JPS6326335A - Far infrared ray radiator and its production - Google Patents

Far infrared ray radiator and its production

Info

Publication number
JPS6326335A
JPS6326335A JP16942286A JP16942286A JPS6326335A JP S6326335 A JPS6326335 A JP S6326335A JP 16942286 A JP16942286 A JP 16942286A JP 16942286 A JP16942286 A JP 16942286A JP S6326335 A JPS6326335 A JP S6326335A
Authority
JP
Japan
Prior art keywords
weight
less
far
infrared
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16942286A
Other languages
Japanese (ja)
Inventor
Masayuki Hino
肥野 真行
Tatsuo Kawasaki
川崎 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16942286A priority Critical patent/JPS6326335A/en
Publication of JPS6326335A publication Critical patent/JPS6326335A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a far infrared ray radiator having superior adhesion in a heating-cooling cycle by forming an oxide film contg. alumina whiskers on the surface of a stainless steel contg. prescribed percentages of C, N, Si, Mn, P, S, Cr, Al, Ce and/or La and Ti and/or Tb. CONSTITUTION:A stainless steel contg., by weight, <=0.020% C, <=0.020% N, <=0.50% Si, <=0.50% Mn, <=0.030% P, <=0.010% S, 10-25% Cr, 1-8% Al, 0.03-0.10% Ce and/or La and (C+N); 3-0.50% Ti and/or Tb is heated to 500-1,200 deg.C in an oxidizing atmosphere to form an oxide film contg. alumina whiskers on the surface of the steel. Thus, a far infrared ray radiator having high far infrared ray emissivity is obtd. The radiator is stable because the surface oxide film is hardly stripped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加熱処理により加熱冷却サイクルに対して優
れた密着性を有する遠赤外線放射体およびその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a far-infrared radiator that has excellent adhesion to heating and cooling cycles through heat treatment, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、特開昭49−119244号公報、特開昭60−
130088号公報に示されるように、特定な遠赤外線
放射層を金属基体上に形成することにより、遠赤外線の
放射を効率的に行い、実使用の加熱冷却サイクルに対し
て遠赤外線放射層の剥離を防止する技術があった。
Previously, JP-A-49-119244, JP-A-60-
As shown in Publication No. 130088, by forming a specific far-infrared radiation layer on a metal substrate, far-infrared rays are efficiently radiated, and the far-infrared radiation layer peels off during heating and cooling cycles in actual use. There is a technology to prevent this.

特開昭49−119244号公報には遠赤外線輻射物質
を基体上に被着させる厚さおよび密度を特定することに
ついて開示されている。
JP-A-49-119244 discloses specifying the thickness and density of a far-infrared radiating material deposited on a substrate.

つまり、遠赤外線輻射物質の被着層の厚さが過ると亀裂
や剥離が生じ易くなり、同時に被着密度も輻射効率およ
び剥離性の観点から自ずと適正量のあることが指摘され
ている。
In other words, it has been pointed out that if the thickness of the adhered layer of the far-infrared ray radiating material is too large, cracks and peeling tend to occur, and at the same time, the adhesion density must also be at an appropriate level from the viewpoint of radiation efficiency and releasability.

特開昭60−130088号公報には金属基体上に窒化
ケイ素ウィスカーまたは炭化ケイ素ウィスカーを含有す
る遠赤外線放射層を有することにより、それらウィスカ
ーが熱膨張差を緩和するように作用する効果を有するた
め、高温で使用しても遠赤外線放射層の剥離のない安定
な遠赤外線ヒーターとして使用が可能となることが開示
されている。
JP-A-60-130088 discloses that by having a far-infrared emitting layer containing silicon nitride whiskers or silicon carbide whiskers on a metal substrate, the whiskers have the effect of mitigating the difference in thermal expansion. discloses that it can be used as a stable far-infrared heater without peeling of the far-infrared emitting layer even when used at high temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述の従来技術は遠赤外線放射物質を被着させ
るのに溶射により物理的に被覆させるコーティング法が
採用されているため、(1)遠赤外線放射物質の組成あ
るいは被覆厚さによっては被覆層が剥離し易く不安定で
(2)放射率が低く、さらに、(3)被膜処理の生産性
が低く、製造コストが高いという問題点があった。
However, since the above-mentioned conventional technology uses a coating method in which the far-infrared emitting material is physically coated by thermal spraying, (1) the coating layer may vary depending on the composition of the far-infrared emitting material or the coating thickness; There were problems such as (2) low emissivity due to easy peeling and instability, and (3) low productivity of coating treatment and high manufacturing cost.

