JPH01184255A - Far infrared radiator and its production - Google Patents

Far infrared radiator and its production

Info

Publication number
JPH01184255A
JPH01184255A JP705888A JP705888A JPH01184255A JP H01184255 A JPH01184255 A JP H01184255A JP 705888 A JP705888 A JP 705888A JP 705888 A JP705888 A JP 705888A JP H01184255 A JPH01184255 A JP H01184255A
Authority
JP
Japan
Prior art keywords
less
far
weight
stainless steel
infrared radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP705888A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawasaki
川崎 龍夫
Kazuhide Ishii
和秀 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kawasaki Steel Corp filed Critical Osaka Gas Co Ltd
Priority to JP705888A priority Critical patent/JPH01184255A/en
Publication of JPH01184255A publication Critical patent/JPH01184255A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in radiation characteristics of the title radiator by subjecting a stainless steel in which respective contents of C, Si, Mn, Cr, Al, Ce, N, Zr, V and Ta are specified to heating under prescribed conditions and forming layer containing Al2O3 on the surface. CONSTITUTION:A stainless steel which has a composition consisting of, by weight, <=0.1% C, <=1% Si, <=3% Mn, 8-30% Cr, 1-8% Al, 0.03-0.1% Ce and/or La, <=0.05% N, and the balance Fe or further containing, besides the above, one or more elements among Zr, V and Ta by the amount satisfying (C+N)X3-0.7% is refined. A sheet of the above steel is heated in an oxidizing atmosphere at 500-1,200 deg.C, by which a layer containing acicular or cylindrical Al2O3 can be formed on the surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遠赤外線放射体およびその製造方法に関するも
ので、特に繰り返し加熱冷却を受けても放射特性の劣化
しない放射体を提供する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a far-infrared radiator and a method for manufacturing the same, and particularly provides a radiator whose radiation characteristics do not deteriorate even after repeated heating and cooling.

[従来の技術] 従来、遠赤外線放射体としては、ステンレス基体上に遠
赤外線放射体物質を溶射等により被覆したものが一般的
であり、例えば特開昭49−119244号公報等に見
られるように、被覆厚さを限定しなければ剥離や亀裂が
生し易いものであった。また、たとえ限定された密度で
、厚さを制御したとしても、所詮、表面塗布によるもの
では遠赤外線塗料と基体との結合は弱く、長期間の繰り
返し使用によって剥離が生しることを避けることができ
ない。すなわち、基体に対して溶射等のいかなる塗装方
法によっても剥離に対する抵抗力は塗膜と基体との結合
力のみによる。
[Prior Art] Conventionally, a far-infrared radiator has generally been a stainless steel substrate coated with a far-infrared radiator material by thermal spraying or the like. In addition, peeling and cracking were likely to occur unless the coating thickness was limited. Furthermore, even if the density is limited and the thickness is controlled, the bond between the far-infrared paint and the substrate is weak if it is applied on the surface, so it is important to avoid peeling due to repeated use over a long period of time. I can't. That is, the resistance to peeling of a substrate by any coating method such as thermal spraying depends solely on the bonding force between the coating and the substrate.

一方、遠赤外線の放射特性は、塗装の場合、塗装される
物質の特性と、表面積効果、すなわち凹凸が多く、有効
放射面積の大きさに依存する。塗装による場合、表面積
を増加させるために、ポーラスな被覆を行うと、界面強
度が低下する。
On the other hand, in the case of painting, the radiation characteristics of far infrared rays depend on the characteristics of the material being painted, the surface area effect, that is, the large number of irregularities, and the size of the effective radiation area. In the case of painting, if a porous coating is applied to increase the surface area, the interfacial strength will decrease.

従って、放射特性を向上させ、同時に剥離抵抗を増加さ
せることは、塗装方法では基本的に無理がある。
Therefore, it is basically impossible to improve the radiation characteristics and increase the peel resistance at the same time using the coating method.

本出願人はこれらの問題を同時に解決するために、特願
昭61−169422を提案した。
The present applicant proposed Japanese Patent Application No. 61-169422 in order to solve these problems at the same time.

