JPH0234765A - High-emissivity far infrared emitter and its production - Google Patents

High-emissivity far infrared emitter and its production

Info

Publication number
JPH0234765A
JPH0234765A JP18463188A JP18463188A JPH0234765A JP H0234765 A JPH0234765 A JP H0234765A JP 18463188 A JP18463188 A JP 18463188A JP 18463188 A JP18463188 A JP 18463188A JP H0234765 A JPH0234765 A JP H0234765A
Authority
JP
Japan
Prior art keywords
steel
oxide film
weight
temp
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18463188A
Other languages
Japanese (ja)
Inventor
Kazuhide Ishii
和秀 石井
Tatsuo Kawasaki
川崎 龍夫
Noriyuki Kuriyama
栗山 則行
Shoji Doi
祥司 土肥
Akio Nakashiba
中芝 明雄
Sohei Miyazaki
宮崎 荘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kawasaki Steel Corp filed Critical Osaka Gas Co Ltd
Priority to JP18463188A priority Critical patent/JPH0234765A/en
Priority to DE68927391T priority patent/DE68927391T2/en
Priority to EP89113626A priority patent/EP0354405B1/en
Priority to DE8989113626T priority patent/DE68906836T2/en
Priority to EP92117315A priority patent/EP0533211B1/en
Publication of JPH0234765A publication Critical patent/JPH0234765A/en
Priority to US07/877,191 priority patent/US5213629A/en
Priority to US08/047,613 priority patent/US5338616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve emissivity by specifying the composition of a steel and also forming an oxide film into a shape of projections having a length of a specific value or above in an emitter made of stainless steel on which an oxide film is formed by means of high-temp. oxidation. CONSTITUTION:After blasting treatment is applied to the surface of an Fe-Cr-Si stainless steel containing, by weight, 10-35% Cr, 1.0-4.0% Si, and <=3.0% Mn, this steel is held in an oxidizing atmosphere at 900-1200 deg.C for >=15min, by which an oxide film in a projected state having >=5mu length is formed on the steel surface. When Si content in the above steel is less than 1.0%, the oxide in a projected state cannot be formed, and, when it exceeds 4.0%, the steel becomes brittle. In order to form the oxide in the projected state of >=5mu length on the surface, it is preferable to previously apply high-degree working strain to the steel-sheet surface prior to high-temp. oxidation treatment, and, as a means therefor, blasting treatment is applied to the surface. Further, when high-temp. oxidation treatment temp. is below 900 deg.C, the oxide film in projected state cannot be formed, and, when it exceeds 1200 deg.C, the deformation of the stock is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、放射率が黒体に近いFe−Cr−3iミステ
ンレス遼遠赤外線放射に関するもので、遠赤外線を利用
する暖房機器や乾燥・加熱装置として利用される。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to far-far infrared radiation from Fe-Cr-3i stainless steel, which has an emissivity close to that of a black body. Used as a device.

〔従来の技術J 遠赤外線は人の体内深く浸透する特性により暖房装置に
用いられたり、塗料や食品などの有機物質に高効率で吸
収され、迅速に加熱できる特性により、塗料乾燥や食品
加熱に用いられている。
[Conventional Technology J Far-infrared rays have the property of penetrating deeply into the human body, so they are used in heating devices, and they are absorbed by organic substances such as paint and food with high efficiency, allowing them to heat quickly, making them useful for drying paint and heating food. It is used.

ZrO2、Aj2203.Si02、TiO2などの金
属酸化物は加熱時に高効率で遠赤外線を放射するため、
一般に、これらの酸化物を主体としたセラミックスや、
これらの酸化物を金属基板にコーティングしたものが遠
赤外線放射体として用いられている。
ZrO2, Aj2203. Metal oxides such as Si02 and TiO2 emit far-infrared rays with high efficiency when heated, so
Generally, ceramics based on these oxides,
Metal substrates coated with these oxides are used as far-infrared radiators.