そこで、本発明は上述の問題点を解決するために提案さ
れたもので、放射率が高く、被覆層が剥離しにくく安定
し、生産性が高く製造コストが低い遠赤外線放射体およ
びその製造方法を提供することを目的とする。
Therefore, the present invention was proposed to solve the above-mentioned problems, and includes a far-infrared radiator that has a high emissivity, a stable coating layer that does not easily peel off, high productivity, and low manufacturing costs, and a method for manufacturing the same. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は鋭意研究の結果、以下の知見の下、従来公知
な炭素グラファイトおよび酸化物、炭化物セラミックを
ステンレス鋼表面に塗布、もしくは、コーティングした
遠赤外線放射体より優れた特性を有する遠赤外線放射体
およびその製造方法を創作した。
As a result of extensive research, the present inventor has discovered that far-infrared radiation has superior properties to far-infrared radiators made by applying or coating carbon graphite, oxides, and carbide ceramics on the surface of stainless steel. created the body and its manufacturing method.

第1の本発明である遠赤外線放射体は、C=0.020
重量%以下、 N=0.020重量%以下、 Si=0.50重量%以下、 M n = 0.50重量%以下、 P=0.030重量%以下、 s=o、oto重量%以下、 Cr=10重量%以上25重量%以下、AI=1重量%
以上8重量%以下、 Ceおよび/またはLaを0.03重量%以上0.10
重量%以下、 □ Tiおよび/またはTbを前記CとNの合計重量%の3
倍重量%以上0.50重量%以下の成分から成り、 残部はFeおよび不可避的不純物から成るステンレス鋼
の表面にアルミナウィスカーを含有する酸化被膜を形成
することを特徴とする遠赤外線放射体で、 第2の本発明である遠赤外線放射体の製造方法は、 C=0.020重量%以下、 N=0.020重量%以下、 Si=0.50重量%以下、 M n = 0.50重量%以下、 P = o、 030重量%以下、 s=o、oio重量%以下、 Cr=IO重量%以上25重量%以下、AI=1重量%
以上8重量%以下、 Ceおよび/またはLaを0.03重量%以上0.10
重量%以下、 Tiおよび/またはTbを前記CとNの合計重量%の3
倍重量%以上0.50重量%以下の成分から成り、 残部はFeおよび不可避的不純物から成るステンレス鋼
を酸化性雰囲気中で500℃以上1200℃以丁の温度
に加熱することを特徴とする遠赤外線放射体の製造方法
である。
The far-infrared radiator of the first invention has C=0.020
weight% or less, N = 0.020 weight% or less, Si = 0.50 weight% or less, M n = 0.50 weight% or less, P = 0.030 weight% or less, s = o, oto weight% or less, Cr=10% to 25% by weight, AI=1% by weight
8% by weight or less, Ce and/or La 0.03% by weight or more and 0.10% by weight
Up to 3% by weight, □ Ti and/or Tb of the total weight% of C and N
A far-infrared radiator characterized by forming an oxide film containing alumina whiskers on the surface of stainless steel, consisting of a component of not less than double weight percent and not more than 0.50 weight percent, the remainder being Fe and unavoidable impurities. The method for producing a far-infrared radiator according to the second aspect of the present invention is as follows: C=0.020% by weight or less, N=0.020% by weight or less, Si=0.50% by weight or less, M n =0.50% by weight % or less, P = o, 030% by weight or less, s = o, oio weight% or less, Cr = IO weight% or more and 25% by weight or less, AI = 1% by weight
8% by weight or less, Ce and/or La 0.03% by weight or more and 0.10% by weight
Ti and/or Tb is 3% by weight or less of the total weight% of C and N.
A method of producing a long-distance method characterized by heating stainless steel consisting of a component of 0.50% by weight or more, with the remainder consisting of Fe and unavoidable impurities, to a temperature of 500°C or more and 1200°C or more in an oxidizing atmosphere. This is a method for manufacturing an infrared radiator.