[発明が解決しようとする課題] 本発明者らのその後の研究により、特願昭61−169
422に対してTiおよび/またはNbを加えない場合
にも好ましい結果を得ることができること、およびTi
および/またはNbに代えてZr、V、Taから選ばれ
た一種または二種を適当量加えることによって同様の目
的を達成することができるという知見を得た。
[Problem to be solved by the invention] Through subsequent research by the present inventors, the patent application No. 61-169
422 without adding Ti and/or Nb, and that favorable results can be obtained even when Ti and/or Nb are not added to Ti
It has been found that the same objective can be achieved by adding appropriate amounts of one or two selected from Zr, V, and Ta in place of and/or Nb.

本発明はこの知見に基づき、放射特性が高く、被覆層が
安定で剥離に対する高い抵抗を有する遠赤外線放射体と
その製造方法を提供することを目的とする。
Based on this knowledge, it is an object of the present invention to provide a far-infrared radiator having high radiation characteristics, a stable coating layer, and high resistance to peeling, and a method for producing the same.

[課題を解決するための手段] 本発明は、以下の如き組成のステンレス鋼を酸化性雰囲
気下で酸化させ、針状もしくは棒状のアルミナ皮膜を表
面に形成させた、優れた遠赤外線放射特性を有する放射
体である。
[Means for Solving the Problems] The present invention provides excellent far-infrared radiation properties by oxidizing stainless steel having the following composition in an oxidizing atmosphere to form an acicular or rod-shaped alumina film on the surface. It is a radiator with

すなわち、 C:0.10重量%以下 Si:1.0重量%以下 Mn・3.0重量%以下 CF 8重量%以上30重量%以下 AJ2:1重量%以上8重量%以下 Ceおよび/またはLa ・0.03重量%以上0.1重量%以下N  :O,Q
5重量%以下 てあって、残部がFeおよび不可避不純物から成るステ
ンレス鋼の表面に、針状または棒状のAff203を有
する皮膜を形成させたことを特徴とする遠赤外線放射体
である。
That is, C: 0.10 wt% or less Si: 1.0 wt% or less Mn・3.0 wt% or less CF 8 wt% or more and 30 wt% or less AJ2: 1 wt% or more and 8 wt% or less Ce and/or La・0.03% by weight or more and 0.1% by weight or less N: O, Q
This is a far-infrared radiator characterized in that a film having needle-shaped or rod-shaped Aff203 is formed on the surface of stainless steel containing 5% by weight or less, the balance consisting of Fe and unavoidable impurities.

さらに放射体として種々の加工を要求される場合には、
上記成分にさらにZr、V、Taから選ばれた一種また
は二種以上を添加する。その添加量は前記CとNの合計
の3倍以上0.7重量%以下である。このZr、V、T
aから選ばれた一種または二種以上を添加したステンレ
ス鋼の表面に針状または棒状のA42O3を有する皮膜
を形成した遠赤外線放射体とする。
Furthermore, if various processing is required as a radiator,
One or more selected from Zr, V, and Ta are further added to the above components. The amount added is at least 3 times the total of C and N and at most 0.7% by weight. This Zr, V, T
The far-infrared radiator is made by forming a film having needle-like or rod-like A42O3 on the surface of stainless steel to which one or more selected from a is added.

これらのステンレス鋼は500℃以上1200°C以下
の酸化雰囲気で加熱することにより針状または棒状のア
ルミナ結晶を生成する。
These stainless steels produce needle-shaped or rod-shaped alumina crystals by heating in an oxidizing atmosphere of 500° C. or more and 1200° C. or less.

このアルミナ結晶は、基本的にAgが生体であるが、実
際にはFe、Cr、Mn、希土類金属が含まれており、
またNb、V、Taから選ばれた元素を添加する場合に
は、これらの元素も含まれる。
This alumina crystal is basically living body of Ag, but actually contains Fe, Cr, Mn, and rare earth metals.
Further, when adding an element selected from Nb, V, and Ta, these elements are also included.

本発明においては遠赤外線放射特性の優れた被覆を生成
するものであり、これらの元素がアルミナ中に不純物と
して混入していても、表面の結晶形状が針状あるいは棒
状となって表面積効果を有していれば放射特性への影響
は生しない。
In the present invention, a coating with excellent far-infrared radiation properties is produced, and even if these elements are mixed into alumina as impurities, the surface crystal shape becomes needle-like or rod-like and has a surface area effect. If it is, there will be no effect on the radiation characteristics.

また、ステンレス鋼の表面に、ブラスト処理を行って加
工歪を与えておくと、酸化処理によって有効に針状ある
いは棒状の結晶を生成することができる。
Furthermore, if the surface of stainless steel is subjected to a blasting process to give processing strain, acicular or rod-shaped crystals can be effectively generated by the oxidation process.