また、特公昭59−7789にはNi−Cr合金、Fe
−Cr合金、Fe−Cr−Ni合金を高温酸化させて表
面にクロムを主体とする黒色酸化皮膜を有する熱輻射材
料が開示されており、特公昭59−28959ではステ
ンレス鋼を700℃以上で高温酸化処理して膜厚l〜1
0umの酸化皮膜を形成させた赤外線ヒータが開示され
ており、さらに特公昭60−1914では耐熱合金イン
コロイを800℃以上で高温酸化処理した赤外線放射ヒ
ータが、特開昭55−6433ではステンレス鋼の表面
粗度を1−10μmに荒らした後、湿式で酸化皮膜を形
成させた放熱体が開示されている。
In addition, Ni-Cr alloy, Fe
A heat radiating material having a black oxide film mainly composed of chromium on the surface is disclosed by oxidizing -Cr alloy and Fe-Cr-Ni alloy at high temperature. Film thickness l~1 after oxidation treatment
An infrared radiant heater with a 0 um oxide film formed thereon has been disclosed, and furthermore, in Japanese Patent Publication No. 60-1914, an infrared radiant heater made of heat-resistant alloy Incoloy is oxidized at a high temperature of 800°C or higher, and in Japanese Patent Publication No. 55-6433, an infrared radiant heater made of stainless steel is disclosed. A heat sink is disclosed in which a surface roughness is roughened to 1-10 μm and then an oxide film is formed by a wet process.

[発明が解決しようとする課題1 これらのセラミックス利用の放射体や、ステンレス鋼を
利用した放射体の放射率は0.8〜0.9が限界であっ
た。遠赤外線放射体は、100〜500℃に加熱した時
に放射される遠赤外線を利用する構造である。ブランク
の分布前が示すように、放射率が低い放射体を用いて、
高放射率の放射体と同一の遠赤外線を得るためには、よ
り高温に放射体を加熱せねばならず、加熱のための費用
がかかることになる。また用途によっては、可視光や近
赤外線が被加熱体を劣化させるため、遠赤外線のみを放
射したい場合があり、この場合も高効率の遠赤外線放射
体を低温で用いる必要がある。
[Problem to be Solved by the Invention 1] The limit of the emissivity of these radiators using ceramics and radiators using stainless steel is 0.8 to 0.9. The far-infrared radiator has a structure that utilizes far-infrared rays emitted when heated to 100 to 500°C. As shown by the blank distribution front, using a radiator with low emissivity,
In order to obtain the same far-infrared rays as a high-emissivity radiator, the radiator must be heated to a higher temperature, which increases heating costs. Furthermore, depending on the application, it may be desired to emit only far infrared rays because visible light and near infrared rays deteriorate the heated object, and in this case as well, it is necessary to use a highly efficient far infrared radiator at low temperatures.

〔課題を解決するための手段1 本発明者らは遠赤外線放射体の放射率を向上させる研究
を行い、Fe−(I C1〜35%)Cr−(1,0〜
4.0%)S1ステンレス鋼の表面にブラスト処理を行
った後、特定条件の高温酸化処理により、表面に長さ5
μm以上の突起状酸化物層を形成させることにより、高
放射率遠赤外線放射体を製造しうることをを見出した。
[Means for Solving the Problem 1 The present inventors conducted research on improving the emissivity of far-infrared radiators, and found that Fe-(I C1-35%) Cr-(1,0-35%)
4.0%) After blasting the surface of S1 stainless steel, high-temperature oxidation treatment under specific conditions results in a length of 5.
It has been found that a high emissivity far-infrared radiator can be manufactured by forming a protruding oxide layer with a diameter of μm or more.

本発明に用いるFe−Cr−Siステンレス鋼は、成分
を下記のように限定すること、および下記のようなブラ
スト処理、高温酸化処理を行うことにより、優れた放射
率を呈する。
The Fe-Cr-Si stainless steel used in the present invention exhibits excellent emissivity by limiting the components as described below and by performing the blasting treatment and high-temperature oxidation treatment as described below.