ステンレス鋼の成分限定理由は以下のとおりである。The reasons for limiting the composition of stainless steel are as follows.

CTCはほとんど炭化物として析出し、fl)材および
溶接部の靭性および延性を劣化させる。
CTC mostly precipitates as carbides and deteriorates the toughness and ductility of fl) materials and welds.

このため、本基体材料を製造する過程で板切れや耳割れ
を生じ、著しく製造性を損なう。
As a result, in the process of manufacturing this base material, board breaks and edge cracks occur, significantly impairing productivity.

また、クロム炭化物の析出による耐粒界腐食感受性を補
償するために必要なNbおよび/またはTiの必要添加
量を増加しなければならないので、Cはできるだけ低く
抑えることが望ましいが、工業的、経済的な溶製技術を
考慮して」1限を0.020重量%とした。
In addition, the amount of Nb and/or Ti required to be added must be increased to compensate for intergranular corrosion susceptibility due to the precipitation of chromium carbides, so it is desirable to keep C as low as possible; In consideration of the traditional melting technology, the first limit was set at 0.020% by weight.

N、NはCと同様に有害な作用をおよぼし。N and N have the same harmful effects as C.

0、020重量%より多いと靭延性が劣り、材料製造過
程の例えば、圧延工程で板切れ、あるいは耳割れを生じ
、著しく製造性を損なうので0゜020重量%以下にす
る必要がある。
If it is more than 0.020% by weight, the toughness and ductility will be poor, and plate breakage or edge cracking will occur during the material manufacturing process, for example, in the rolling process, which will significantly impair manufacturability, so it is necessary to keep it below 0.020% by weight.

Si ;Stは高温の耐酸化性を向上させる効果がある
が、0.50重量%より多いと母材および溶接部の延性
を著しく阻害するので、0.50重量%以下にする必要
がある。
Si;St has the effect of improving high-temperature oxidation resistance, but if it is more than 0.50% by weight, it will significantly impede the ductility of the base metal and weld zone, so it must be kept at 0.50% by weight or less.

M n ; M nは0.50重量%より多いと母材お
よび溶接部の靭性を劣化させ、かつ、高温で耐酸化性を
損なうので、0.50重量%以下にする必要がある。
Mn; If Mn is more than 0.50% by weight, it deteriorates the toughness of the base metal and the welded part and impairs oxidation resistance at high temperatures, so it needs to be 0.50% by weight or less.

P、Pは溶製過程で原料から不6’f避的に混入する元
素で0.030重量%より多いと靭延性に悪影響を及ぼ
すので0.030重量%以Fにする必要がある。
P and P are elements that are unavoidably mixed in from the raw materials during the melting process, and if the amount exceeds 0.030% by weight, it will have a negative effect on toughness and ductility, so it is necessary to keep the amount at least 0.030% by weight.

SO3はPと同様に溶製過程で原料から不可避的に混入
する元素であるが、0.010重量%より多いと耐孔食
性を減するので0.010重量%以下にする必要がある
Like P, SO3 is an element that is inevitably mixed in from the raw material during the melting process, but if it is more than 0.010% by weight, the pitting corrosion resistance will be reduced, so it needs to be kept at 0.010% by weight or less.

Cr;Crはステンレス鋼としての耐食性および耐酸化
性能を維持する上で最低10.0重量%が必要であり、
25重量%より多いと母材および溶接部の靭延性が不十
分となり、製造上および実用り問題点が多くなるので1
000重量%以上25重量%以下の範囲内とした。
Cr; Cr is required to be at least 10.0% by weight in order to maintain corrosion resistance and oxidation resistance as stainless steel,
If the amount exceeds 25% by weight, the toughness and ductility of the base metal and welded part will be insufficient, leading to many manufacturing and practical problems.
The content was within the range of 000% by weight or more and 25% by weight or less.

