JPH02155186A - Far infrared radiating member - Google Patents

Far infrared radiating member

Info

Publication number
JPH02155186A
JPH02155186A JP30682888A JP30682888A JPH02155186A JP H02155186 A JPH02155186 A JP H02155186A JP 30682888 A JP30682888 A JP 30682888A JP 30682888 A JP30682888 A JP 30682888A JP H02155186 A JPH02155186 A JP H02155186A
Authority
JP
Japan
Prior art keywords
far
heating element
al2o3
infrared
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30682888A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Mamoru Aoyanagi
青柳 守
Kazuhiko Tomomatsu
友松 和彦
Haruo Tominaga
晴夫 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP30682888A priority Critical patent/JPH02155186A/en
Publication of JPH02155186A publication Critical patent/JPH02155186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve peeling resisting property and mechanical close contacting property and facilitate reworking by causing a metal heating element to be a core and covering it with Al, and further covering with Al2O3 obtained by subjecting this Al to oxidation treatment. CONSTITUTION:The surface of a metal heating element in the core part is covered with aluminum(Al), and further, the outer surface covering part is formed from Al2O3 obtained by oxidizing the intermediate Al part. The Al2O3 obtained by oxidizing an Al base material itself has good mechanical close contacting property with the Al base material, and moreover has improved peeling resisting property during a thermal cycle. Accordingly, even if the Al2O3 is peeled, Al2O3 can be regenerated by the oxidation of the intermediate Al part, so that reworking is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遠赤外線放射体の改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in far-infrared radiators.

更に詳しくは、遠赤外線放射率の高いセラミックス材料
がヒータ一部から、急熱−急冷によっても剥離すること
なく、長期の使用に耐える遠赤外線放射体に関する。
More specifically, the present invention relates to a far-infrared radiator that can withstand long-term use without being peeled off from a part of the heater by a ceramic material with a high far-infrared emissivity even when rapidly heated and cooled.

〔従来の技術〕[Conventional technology]

近年、遠赤外線を放射するヒーターの需要が増大してい
る。
In recent years, demand for heaters that emit far-infrared rays has been increasing.

これらヒーターは、その表面に、遠赤外線放射率の高い
セラミックス材料が形成されており、その中でも酸化ア
ルミニウム(以下、Ag2O3と称す)は好ましい材料
として利用されている。
These heaters have a ceramic material having a high far-infrared emissivity formed on their surface, and among these, aluminum oxide (hereinafter referred to as Ag2O3) is used as a preferable material.

一般に、金属又はセラミックス基村上にAg2O3等の
遠赤外線放射率の高いセラミックスを塗布、吹付、又は
溶射等によってコーティングしたものを、種々の熱源に
よって加熱する方式のヒーターが普及している。
In general, heaters are in widespread use that heat a metal or ceramic substrate coated with a ceramic having a high far-infrared emissivity such as Ag2O3 by coating, spraying, or thermal spraying using various heat sources.

特開昭60−134126号公報には、透明な基板上又
は金属基板上に炭化ケイ素ポリマー中に少なくともZr
、Ti、St、Fe、Cu、Mn。
JP-A-60-134126 discloses that at least Zr is present in a silicon carbide polymer on a transparent substrate or a metal substrate.
, Ti, St, Fe, Cu, Mn.

Ni等の金属酸化物を一種以上を分散混合した遠赤外線
輻射材を被覆した遠赤外線輻射体が開示されている。
A far-infrared radiator coated with a far-infrared radiant material in which one or more types of metal oxides such as Ni are dispersed and mixed is disclosed.

又特開昭57−430号公報には、コーディエライト組
織(2MgO・2Ag203 5 S i 02 )にチタン酸アルミニウムを添加し
たセラミックで構成した発熱体を加熱する遠赤外線ガス
グリルが開示されている。
Further, JP-A-57-430 discloses a far-infrared gas grill that heats a heating element made of ceramic in which aluminum titanate is added to a cordierite structure (2MgO.2Ag2035Si02).

