとするものである
。上記構成によれば、芯線は発熱材層3により密封され
た形状となるため、空気中の酸素と遮断されて燃焼され
ることはないものであり、また、加熱時の芯線1と発熱
材層3との熱膨張率の差にもとつく問題も、芯線1と発
熱材層3との境界面に拡散浸透層、すなわちその両者の
合金が形成されているため、膨張率の差による応力もこ
の合金部分で順次段階的に吸収されることとなり解決さ
れるものである。The wire having the above structure is wound into a coil shape in the same manner as conventional nichrome wire to form a heating wire heater. According to the above configuration, the core wire has a shape sealed by the heat generating material layer 3, so that it is cut off from oxygen in the air and will not be burned. The problem that arises from the difference in the coefficient of thermal expansion between the core wire 1 and the heat generating material layer 3 is also caused by the stress caused by the difference in the coefficient of expansion because a diffusion permeation layer, that is, an alloy of both, is formed at the interface between the core wire 1 and the heat generating material layer 3. The problem is solved by being absorbed in this alloy part in a step-by-step manner.
さらに、この実施例のように表面に酸化アルミニュウム
層を形成しておけば第2図に示すように電熱線ヒータ6
を上下方向に配置して使用した場合に、コイル自体の自
重により隣接コイル素子同志が接触しても電気的な短絡
状態が生じることはないものである。Furthermore, if an aluminum oxide layer is formed on the surface as in this embodiment, the electric wire heater 6 can be heated as shown in FIG.
When the coil elements are arranged vertically and used, even if adjacent coil elements come into contact with each other due to the weight of the coil itself, an electrical short circuit will not occur.
また、表面に前記拡散浸透層が形成された芯線1をコイ
ル状あるいは網目状に形成し、そのコイル状体あるいは
網目状体の芯線全体を発熱材層により被覆するよう構成
しても良いものである。Alternatively, the core wire 1 having the diffusion layer formed on its surface may be formed into a coil or mesh shape, and the entire core wire of the coil or mesh may be covered with a heat generating material layer. be.
発明の効果
以上のように本発明によれば、芯線となるタングステン
あるいはモリブデンは、従来の電熱材に比べて冷間抵抗
が低いため、速熱性で高出力の熱源が得られるものであ
り、また高温時における機械的強度も高いので、機械的
強度の優れた電熱線ヒータが得られるものである。Effects of the Invention As described above, according to the present invention, the tungsten or molybdenum core wire has lower cold resistance than conventional electric heating materials, so a fast heating and high output heat source can be obtained. Since the mechanical strength is also high at high temperatures, a heating wire heater with excellent mechanical strength can be obtained.
第1図は本発明の電熱線ヒータの一実施例の要部を示す
断面図、第2図は同使用状態における要部の斜視図であ
る。
1 ・・・・芯線、2・・・・・拡散浸透層、3・・・
・・・発熱材層、4・・・・・酸化アルミニュウム層。
3 °−#4t7′t、”:=%y%得FIG. 1 is a sectional view showing the main parts of an embodiment of the electric wire heater of the present invention, and FIG. 2 is a perspective view of the main parts in the same state of use. 1...Core wire, 2...Diffusion permeation layer, 3...
... Heat generating material layer, 4 ... Aluminum oxide layer. 3 °−#4t7′t,”:=%y% gain
Claims (3)
芯線の表面に、鉄、ニッケル、クロム、アルミニュウム
の少なくとも1つを拡散浸透せしめ、その拡散浸透させ
た芯線の外側を前記拡散浸透せしめた金属の1つを主成
分とする発熱合金でモールドした線材によりコイル状体
を形成したことを特徴とする電熱線ヒータ。(1) At least one of iron, nickel, chromium, and aluminum is diffused and infiltrated onto the surface of a core wire whose main component is either tungsten or molybdenum, and the outside of the core wire is made of the metal that has been diffused and infiltrated. A heating wire heater characterized in that a coiled body is formed of a wire molded with a heat-generating alloy having one main component.
いることを特徴とする特許請求の範囲第1項記載の電熱
線ヒータ。(2) The electric wire heater according to claim 1, wherein the core wire is formed by twisting a plurality of single wires.
熱合金にてモールドした形状であることを特徴とする特
許請求の範囲第1項記載の電熱線ヒータ。(3) The electric wire heater according to claim 1, wherein the wire has a shape in which the entire core material, which has been previously wound into a coil shape, is molded with a heat-generating alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12757386A JPS62285385A (en) | 1986-06-02 | 1986-06-02 | Electric wire heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12757386A JPS62285385A (en) | 1986-06-02 | 1986-06-02 | Electric wire heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62285385A true JPS62285385A (en) | 1987-12-11 |
Family
ID=14963389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12757386A Pending JPS62285385A (en) | 1986-06-02 | 1986-06-02 | Electric wire heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62285385A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02155186A (en) * | 1988-12-06 | 1990-06-14 | Fujikura Ltd | Far infrared radiating member |
JPH02177286A (en) * | 1988-12-28 | 1990-07-10 | Fujikura Ltd | Manufacture of far infrared radiation material |
-
1986
- 1986-06-02 JP JP12757386A patent/JPS62285385A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02155186A (en) * | 1988-12-06 | 1990-06-14 | Fujikura Ltd | Far infrared radiating member |
JPH02177286A (en) * | 1988-12-28 | 1990-07-10 | Fujikura Ltd | Manufacture of far infrared radiation material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07190362A (en) | Ceramic glowing plug | |
JPS62285385A (en) | Electric wire heater | |
JP2503077B2 (en) | Electric heater and heating method using the same | |
JPS60159591A (en) | Heating furnace | |
JPH05343170A (en) | Small-size electric furnace for working optical fiber | |
JPS5835889A (en) | Heater | |
JPH0210557B2 (en) | ||
JPH05500435A (en) | silicon heating element | |
JPS6351356B2 (en) | ||
JP3002990B1 (en) | Soaking heater | |
JPS62291881A (en) | Infrared radiating unit | |
JPH0517834Y2 (en) | ||
JPH0311072B2 (en) | ||
JPS5873985A (en) | Sheathed heater and method of producing same | |
JP3075660B2 (en) | Ceramic heater and method of manufacturing the same | |
JP2861577B2 (en) | Electric heater | |
JPS61225801A (en) | Far infrared radiation heat generating body | |
JPS6325466B2 (en) | ||
JPS63160188A (en) | Infrared heater | |
JPH0536471A (en) | Electric heater | |
JPS6019114B2 (en) | infrared radiation heater | |
JPH05205858A (en) | Resistance heater and manufacture thereof | |
JPH0367484A (en) | High-temperature flat heating element | |
JP2001102161A (en) | Ceramic heater | |
JPS60217A (en) | Ceramic glow plug |