At;Atは耐酸化性を高める作用を有すると同時に、
酸化雰囲気での加熱処理により遠赤外線放射に有効なア
ルミナウィスカーを含有する酸化被膜を十分に形成する
には最低1.0重量%が必要であり、8.0重量%より
多いと母材および溶接部の靭延性が著しく損なわれ、製
造および実用過程での加工に耐えられなくなるので、1
.0重量%以上8.0重量%以下とした。
At: At has the effect of increasing oxidation resistance, and at the same time,
In order to sufficiently form an oxide film containing alumina whiskers that are effective for far-infrared radiation by heat treatment in an oxidizing atmosphere, a minimum concentration of 1.0% by weight is required, and if it exceeds 8.0% by weight, the base metal and welding The toughness and ductility of the part will be significantly impaired and it will not be able to withstand processing in manufacturing and practical processes.
.. The content was 0% by weight or more and 8.0% by weight or less.

Ce、La;CeおよびLaは遠赤外線放射体のアルミ
ナウィスカーを含有する被膜の密着性を高める効果を有
するが、Ceおよび/またはLaを0.10重量%より
多く添加すると熱間加工性を著しく劣化させ製造時割れ
を発生する問題点があるので0.03重量%以−、+z
o、to重量%以下とした。
Ce, La; Ce and La have the effect of increasing the adhesion of the coating containing alumina whiskers of the far-infrared radiator, but when Ce and/or La is added in an amount greater than 0.10% by weight, the hot workability is significantly reduced. There is a problem that it deteriorates and cracks occur during manufacturing, so do not exceed 0.03% by weight.
o, to weight% or less.

Ce 、Laはミツシュメタルで添加することができる
Ce and La can be added using Mitshu metal.

N b 、 T E ; N bおよびTiは溶接部の
靭延性および耐粒界腐食性に有害なC,Nを安定化する
ために添加するがCとNの合計重量%の3倍重量%より
少ないと上方な効果が得られず、0.50重量%より多
いと母材および溶接部の靭延性が劣化し、製造過程の圧
延で割れが生じるようになるので、3倍重鼠%以上0,
50重量%以下とした。
N b , T E ; N b and Ti are added in order to stabilize C and N, which are harmful to the toughness and ductility of the weld and intergranular corrosion resistance, but the amount is 3 times the weight % of the total weight % of C and N. If it is less than 0.50% by weight, the toughness and ductility of the base metal and weld will deteriorate and cracks will occur during rolling in the manufacturing process, so if it is more than 0.50% by weight, the ,
The content was 50% by weight or less.

次に、」−述のように組成配合したステンレス鋼を酸化
性雰囲気中で500℃以上1200°C以Fの温度に加
熱し、ステンレス鋼の表面にアルミナウィスカーを含有
する酸化被膜を生成せしめることにより優れた特性を有
する遠赤外線放射体を製造することができる。
Next, the stainless steel having the composition as described above is heated to a temperature of 500°C or more and 1200°C or less in an oxidizing atmosphere to form an oxide film containing alumina whiskers on the surface of the stainless steel. Accordingly, a far-infrared radiator having superior properties can be manufactured.

すなわち、加熱温度が500℃未満では遠赤外線放射特
性に優れたアルミナウィスカーを含有する酸化物が生成
されず、また、1200℃より高い温度で加熱すると酸
化被膜に剥離や亀裂が生じ易くなる。
That is, if the heating temperature is less than 500°C, an oxide containing alumina whiskers with excellent far-infrared radiation properties will not be produced, and if the heating temperature is higher than 1200°C, the oxide film will easily peel or crack.

従って、加熱温度としては500℃以上1200℃以下
の範囲が好適である。
Therefore, the heating temperature is preferably in the range of 500°C or more and 1200°C or less.

加熱雰囲気としては、中性雰囲気(Ar、N2ガス等)
および還元性雰囲気(H2ガス等)ではアルミナウィス
カーが生成されず、少なくとも酸素、水蒸気、炭酸ガス
等を含有する酸化性雰囲気であることが必須要件である
The heating atmosphere is a neutral atmosphere (Ar, N2 gas, etc.)
It is essential that alumina whiskers are not generated in a reducing atmosphere (H2 gas, etc.) and that the atmosphere is an oxidizing atmosphere containing at least oxygen, water vapor, carbon dioxide, etc.