Si: Siは本発明の必須元素であり、1.0重量%未満では
突起状酸化物を生成させることができず、4.0重量%
を超えると鋼が脆くなり、WA板の製造が困難となるた
め、1.0重I%以上4.0重量%以下に限定する。
Si: Si is an essential element of the present invention, and if it is less than 1.0% by weight, no protruding oxide can be formed, and if it is less than 4.0% by weight, Si is an essential element for the present invention.
If it exceeds 1.0% by weight or more and 4.0% by weight or less, the steel becomes brittle and it becomes difficult to manufacture a WA plate.

Mn : Mnは母材及び溶接部の靭性を劣化させ、かつ高温で耐
酸化性を損なうので、3.0重量%以下に限定する。
Mn: Mn deteriorates the toughness of the base metal and the welded part and impairs oxidation resistance at high temperatures, so it is limited to 3.0% by weight or less.

Cr: Crはステンレス鋼の必須元素であり、10重量%未満
では耐酸化性がなくなる。またCrが35重1%を超え
ると、鋼が脆くなり、放射体に加工できなくなるので1
0重量%以上35重量%以下に限定する。
Cr: Cr is an essential element for stainless steel, and if it is less than 10% by weight, oxidation resistance is lost. Also, if Cr exceeds 1% by weight, the steel becomes brittle and cannot be processed into a radiator.
It is limited to 0% by weight or more and 35% by weight or less.

一般にFe−Cr−Siステンレス鋼には鋼板の靭性を
高め製造しやすくするためと、耐酸化性を向上させる目
的で0.5重量%までのTi、Nb、Zrを添加したり
、酸化皮膜の耐剥離性を向上させる目的で0.3重量%
までのY、Ce、La、Ndなどの希土類元素を添加し
たりするが、これらの元素を添加したFe−Cr−Si
ステンレス鋼も本発明に好適である。
Generally, up to 0.5% by weight of Ti, Nb, or Zr is added to Fe-Cr-Si stainless steel to increase the toughness of the steel sheet and make it easier to manufacture, and to improve oxidation resistance. 0.3% by weight for the purpose of improving peeling resistance
Rare earth elements such as Y, Ce, La, and Nd are added to Fe-Cr-Si.
Stainless steel is also suitable for the present invention.

ブラスト処理: 表面に長さ5μm以上の突起状の酸化物を生成させるた
めには高温酸化処理部鋼板表面に予め強い加工歪を与え
ることが好ましい。
Blasting treatment: In order to generate protruding oxides with a length of 5 μm or more on the surface, it is preferable to apply strong processing strain to the surface of the steel sheet in the high temperature oxidation treatment area in advance.

その方法として表面にブラスト処理を行う。ブラスト処
理は粗度100〜400番のアルミナや炭化珪素の砥粒
や直径0.05〜1.0mmの鉄球や鉄グリッドを投射
し1表面粗度をRaで0.5 a m以上に粗くする。
As a method, blasting is performed on the surface. Blasting is performed by projecting alumina or silicon carbide abrasive particles with a roughness of 100 to 400, iron balls or iron grids with a diameter of 0.05 to 1.0 mm, and roughens the surface to 0.5 am or more in Ra. do.

次に、酸化性雰囲気中で900〜1200℃で15分間
以上保持して高温酸化処理を行い、表面に長さ5μm以
上の突起状酸化皮膜を形成させることにより、十分な遠
赤外線放射特性を得る。この場合、酸化性雰囲気は通常
の大気のみならず。
Next, high-temperature oxidation treatment is performed by holding the temperature at 900 to 1200°C for 15 minutes or more in an oxidizing atmosphere to form a protruding oxide film with a length of 5 μm or more on the surface, thereby obtaining sufficient far-infrared radiation characteristics. . In this case, the oxidizing atmosphere is not only normal air.