特開昭63−254003号公報には、粉末状のセラミ
ックス製遠赤外線放射材料にセラミックス凝結用の凝結
剤及び水を加えて成形した遠赤外線放射物の成形体が開
示されている。
Japanese Unexamined Patent Publication No. 63-254003 discloses a far-infrared emitting material molded by adding a coagulant for ceramic coagulation and water to a powdered ceramic far-infrared emitting material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

セラミックス製の遠赤外線放射材料自体を成形、加熱、
焼成したものは屈曲などの加工性がない。
The ceramic far-infrared emitting material itself is molded, heated,
The fired product has no workability such as bending.

また金属基体等の表面に塗布、吹付等によってコーティ
ングされたAg2O3等のセラミックス材料は、基材と
の熱膨張率の差違が原因となり、急熱−急冷の熱サイク
ルによって剥離し易いという問題点があった。
Furthermore, ceramic materials such as Ag2O3 coated on the surface of metal substrates by painting, spraying, etc. have the problem of being easily peeled off due to the thermal cycle of rapid heating and cooling due to the difference in thermal expansion coefficient with the base material. there were.

また、この問題点を解決しようとして、粘土等の無機バ
インダーをはじめ、Ag2O3に種々の他材料を配合し
たものが、遠赤外線放射体とじて利用されてきたが、こ
れはAg2O3が持つ遠赤外線放射体としての好ましい
特性を若干低減させるだけではなく、急熱−急冷の熱サ
イクルに対する耐剥離性についても、未だ不十分であっ
た。
In addition, in an attempt to solve this problem, materials made by blending Ag2O3 with various other materials, including inorganic binders such as clay, have been used as far-infrared radiators; Not only did the desirable properties as a body decrease slightly, but also the peeling resistance against rapid heating-quenching thermal cycles was still insufficient.

さらに従来の遠赤外線放射体は、Ag2O3等からなる
遠赤外線放射部と基材及び発熱体との密着性が不十分な
ことから、−度作製した遠赤外線放射体を、所望の形状
へ再加工することが困難であるという問題点があった。
Furthermore, in conventional far-infrared radiators, the adhesion between the far-infrared rays emitting part made of Ag2O3, etc., and the base material and heating element is insufficient, so the far-infrared rays radiator is reprocessed into the desired shape. The problem was that it was difficult to do so.

本発明は、前記課題を解決するためになされたもので、
その目的とする所は、従来使用されているA fl 2
03からなる遠赤外線放射体よりも、更に耐剥離性に優
れ、しかも機械的な密着性にも優れて再加工が容易なA
g2O3からなる遠赤外線放射体を提供することである
The present invention has been made to solve the above problems,
Its purpose is to use the conventionally used A fl 2
A that has even better peeling resistance than the far infrared radiator made of 03, has excellent mechanical adhesion, and is easy to reprocess.
An object of the present invention is to provide a far-infrared radiator made of g2O3.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は芯部が金属発熱体で形成され、中間部がアルミ
ニウム金属で形成され、外面被覆部が、中間部のアルミ
ニウムを酸化して得られる酸化アルミニウムで形成され
てなる遠赤外線放射体である。
The present invention is a far-infrared radiator in which the core is made of a metal heating element, the middle part is made of aluminum metal, and the outer covering part is made of aluminum oxide obtained by oxidizing the aluminum in the middle part. .

芯部の金属発熱体としては、ニクロム合金(Ni  7
7’〜79%、Cr 19〜20%、Feel、Q、M
n<2.5、C0,25、St  0.75〜1.5)
、カンタル合金(Cr20〜30%、Co2.5%、A
11.5〜5.0%、残部Fe)等が挙げられる。電気
抵抗加熱により発熱する金属であれば何でもよい。
The metal heating element in the core is made of nichrome alloy (Ni 7
7'~79%, Cr 19~20%, Feel, Q, M
n<2.5, C0.25, St 0.75-1.5)
, Kanthal alloy (Cr20-30%, Co2.5%, A
11.5 to 5.0%, balance Fe), and the like. Any metal may be used as long as it generates heat through electrical resistance heating.

この金属発熱体表面にアルミニウム(以下Alと称す)
を被覆する方法としては、溶融メツキ法、造管法、押し
出し法、パイプ法などの種々の方法を用いることができ
る。
Aluminum (hereinafter referred to as Al) is placed on the surface of this metal heating element.
Various methods such as melt plating, pipe forming, extrusion, and pipe methods can be used to coat the surface.