〔作用〕[Effect]

第1の本発明によれば、成分を限定したステンレス鋼に
簡単な熱処理を施しアルミナウィスカーを含有する酸化
被膜を生成させることにより、遠赤外線放射率が高い。
According to the first aspect of the present invention, stainless steel with limited components is subjected to simple heat treatment to generate an oxide film containing alumina whiskers, thereby achieving high far-infrared emissivity.

酸化被膜は従来の溶射等によりコーティングしたものに
比較して500℃以上の高温での使用環境下で地鉄との
密着性が格段に良好である。
The oxide film has much better adhesion to the base steel in a high-temperature environment of 500° C. or more, compared to a conventional coating coated by thermal spraying or the like.

このため、従来の使用温度(500℃以下)よりも高め
ることが可能である。
Therefore, it is possible to raise the temperature higher than the conventional operating temperature (500° C. or lower).

また、遠赤外線放射ヒーターとし500℃以上の温度で
使用される時にはたとえ最初に形成させいておいた酸化
被膜が疵等により剥離されたとしても新たな酸化被膜が
形成されるという自己補修能力を有する。
In addition, when used as a far-infrared radiant heater at temperatures above 500°C, it has a self-repairing ability that allows a new oxide film to be formed even if the initially formed oxide film is peeled off due to scratches, etc. .

第2の本発明によれば、第1の本発明である遠赤外線放
射体は高温での使用環境下で長い寿命を保持できるので
、製造するための加熱炉には電気炉、ガス燃焼部等種々
の炉が使用でき、その加熱も一度に多数の遠赤外線放射
体を加熱処理することが容易であり、極めて低コストで
製造することができる。
According to the second aspect of the present invention, the far-infrared radiator of the first aspect of the present invention can maintain a long life in a high-temperature usage environment. Various types of furnaces can be used, and it is easy to heat a large number of far-infrared radiators at once, and it can be manufactured at extremely low cost.

〔実施例〕〔Example〕

以下、本発明を表を参照してその実施例に基づいて説明
する。
Hereinafter, the present invention will be explained based on examples thereof with reference to tables.

第1表に示す組成のステンレス鋼を溶製し、いずれも圧
延により厚み2.0 m mの鋼板とし、このうち光輝
焼鈍仕上した。
Stainless steels having the compositions shown in Table 1 were melted and rolled into steel plates with a thickness of 2.0 mm, which were brightly annealed.

これらステンレス鋼板を950℃で60分間空気中で加
熱保持し、次に、空冷する。
These stainless steel plates are heated and held in air at 950° C. for 60 minutes, and then cooled in air.

これをさらに熱処理し、ステンレス鋼の表面にアルミナ
ウィスカーを含有する酸化被膜を生成せしめた。
This was further heat treated to form an oxide film containing alumina whiskers on the surface of the stainless steel.

次に、これらステンレス鋼板の裏面より電気ヒータで6
00℃に加熱し30分保持した後、30分空冷を行い、
これを1サイクルとするシュミレーシコンテストを行な
った。
Next, the back side of these stainless steel plates was heated with an electric heater.
After heating to 00℃ and holding for 30 minutes, air cooling for 30 minutes,
A simulation contest was held with this as one cycle.

その評価はステンレス鋼表面の酸化被膜の剥離し始める
サイクル数および遠赤外線放射率(波長2〜20Bm領
域の全放射率)で行い、評価結果を第2表に示す。
The evaluation was performed using the number of cycles at which the oxide film on the stainless steel surface began to peel off and the far-infrared emissivity (total emissivity in the wavelength range of 2 to 20 Bm), and the evaluation results are shown in Table 2.

第2表においてO印は被膜の剥離のないこと。In Table 2, the mark O means that there is no peeling of the film.

X印は被膜の剥離が生じたことを示す。An X mark indicates that peeling of the film has occurred.

また、比較例としてアルミナウィスカーを10%含有し
、他はFe、Crの酸化物よりなる遠赤外線放射物質を
5US304.2mm鋼板の表面に厚さ0.2 m m
、被着密度3 g / c cとして溶射したものも前
記同様のテストを行った。
In addition, as a comparative example, a far-infrared emitting material containing 10% alumina whiskers and other oxides of Fe and Cr was applied to the surface of a 5US304.2 mm steel plate to a thickness of 0.2 mm.
The same test as above was also carried out on a thermally sprayed material with an adhesion density of 3 g/cc.