[作用] 本発明による遠赤外線放射体の被覆層は基体から反応生
成したものであり、基体と結晶的に結合している。従っ
て、耐剥離性が大きい。また被覆層最表面が針状あるい
は棒状のアルミナの結晶から成っており、高い有効放射
面積を有する。
[Function] The coating layer of the far-infrared radiator according to the present invention is produced by reaction from the substrate, and is crystallized with the substrate. Therefore, peeling resistance is high. Furthermore, the outermost surface of the coating layer is made of needle-shaped or rod-shaped alumina crystals, and has a large effective radiation area.

ここで本発明の成分限定理由を説明すると以下の通りで
ある。
Here, the reasons for limiting the components of the present invention are as follows.

C: Cはステンレス鋼を硬化させ、延性を低下させるため低
くする必要がある。遠赤外線放射体としては、板のまま
で複雑な加工を施さないで使用することも可能であり、
上限を0.10重量%とした。
C: C hardens stainless steel and reduces ductility, so it needs to be low. As a far-infrared radiator, it is possible to use the plate as is without any complicated processing.
The upper limit was set to 0.10% by weight.

Sl。Sl.

Siは酸化皮膜と基体の界面に濃化して、界面酸化物と
なり皮膜の剥離抵抗を高めるが、高過ぎると界面で厚い
5i02層を形成し、かえって剥離抵抗を損なうため、
上限を1.0重量%とする必要がある。
Si concentrates at the interface between the oxide film and the substrate, becomes an interfacial oxide, and increases the peeling resistance of the film, but if the Si content is too high, a thick 5i02 layer is formed at the interface, which actually impairs the peeling resistance.
The upper limit needs to be 1.0% by weight.

Mn: Mnは酸化物中の拡散速度が大きく、酸化皮膜を厚(す
る効果があり、針状あるいは棒状の結晶を成長させるた
めに有効であり、これらを通じて遠赤外線特性を高める
が、多量に過ぎると、耐酸化性そのものを劣化させるた
め、上限は3.0重量%に限定される。
Mn: Mn has a high diffusion rate in oxides, has the effect of thickening the oxide film, and is effective for growing needle-shaped or rod-shaped crystals, and enhances far-infrared characteristics through this, but if too much is used. Since the oxidation resistance itself deteriorates, the upper limit is limited to 3.0% by weight.

Cr: Crはステンレス鋼としての基本組成であり、有効な酸
化皮膜を形成するためには8重量%以上必要である。3
0重量%を超えると、靭性が低下し、遠赤外線放射体素
材としての高A!添加を行った場合、製造上の問題が生
しる。
Cr: Cr is the basic composition of stainless steel, and 8% by weight or more is required to form an effective oxide film. 3
If it exceeds 0% by weight, the toughness will decrease and the high A! Additions create manufacturing problems.

AI2・ AI2はステンレス表面にアルミナの皮膜を形成するた
めに必須の元素であるが、1重量%未満ではアルミナ皮
膜が得られない。8重量%を超えるとCrを8重量%程
度にしても靭性が低下し、製造上の問題が生しる。
AI2/Al2 is an essential element for forming an alumina film on the stainless steel surface, but if it is less than 1% by weight, an alumina film cannot be obtained. If it exceeds 8% by weight, the toughness will decrease even if the Cr content is about 8% by weight, causing manufacturing problems.

Ce、La: これらの希土類元素は酸化皮膜の密着性を改善する作用
を有し、そのためには多量の添加が望ましいが、0.1
重量%を超えると粒界に偏析して熱間加工性を損なう。
Ce, La: These rare earth elements have the effect of improving the adhesion of the oxide film, and for that purpose it is desirable to add a large amount, but 0.1
If it exceeds % by weight, it will segregate at grain boundaries and impair hot workability.

これらの希土類元素はアルミナの結晶を針状にするのに
有効であり、その効果は0.03重量%以上で発揮され
、放射特性の向上に有効である。
These rare earth elements are effective in making alumina crystals needle-like, and this effect is exhibited at 0.03% by weight or more, and is effective in improving radiation characteristics.

N: NはCと同様ステンレス鋼を脆くする。特に高Alであ
る本発明鋼においては、粗大なAgNとなって清浄度を
低下させる。平板のままでの使用を考慮すると、上限は
0.05重量%に限定される。
N: Like C, N makes stainless steel brittle. Particularly in the steel of the present invention, which has a high Al content, coarse AgN forms, reducing the cleanliness. Considering the use as a flat plate, the upper limit is limited to 0.05% by weight.