本発明においては、この外面被覆部を、中間部のAgを
酸化して得られるAg2o3で形成する。
In the present invention, this outer surface covering portion is formed of Ag2o3 obtained by oxidizing Ag in the intermediate portion.

このAl2O3の形成には、空気中で高温に加熱しても
よいが、希酸溶液中で電解による陽極酸化処理を行って
A II 2 Oa層を形成させるのが、緻密なAg2
O3層が形成できるので好ましい。
To form this Al2O3, it is possible to heat it to a high temperature in the air, but it is better to perform anodization treatment by electrolysis in a dilute acid solution to form a dense Ag2Oa layer.
This is preferred because an O3 layer can be formed.

希酸としては希硫酸、希りロム藤、希シュウ酸などが使
用できる。
As the dilute acid, dilute sulfuric acid, diluted sulfuric acid, diluted oxalic acid, etc. can be used.

第1図は本発明の遠赤外線放射体の断面拡大図である。FIG. 1 is an enlarged cross-sectional view of the far-infrared radiator of the present invention.

本発明において、芯材として金属発熱体を用いたのは、
その外面にへΩ被覆後に金属加工が可能なため、AfI
被覆部との密着性を良好にすることができ、再加工し易
いためである。
In the present invention, the metal heating element is used as the core material because
Since metal processing is possible after coating the outer surface of AfI
This is because it can improve the adhesion with the covering portion and is easy to reprocess.

また、Ag2O3を中間部Aj7の酸化から得られるも
のとしたのは、1基材上に、単にAg2O3を塗布、吹
付等によって、コーティングしても密着性が悪く、剥離
し易いためである。
Furthermore, the reason why Ag2O3 is obtained from the oxidation of the intermediate portion Aj7 is because even if Ag2O3 is coated on a base material by simply applying, spraying, etc., the adhesion is poor and it is easy to peel off.

本発明者らは、種々の金属基材に種々の方法でAg2O
3をコーティングして、その熱サイクルに対する耐剥離
性および機械的密着性を調べた。
The present inventors applied Ag2O to various metal substrates by various methods.
No. 3 was coated, and its peeling resistance and mechanical adhesion against thermal cycles were investigated.

その結果、Alを基材とし、このAΩ基材自身を酸化し
て得られるAg2O3はA、17基材との機械的な密着
性に優れ、しかも熱サイクルに対する耐剥離性にも非常
に優れていることが判った。
As a result, Ag2O3, which is obtained by oxidizing the AΩ base material itself using Al as a base material, has excellent mechanical adhesion to the A, 17 base material, and also has excellent peeling resistance against thermal cycles. It turned out that there was.

A II 203を得るためのAg7の酸化処理は、発
熱体にAfiを被覆した後に施せるために、発熱体にニ
クロム合金等の金属を用いれば、発熱体にANを被覆し
た材料について、伸線加工又は圧延加工等の金属加工を
施すことが可能になる。この金属加工が施せることによ
り、発熱体とAgの機械的な密着性が非常に向上する。
The oxidation treatment of Ag7 to obtain A II 203 can be performed after the heating element is coated with Afi, so if a metal such as nichrome alloy is used for the heating element, wire drawing processing can be performed on the material coated with AN on the heating element. Alternatively, it becomes possible to perform metal processing such as rolling. By performing this metal processing, the mechanical adhesion between the heating element and Ag is greatly improved.

このように、iとAg2O3及びAJと発熱体の機械的
な密着性が優れていること、並びにAg2O3が剥離し
たとしても、中間部を形成しているAIを酸化すること
で、A D 20 sを再生することができるために、
本発明の遠赤外線放射体は再加工が容易である。
In this way, the mechanical adhesion between i and Ag2O3 and AJ and the heating element is excellent, and even if Ag2O3 peels off, by oxidizing the AI forming the intermediate part, A D 20 s In order to be able to play
The far-infrared radiator of the present invention can be easily reprocessed.

本発明はその外表面のAg2O3を、その陽極酸化時に
おけるそれ自体着色せしめたり、その他耐熱性顔料等の
添加により適宜着色しても差し支えない。
In the present invention, the Ag2O3 on the outer surface may be colored itself during anodization, or may be colored appropriately by adding a heat-resistant pigment or the like.