第2表から明らかなように本実施例方法による遠赤外線
放射体は加熱冷却サイクルを最長3000サイクルまで
行っても放射被膜の剥離は全く生ぜず、また、全放射率
の低下もない。
As is clear from Table 2, in the far-infrared radiator produced by the method of this example, the radiation coating did not peel off at all even after heating and cooling cycles up to 3000 cycles, and there was no decrease in the total emissivity.

これに対して従来法による比較例の溶射によると100
0サイクルの加熱冷却を繰返すと放射被膜が部分的に剥
離し始めると共に全放射率も低下する。このように本実
施例方法による遠赤外線数射体は従来の溶射法に比較し
、優れた寿命と放射特性を有するものである。
On the other hand, according to the comparative example thermal spraying using the conventional method, 100
When 0 cycles of heating and cooling are repeated, the radiation coating begins to partially peel off and the total emissivity also decreases. As described above, the far-infrared radiation emitter produced by the method of this embodiment has superior lifespan and radiation characteristics compared to the conventional thermal spraying method.

この優位性はさらに高温の使用域で顕著となり、本実施
例方法による遠赤外線放射体は最高1100℃程度まで
使用可能であった。
This superiority becomes even more pronounced in the high temperature range, and the far-infrared radiator according to the method of this example can be used up to a maximum of about 1100°C.

〔発明の効果〕〔Effect of the invention〕

第1の本発明は以上説明したように、遠赤外線放射率が
高く、ステンンレス鋼表面の酸化被膜は剥離しに〈〈安
定的である。
As explained above, the first aspect of the present invention has a high far-infrared emissivity, and the oxide film on the stainless steel surface is stable against peeling.

第2の本発明は、第1の本発明である遠赤外線放射体を
低コストで製造できるという効果を奏する。
The second invention has the effect that the far-infrared radiator of the first invention can be manufactured at low cost.

Claims (1)

【特許請求の範囲】 1C=0.020重量%以下、 N=0.020重量%以下、 Si=0.50重量%以下、 Mn=0.50重量%以下、 P=0.030重量%以下、 S=0.010重量%以下、 Cr=10重量%以上25重量%以下、 Al=1重量%以上8重量%以下、 Ceおよび/またはLaを0.03重量%以上0.10
重量%以下、 Tiおよび/またはTbを前記CとNの合 計重量%の3倍重量%以上0.50重量%以下の成分か
ら成り、 残部はFeおよび不可避的不純物から成る ステンレス鋼の表面にアルミナウイスカーを含有する酸
化被膜を形成することを特徴とする遠赤外線放射体。 2C=0.020重量%以下、 N=0.020重量%以下、 Si=0.50重量%以下、 Mn=0.50重量%以下、 P=0.030重量%以下、 S=0.010重量%以下、 Cr=10重量%以上25重量%以下、 Al=1重量%以上8重量%以下、 Ceおよび/またはLaを0.03重量%以上0.10
重量%以下、 Tiおよび/またはTbを前記CとNの合 計重量%の3倍重量%以上0.50重量%以下の成分か
ら成り、 残部はFeおよび不可避的不純物から成る ステンレス鋼を酸化性雰囲気中で500℃以上1200
℃以下の温度に加熱することを特徴とする遠赤外線放射
体の製造方法。
[Claims] 1C = 0.020% by weight or less, N = 0.020% by weight or less, Si = 0.50% by weight or less, Mn = 0.50% by weight or less, P = 0.030% by weight or less , S = 0.010 wt% or less, Cr = 10 wt% or more and 25 wt% or less, Al = 1 wt% or more and 8 wt% or less, Ce and/or La 0.03 wt% or more and 0.10
Alumina is applied to the surface of stainless steel, consisting of Ti and/or Tb in an amount not less than 3 times the total weight of C and N and not more than 0.50% by weight, the remainder being Fe and unavoidable impurities. A far-infrared radiator characterized by forming an oxide film containing whiskers. 2C = 0.020% by weight or less, N = 0.020% by weight or less, Si = 0.50% by weight or less, Mn = 0.50% by weight or less, P = 0.030% by weight or less, S = 0.010 Weight % or less, Cr = 10 weight % or more and 25 weight % or less, Al = 1 weight % or more and 8 weight % or less, Ce and/or La 0.03 weight % or more and 0.10 weight % or less
% by weight or less, Ti and/or Tb in an amount of 3 times the total weight % of C and N but not more than 0.50% by weight, and the remainder consisting of Fe and unavoidable impurities is placed in an oxidizing atmosphere. 500℃ or more inside 1200℃
A method for producing a far-infrared radiator, characterized by heating it to a temperature of ℃ or less.
JP16942286A 1986-07-18 1986-07-18 Far infrared ray radiator and its production Pending JPS6326335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16942286A JPS6326335A (en) 1986-07-18 1986-07-18 Far infrared ray radiator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16942286A JPS6326335A (en) 1986-07-18 1986-07-18 Far infrared ray radiator and its production