酸素を富化サセタ02− X (X ハN 2 、 A
 r、He等の非酸化性ガス)混合雰囲気や、02−8
20−X混合雰囲気、あるいは燃焼ガス自体も本発明に
好適である。
Oxygen-enriched sasseta 02-X (X HaN2, A
r, non-oxidizing gas such as He) mixed atmosphere, 02-8
A 20-X mixed atmosphere or the combustion gas itself is also suitable for the present invention.

この高温酸化処理温度は、900℃未満では突起状酸化
皮膜が形成されず、1200°Cを越えると放射体素材
の高温変形が激しくなり放射体として用いることができ
なくなるため、900℃以上1200℃以下の範囲で行
う。また、処理時間は十分な長さの突起状酸化皮膜を生
成させるために900°C以上1200°C以下の温度
範囲で15分間以上行う。
The temperature of this high-temperature oxidation treatment is 900°C or higher and 1200°C, because if it is lower than 900°C, no protruding oxide film will be formed, and if it exceeds 1200°C, the radiator material will undergo severe high-temperature deformation and cannot be used as a radiator. Perform within the following range. Further, the treatment time is carried out for 15 minutes or more at a temperature range of 900° C. or more and 1200° C. or less in order to generate a protruding oxide film of sufficient length.

[実施例] 第1表に示す記号A、Bの化学組成をもつFeCr−3
iステンレス鋼を溶製し、何れも圧延により厚みCo 
m mの鋼板にした後、焼鈍−酸洗して供試した。また
比較材としてC,Dの市販の5US430.304の厚
み1.0mmmの焼鈍−酸洗板も供試した。
[Example] FeCr-3 having chemical compositions of symbols A and B shown in Table 1
i Stainless steel is melted and rolled to a thickness of Co.
After making a steel plate with a diameter of mm, it was annealed and pickled and then tested. As comparison materials, commercially available 5US430.304 annealed and pickled plates of C and D with a thickness of 1.0 mm were also used.

これらのステンレス鋼板を10cm角に剪断し、第2表
に示す処理をブラスト、高温酸化の順に行った。
These stainless steel plates were sheared into 10 cm squares and subjected to the treatments shown in Table 2 in the order of blasting and high temperature oxidation.

これらの試料はブラスト処理後(ただし試料4はブラス
ト処理なし)、触針式表面粗さ測定器(J I 5BO
651)で中心線平均粗さ(Ra)(JIS  BO6
01)を測定したが、ブラスト処理前ではC,Dが0.
2um、A、Bが0.3 u m程度であったが、ブラ
スト処理後は鉄球ショット処理したものでは1.8〜2
.9μm、sicサンドショット処理したものでは0.
8〜1.4um程度になった。高温酸化処理は大気雰囲
気中で行った。
These samples were subjected to blasting (however, sample 4 was not blasted) and then tested using a stylus surface roughness measuring instrument (J I 5BO).
651) and center line average roughness (Ra) (JIS BO6
01), but before blasting, C and D were 0.
2 um, A, and B were about 0.3 um, but after blasting and iron ball shot processing, it was 1.8 to 2 um.
.. 9 μm, and 0.0 μm for those treated with SIC sand shot.
It became about 8 to 1.4 um. The high-temperature oxidation treatment was performed in an air atmosphere.

これらの試料を電子顕微鏡で観察し、突起状酸化皮膜の
形成の有無を調査した。試料を60度傾けて800倍で
機影し、写真の酸化物長を測定し、実際の長さの平均値
を推定し、その値を第2表に示した。ブラスト処理を行
わなかった試料4とSiを含有していない5US430
.304を用いた試料6.7には突起状酸化皮膜は形成
されなかった。また、高温酸化の時間が30分間と短い
試料5では突起状酸化物の長さは3μm程度であった。
These samples were observed with an electron microscope to investigate the presence or absence of formation of protruding oxide films. The sample was tilted 60 degrees and photographed at a magnification of 800 times, the oxide length of the photograph was measured, and the average value of the actual length was estimated, and the values are shown in Table 2. Sample 4 without blasting and 5US430 without Si
.. No protruding oxide film was formed in sample 6.7 using No. 304. In addition, in sample 5 where the high-temperature oxidation time was short, 30 minutes, the length of the protruding oxide was about 3 μm.