〔実施例〕〔Example〕

以下に本発明を実施例、比較例によって、より具体的に
説明するが、本発明は、この実施例によって限定される
ものではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例) Agパイプ中にニクロム合金ロッドを充填した後、Ag
肉厚が0.1mm、外径2.6m+*の線材となるまで
伸線加工した。
(Example) After filling the Ag pipe with nichrome alloy rod, the Ag
The wire was drawn until it became a wire rod with a wall thickness of 0.1 mm and an outer diameter of 2.6 m+*.

この線+4に10℃以下の25容量%の硫酸水溶液中で
陽極酸化処理を行い、線材表面に80μm厚のAg2O
3層を形成し、本発明の遠赤外線放射体を作製した。
This wire +4 was anodized in a 25 volume % sulfuric acid aqueous solution at 10°C or less, and the wire surface was coated with 80 μm thick Ag2O.
Three layers were formed to produce a far-infrared ray emitter of the present invention.

(比較例1) A47811表面に、AΩ20395%十本節粘土5%
の配合粉末に適当量の水を加え、適当粘度のスラリーに
して吹き付けた後、乾燥してコーティングとした。また
パイプの中に炭化ケイ素(カーボンランダム、5tC)
棒状体を発熱体として挿入した。第2図は、この放射体
の長さ方向の軸を含む面で截った断面図を示す。
(Comparative Example 1) A47811 surface, AΩ20395% Jubonbushi clay 5%
An appropriate amount of water was added to the mixed powder to form a slurry of an appropriate viscosity, which was then sprayed and dried to form a coating. Also, silicon carbide (carbon random, 5tC) is inside the pipe.
A rod-shaped body was inserted as a heating element. FIG. 2 shows a cross-sectional view taken along a plane containing the longitudinal axis of this radiator.

(比較例2) 比較例1において、AΩパイプの代りに鉄パイプとして
、その表面にAg20395%十木節粘土5%のコーテ
ィングを同様に行った。
(Comparative Example 2) In Comparative Example 1, an iron pipe was used instead of the AΩ pipe, and its surface was similarly coated with 20395% Ag and 5% Togibushi clay.

実施例、比較例1又は2で作製した遠赤外線放射体につ
いて、室温−加熱(25分)−外表面温度500℃(5
分)−冷却(30分)−室温の熱サイクルテストを行い
、A1120 aの耐剥離性を調べた、その結果を第1
表に示す。更に実施例の線材及び比較例1又は2のパイ
プを直角に折り曲げて、Ag2O3の密着性を調べた。
For the far-infrared radiators produced in Examples and Comparative Examples 1 or 2, the temperature was measured at room temperature - heating (25 minutes) - outer surface temperature of 500°C (5
Minutes) - Cooling (30 minutes) - A thermal cycle test at room temperature was conducted to examine the peeling resistance of A1120a.
Shown in the table. Furthermore, the wire of the example and the pipe of Comparative Example 1 or 2 were bent at right angles to examine the adhesion of Ag2O3.

その結果もあわせて第1表に示す。The results are also shown in Table 1.

第1表 となっているので■遠赤外線を放射するA I 20 
gが熱サイクルを繰り返してもAg2O3が剥離しない
、■Ap・203の密着性が優れているので、機械的に
変形を加えても、A I) 20 gが剥離しない。
Since it is shown in Table 1, ■ A I 20 that emits far infrared rays.
Ag2O3 does not peel off even if g is subjected to repeated thermal cycles. (2) Because the adhesion of Ap 203 is excellent, AI) 20 g will not peel off even if mechanically deformed.

工業用加熱炉用、家庭用オーブン調理器用等の加熱体と
して有用であるばかりでなく、遠赤外線の医療面の効果
を目指して医療用の機器等にも適宜利用できるものであ
り、その実用上の効果は大きい。
It is not only useful as a heating element for industrial heating furnaces and household oven cookers, but also can be used appropriately for medical equipment, etc., aiming at the medical effects of far infrared rays. The effect is large.