Zr、V、Ta Zr、V、Taは、C,Nを固定しステンレス鋼の加工
性を高める。その効果は、少なくとも(C+N)の3倍
以上で発揮されるが、0.7重量%を超えると、かえっ
て、鋼をもろくする。
Zr, V, Ta Zr, V, and Ta fix C and N and improve the workability of stainless steel. This effect is exhibited at least three times as much as (C+N), but when it exceeds 0.7% by weight, it actually makes the steel brittle.

以上のステンレス鋼表面に有効に酸化皮膜を形成するに
は、500℃以上の温度で加熱する必要があるが、加熱
温度が1200°Cを超えると、針状または棒状の酸化
物が得られなくなるため、加熱温度範囲は500℃以上
1200°C以下に限定される。
In order to effectively form an oxide film on the above stainless steel surface, it is necessary to heat it at a temperature of 500°C or higher, but if the heating temperature exceeds 1200°C, needle-shaped or rod-shaped oxides will not be obtained. Therefore, the heating temperature range is limited to 500°C or higher and 1200°C or lower.

ステンレス鋼表面にブラスト処理により加工歪を加える
と針状結晶が生成し易い。ブラストの程度は大きいほど
良い。しかし全くなくても針状結晶は生成する。
When processing strain is applied to the stainless steel surface by blasting, needle-like crystals are likely to form. The greater the degree of blasting, the better. However, needle-shaped crystals can be formed even if there is no such substance.

[実施例] 第1表に示す組成の材料を1.5 m m厚の板に圧延
し、950°Cで光輝焼鈍仕上げした。これらの材料を
第1表中に示す酸化処理条件で処理し、遠赤外線放射特
性を一11定した。また600℃加熱30分空冷を1サ
イクルとして、2000サイクル後の剥離の有無により
皮膜の剥離抵抗を調べた。
[Example] A material having the composition shown in Table 1 was rolled into a 1.5 mm thick plate and bright annealed at 950°C. These materials were treated under the oxidation treatment conditions shown in Table 1, and their far-infrared radiation characteristics were determined. In addition, one cycle was heating at 600° C. and air cooling for 30 minutes, and the peeling resistance of the film was examined by checking whether or not peeling occurred after 2000 cycles.

これらの結果は第1表中に併せて示した。These results are also shown in Table 1.

遠赤外線放射特性は、400℃での3〜10μmの波長
における対黒体比を示しており、剥離抵抗は剥離しない
ものを○、剥離のあるものを×で示した。
The far-infrared radiation characteristics indicate the ratio to a black body at a wavelength of 3 to 10 μm at 400° C., and the peel resistance is indicated by ◯ if there is no peeling and × if there is peeling.

第1表から明らかなように、本発明による放射体材料は
遠赤外線放射特性と皮膜の耐剥離性に優れており、この
ような材料は本発明方法により製造することができる。
As is clear from Table 1, the radiator material according to the present invention has excellent far-infrared radiation characteristics and film peeling resistance, and such a material can be produced by the method of the present invention.

[発明の効果コ 本発明の遠赤外線放射体は急激な熱応力を受ける用途に
対しても皮膜の耐剥離性が優れており、高い遠赤外線放
射特性を有することから、各種暖房装置、乾燥炉、媒焼
炉なと応用範囲は広く、遠赤外線の省エネルギー効果や
浸透効果を有効に利用することができ、またZr、V、
Taを含むと加工性に優れたものとなる。
[Effects of the Invention] The far-infrared radiator of the present invention has excellent film peeling resistance even in applications where it is subjected to sudden thermal stress, and has high far-infrared radiation characteristics, so it can be used in various heating devices, drying ovens, etc. , mortarization furnace has a wide range of applications, and can effectively utilize the energy saving effect and penetration effect of far infrared rays.
When Ta is included, the workability becomes excellent.

本発明方法によれば、針状または棒状のAff203を
有する皮膜を容易に形成することができ、熱処理前にブ
ラスト処理をすれば、−層容易となる。
According to the method of the present invention, a film having needle-like or rod-like Aff203 can be easily formed, and if blasting is performed before heat treatment, a -layer can be easily formed.