Publications (1)

Publication Number Publication Date
JPS6326335A true JPS6326335A (en) 1988-02-03

Family

ID=15886297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16942286A Pending JPS6326335A (en) 1986-07-18 1986-07-18 Far infrared ray radiator and its production

Country Status (1)

Country Link
JP (1) JPS6326335A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280426A (en) * 1988-05-02 1989-11-10 Osaka Gas Co Ltd Cooking device
JPH0261434A (en) * 1988-08-25 1990-03-01 Osaka Gas Co Ltd Heater for cooking
JPH02281589A (en) * 1989-04-24 1990-11-19 Nippon Yakin Kogyo Co Ltd Material used for electrothermal body having high electric resistivity value
JPH03182086A (en) * 1989-12-11 1991-08-08 Nippon Yakin Kogyo Co Ltd Heat emitting body of fe-cr-al series alloy with excellent electric insulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280426A (en) * 1988-05-02 1989-11-10 Osaka Gas Co Ltd Cooking device
JPH0261434A (en) * 1988-08-25 1990-03-01 Osaka Gas Co Ltd Heater for cooking
JPH02281589A (en) * 1989-04-24 1990-11-19 Nippon Yakin Kogyo Co Ltd Material used for electrothermal body having high electric resistivity value
JPH03182086A (en) * 1989-12-11 1991-08-08 Nippon Yakin Kogyo Co Ltd Heat emitting body of fe-cr-al series alloy with excellent electric insulation

Similar Documents

Publication Publication Date Title
JP3065674B2 (en) Protective layer for base and method for forming protective layer
JPS6326335A (en) Far infrared ray radiator and its production
KR102261029B1 (en) Nickel-based super alloy for diffusion bonding and method for diffusion bonding using the same
JP2002285236A (en) Method for working ferritic heat resistant steel and ferritic heat resistant steel having excellent water vapor oxidation resistance
JP3865452B2 (en) Fe-Cr-Al ferrite stainless steel with excellent high-temperature oxidation resistance and high-temperature deformation resistance
JPH05283149A (en) Heater material with excellent surface insulation property and its manufacture
JPH01279741A (en) Heat exchange device
JPH0225982B2 (en)
JPH05473B2 (en)
JPH0234765A (en) High-emissivity far infrared emitter and its production
JP3112195B2 (en) Manufacturing method of polished finish ferritic stainless steel sheet with excellent oxidation resistance
JPH01184255A (en) Far infrared radiator and its production
CN107675100A (en) A kind of high intensity glazing steel and its heat treatment method
JPH01184258A (en) Far infrared radiator and its production
JPH01184256A (en) Far infrared radiator and its production
JPH01139750A (en) Far infrared radiator excellent in corrosion resistance and its production
JPS62103314A (en) Manufacture of transfer roll for heat treating furnace
JPH0288231A (en) Far infrared ray radiating object
JPS60141861A (en) Hearth roll for continuous annealing furnace having superior build-up resistance
JPH01184257A (en) Far infrared radiator and its production
JPH0247248A (en) Stainless steel sheet excellent in water-repelling property
JPH0234764A (en) Far infrared emitter excellent in corrosion resistance and its production
US2693412A (en) Alloy steels
JPS63160188A (en) Infrared heater
JPS62139853A (en) Ferritic stainless steel having superior oxidation resistance