残りの試料1〜3では7μm以上の長さの突起状酸化物
が生成した。
In the remaining samples 1 to 3, protruding oxides with a length of 7 μm or more were generated.

電子顕微鏡写真の代表例として試料1を第1図(写真l
)に示、し、試料4を第2図(写真2)に示す。
Sample 1 is shown in Figure 1 (Photo 1) as a representative example of an electron micrograph.
), and Sample 4 is shown in Figure 2 (Photo 2).

次にこれらの試料片を400℃に加熱し、波長5〜15
μmの遠赤外線放射強度を測定した。同?H度の黒体放
射との比(放射率)の平均を第2表に示す。
Next, these sample pieces were heated to 400°C, and a wavelength of 5 to 15
Far-infrared radiation intensity in μm was measured. same? Table 2 shows the average ratio of H degrees to blackbody radiation (emissivity).

突起状酸化皮膜が生成しなかった試料5〜7および突起
状酸化皮膜の長さが3μmと短い試料4では放射率は0
.7〜0.9であった。これに対して、実施例I〜3で
は1.0と黒体と同一の良好な放射率を示した。
The emissivity was 0 for samples 5 to 7 in which no protruding oxide film was formed and sample 4 in which the length of the protruding oxide film was as short as 3 μm.
.. It was 7-0.9. On the other hand, Examples I to 3 showed good emissivity of 1.0, which is the same as that of a black body.

[発明の効果1 このように本実施例による遠赤外線方射体は優れた放射
特性を示すとともに従来材に比較し優れた耐食性を有す
る。
[Effect of the Invention 1] As described above, the far-infrared ray projector according to the present example exhibits excellent radiation characteristics and has excellent corrosion resistance compared to conventional materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の電子顕微鏡写真、第2図は比較例の電
子顕微鏡写真である。
FIG. 1 is an electron micrograph of an example, and FIG. 2 is an electron micrograph of a comparative example.

Claims (1)

【特許請求の範囲】 1 Cr:10〜35重量% Si:1.0〜4.0重量% Mn:3.0重量%以下 を含有するFe−Cr−Siステンレス鋼であって、表
面に長さ5μm以上の突起状酸化皮膜を有することを特
徴とする高放射率遠赤外線放射体。 2 Cr:10〜35重量% Si:1.0〜4.0重量% Mn:3.0重量%以下 を含有するFe−Cr−Siステンレス鋼板表面にブラ
スト処理した後、酸化性雰囲気中で900℃以上120
0℃以下の温度範囲に15分間以上保持することを特徴
とする高放射率遠赤外線放射体の製造方法。
[Claims] 1 Fe-Cr-Si stainless steel containing 10 to 35% by weight of Cr, 1.0 to 4.0% by weight of Mn, and 3.0% by weight or less of Mn, which has long surfaces on the surface. A high-emissivity far-infrared radiator characterized by having a protruding oxide film with a height of 5 μm or more. 2 After blasting the surface of a Fe-Cr-Si stainless steel sheet containing Cr: 10 to 35% by weight, Si: 1.0 to 4.0% by weight, and Mn: 3.0% by weight or less, it was heated to 900% by weight in an oxidizing atmosphere. ℃ or more 120
A method for producing a high-emissivity far-infrared radiator, which comprises maintaining the material in a temperature range of 0° C. or lower for 15 minutes or more.
JP18463188A 1988-07-26 1988-07-26 High-emissivity far infrared emitter and its production Pending JPH0234765A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18463188A JPH0234765A (en) 1988-07-26 1988-07-26 High-emissivity far infrared emitter and its production
DE68927391T DE68927391T2 (en) 1988-07-26 1989-07-24 Highly radiation-intensive and highly corrosion-resistant radiator in the far infrared range and process for its production
EP89113626A EP0354405B1 (en) 1988-07-26 1989-07-24 Far-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof
DE8989113626T DE68906836T2 (en) 1988-07-26 1989-07-24 HIGH RADIATION INTENSIVE AND HIGH CORROSION RESISTANT RADIATORS IN THE FAR INFRARED AREA AND METHOD FOR THE PRODUCTION THEREOF.
EP92117315A EP0533211B1 (en) 1988-07-26 1989-07-24 Far-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof
US07/877,191 US5213629A (en) 1988-07-26 1992-05-01 Ear-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof
US08/047,613 US5338616A (en) 1988-07-26 1993-04-08 Far-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18463188A JPH0234765A (en) 1988-07-26 1988-07-26 High-emissivity far infrared emitter and its production