Claims (1)

【特許請求の範囲】 1 C:0.10重量%以下 Si:1.0重量%以下 Mn:3.0重量%以下 Cr:8重量%以上30重量%以下 Al:1重量%以上8重量%以下 Ceおよび/またはLa:0.03重量%以上0.1重
量%以下 N:0.05重量%以下 残部はFeおよび不可避的不純物から成るステンレス鋼
であって、表面に針状または棒状のAl_2O_3を有
する皮膜を形成したことを特徴とする遠赤外線放射体。 2 含有成分としてさらにZr、V、Taから選ばれた
一種または二種以上を前記CとNの合計の3倍以上0.
7重量%以下を含み、残部Feおよび不可避的不純物か
ら成る請求項1記載の遠赤外線放射体。 3 ステンレス鋼を酸化性雰囲気中で500℃以上12
00℃以下の温度で加熱することを特徴とする請求項1
または2記載の遠赤外線放射体の製造方法。 4 ステンレス鋼表面に、ブラスト処理をして加工歪を
与えた後、加熱することを特徴とする請求項3記載の製
造方法。
[Claims] 1 C: 0.10 wt% or less Si: 1.0 wt% or less Mn: 3.0 wt% or less Cr: 8 wt% or more and 30 wt% or less Al: 1 wt% or more and 8 wt% Ce and/or La: 0.03% by weight or more and 0.1% by weight or less N: 0.05% by weight or less A far-infrared radiator characterized by forming a film having the following properties. 2. Furthermore, one or more selected from Zr, V, and Ta are added in an amount of at least 3 times the total of C and N.
The far-infrared radiator according to claim 1, wherein the far-infrared radiator contains 7% by weight or less, with the remainder consisting of Fe and unavoidable impurities. 3 Stainless steel heated to 500℃ or higher in an oxidizing atmosphere12
Claim 1 characterized in that the heating is performed at a temperature of 00°C or less.
Or the method for producing a far-infrared radiator according to 2. 4. The manufacturing method according to claim 3, wherein the stainless steel surface is heated after being subjected to a blasting process to give processing strain.
JP705888A 1988-01-18 1988-01-18 Far infrared radiator and its production Pending JPH01184255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP705888A JPH01184255A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP705888A JPH01184255A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Publications (1)

Publication Number Publication Date
JPH01184255A true JPH01184255A (en) 1989-07-21

Family

ID=11655467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP705888A Pending JPH01184255A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Country Status (1)

Country Link
JP (1) JPH01184255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826616A (en) * 2020-07-23 2020-10-27 北京市辐射中心 Nuclear fuel cladding coating and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826616A (en) * 2020-07-23 2020-10-27 北京市辐射中心 Nuclear fuel cladding coating and preparation method thereof
CN111826616B (en) * 2020-07-23 2022-05-13 北京市辐射中心 Nuclear fuel cladding coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH02274848A (en) Heat treatment for high tensile aluminum alloy stock
JPS6289852A (en) Manufacture of aluminum alloy plate having superior burning hardenability
JPH01184255A (en) Far infrared radiator and its production
CN115125377B (en) High-toughness stainless steel plate and processing technology thereof
JPH01184258A (en) Far infrared radiator and its production
EP0327831A2 (en) Method and device for increasing the thermal fatigue resistance of heat-conducting materials
JPH01184257A (en) Far infrared radiator and its production
JPH01184256A (en) Far infrared radiator and its production
JPH03257141A (en) Fe-ni-co-al-c alloy
US3074829A (en) Titanium article
JPS6326335A (en) Far infrared ray radiator and its production
TWI243211B (en) Method for manufacturing high adherence enamel-coating steel sheet with superior formability
JPS5856734B2 (en) Manufacturing method of ferritic stainless steel sheet
JPS60187652A (en) High-elasticity alloy
KR910018560A (en) Manufacturing method of low iron loss grain oriented silicon steel sheet
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
JPH02156043A (en) Al killed steel sheet for porcelain enameling and its production
JPH0621334B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent deep drawability and method for producing the same
JPH0354186B2 (en)
JP3237921B2 (en) Solid wire for gas shielded arc welding and method of manufacturing the same
JPS63227790A (en) High strength stainless steel and its production
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH076038B2 (en) Oxidation resistance Fe-Cr-Al alloy
JPH0452252A (en) Ferritic stainless steel excellent in activated alumina coating characteristic and its production
JP2526225B2 (en) Shape memory Fe-Pd alloy heat treatment method