〔発明の効果〕〔Effect of the invention〕

本発明の遠赤外線放射材は、金属発熱体を芯部とし、そ
れをA9で被覆し、更に、このAgを酸化処理して得ら
れるAII2O3で被覆された構造
The far-infrared radiation material of the present invention has a structure in which a metal heating element is used as a core, which is coated with A9, and further coated with AII2O3 obtained by oxidizing this Ag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の遠赤外線放射体の長さ方向に垂直な断
面の拡大図である。 第2図は比較例の遠赤外線放射体の長さ方向の軸を含む
面で截った断面図である。
FIG. 1 is an enlarged view of a cross section perpendicular to the length direction of the far-infrared radiator of the present invention. FIG. 2 is a cross-sectional view taken along a plane including the longitudinal axis of a far-infrared radiator of a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 芯部が金属発熱体で形成され、中間部がアルミニウム金
属で形成され、外面被覆部が、中間部のアルミニウムを
酸化して得られる酸化アルミニウムで形成されてなる遠
赤外線放射体。
A far-infrared radiator in which the core portion is formed of a metal heating element, the intermediate portion is formed of aluminum metal, and the outer surface coating portion is formed of aluminum oxide obtained by oxidizing the aluminum in the intermediate portion.
JP30682888A 1988-12-06 1988-12-06 Far infrared radiating member Pending JPH02155186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30682888A JPH02155186A (en) 1988-12-06 1988-12-06 Far infrared radiating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30682888A JPH02155186A (en) 1988-12-06 1988-12-06 Far infrared radiating member

Publications (1)

Publication Number Publication Date
JPH02155186A true JPH02155186A (en) 1990-06-14

Family

ID=17961748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30682888A Pending JPH02155186A (en) 1988-12-06 1988-12-06 Far infrared radiating member

Country Status (1)

Country Link
JP (1) JPH02155186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930283B2 (en) * 2001-10-23 2005-08-16 Robert Bosch Gmbh Electrically heatable glow plug and method for producing said electrically heatable glow plug
JP2011106690A (en) * 2009-11-12 2011-06-02 Joule Kenkyusho:Kk Electric stove

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143936A (en) * 1975-06-05 1976-12-10 Toshiba Corp Production method of alminum covered heating wire
JPS60116757A (en) * 1983-11-28 1985-06-24 Tetsuo Hayakawa Long-wave infrared radiating body plasma-sprayed with ceramic
JPS62285385A (en) * 1986-06-02 1987-12-11 松下電器産業株式会社 Electric wire heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143936A (en) * 1975-06-05 1976-12-10 Toshiba Corp Production method of alminum covered heating wire
JPS60116757A (en) * 1983-11-28 1985-06-24 Tetsuo Hayakawa Long-wave infrared radiating body plasma-sprayed with ceramic
JPS62285385A (en) * 1986-06-02 1987-12-11 松下電器産業株式会社 Electric wire heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930283B2 (en) * 2001-10-23 2005-08-16 Robert Bosch Gmbh Electrically heatable glow plug and method for producing said electrically heatable glow plug
JP2011106690A (en) * 2009-11-12 2011-06-02 Joule Kenkyusho:Kk Electric stove

Similar Documents

Publication Publication Date Title
TW202012552A (en) High emissivity coating composition and substrate coated therewith
JPH02155186A (en) Far infrared radiating member
CN106584033A (en) Forming method of cavity of microwave oven or toaster
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JP4346134B2 (en) Ceramic heating or glass tableware for electromagnetic heating and its manufacturing method
JPH0155380B2 (en)
JPS6087A (en) Far infrared ray heater
JPS5836821B2 (en) far infrared radiation device
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPH02155185A (en) Far infrared radiating member
JPS6019114B2 (en) infrared radiation heater
JPH02204991A (en) Far infrared heater and manufacture thereof
JPH01279741A (en) Heat exchange device
JP2819646B2 (en) Far infrared halogen heater
JP2778650B2 (en) Far-infrared radiation material
JPH0384392A (en) Production of far infrared ray radiator
JPH03127482A (en) Extreme infrared radiation heater and manufacture thereof
JPH02230683A (en) Manufacture of far infrared radiative material
JPH0234765A (en) High-emissivity far infrared emitter and its production
JPS5862437A (en) Infrared-ray radiant composite body
JP2874204B2 (en) Heating element
JPH10110278A (en) Far infrared radiating material
JPH0384391A (en) Production of far infrared ray radiator
JPS59191282A (en) Far infrared ray heater
JPH02177286A (en) Manufacture of far infrared radiation material