Publications (1)

Publication Number Publication Date
JPH0234765A true JPH0234765A (en) 1990-02-05

Family

ID=16156609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18463188A Pending JPH0234765A (en) 1988-07-26 1988-07-26 High-emissivity far infrared emitter and its production

Country Status (1)

Country Link
JP (1) JPH0234765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516989U (en) * 1991-08-15 1993-03-02 鐘淵化学工業株式会社 Concrete formwork for makeup pattern formation
JPH0516990U (en) * 1991-08-15 1993-03-02 鐘淵化学工業株式会社 Concrete formwork for makeup pattern formation
EP2546384A1 (en) * 2010-03-12 2013-01-16 Hitachi, Ltd. Steam turbine member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516989U (en) * 1991-08-15 1993-03-02 鐘淵化学工業株式会社 Concrete formwork for makeup pattern formation
JPH0516990U (en) * 1991-08-15 1993-03-02 鐘淵化学工業株式会社 Concrete formwork for makeup pattern formation
EP2546384A1 (en) * 2010-03-12 2013-01-16 Hitachi, Ltd. Steam turbine member
EP2546384A4 (en) * 2010-03-12 2014-03-19 Hitachi Ltd Steam turbine member

Similar Documents

Publication Publication Date Title
US5338616A (en) Far-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof
WO2007013184A1 (en) Y2o3 thermal sprayed film coated member and process for producing the same
JPH0234765A (en) High-emissivity far infrared emitter and its production
EP3830195B1 (en) High emissivity coating composition and substrate coated therewith
JPS6326335A (en) Far infrared ray radiator and its production
JP3896595B2 (en) High temperature resistant, electrically resistant metal material and method for producing the same
JPH0244149A (en) Solar heat selective absorption plate and its manufacturing method
JPH01139750A (en) Far infrared radiator excellent in corrosion resistance and its production
JPH0155380B2 (en)
SU910836A1 (en) Process for producing silicide coating on steel products
JPH04173952A (en) Manufacture of far infrared radiator excellent in corrosion resistance
JP3112195B2 (en) Manufacturing method of polished finish ferritic stainless steel sheet with excellent oxidation resistance
JPS6191083A (en) Enhancement for alumina ceramics
US5213629A (en) Ear-infrared emitter of high emissivity and corrosion resistance and method for the preparation thereof
JPH02173206A (en) Production of far infrared ray radiator
JPH07325212A (en) Production of light-absorbing/radiating film and light-absorbing/radiating body
JPH0247248A (en) Stainless steel sheet excellent in water-repelling property
JPH03285057A (en) Infrared-ray emitter and its production
JP3360954B2 (en) Far-infrared radiation material and method for producing the same
JPS5825745B2 (en) Tetsukoseihinno Sankahimakkeiseihou
JPH0234764A (en) Far infrared emitter excellent in corrosion resistance and its production
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
CN106011716A (en) W-WSi2 functionally graded material and preparation method thereof
JPH04173999A (en) Far infrared radiation emitter excellent in corrosion resistance and its production
JPS5948955B2 (en) Iron, chromium, aluminum alloy with reticulated alumina coating and method for producing the same