JPH01184257A - Far infrared radiator and its production - Google Patents

Far infrared radiator and its production

Info

Publication number
JPH01184257A
JPH01184257A JP706088A JP706088A JPH01184257A JP H01184257 A JPH01184257 A JP H01184257A JP 706088 A JP706088 A JP 706088A JP 706088 A JP706088 A JP 706088A JP H01184257 A JPH01184257 A JP H01184257A
Authority
JP
Japan
Prior art keywords
weight
far
stainless steel
less
infrared radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP706088A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawasaki
川崎 龍夫
Kazuhide Ishii
和秀 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kawasaki Steel Corp filed Critical Osaka Gas Co Ltd
Priority to JP706088A priority Critical patent/JPH01184257A/en
Publication of JPH01184257A publication Critical patent/JPH01184257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in radiation characteristics of the title radiator by subjecting a stainless steel in which respective contents of C, Si, Mn, Cr, Al, Y, Nd, Gd, and N are specified to heating under the prescribed conditions and forming a layer containing Al2O3 on the surface. CONSTITUTION:A stainless steel having a composition consisting of, by weight, <=0.1% C, <=1% Si, 3% Mn, 8-30% Cr, 1-8% Al, 0.001-0.1% of one or more elements among Y, Nd, and Gd, <=0.05% N, and the balance Fe is refined. Then, a sheet of the above stainless steel is heated in an oxidizing atmosphere, by which a layer containing acicular or cylindrical Al2O3 can be formed on the surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遠赤外線放射体およびその製造方法に関するも
ので、特に繰り返し加熱冷却を受けても放射特性の劣化
しない放射体を提供する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a far-infrared radiator and a method for manufacturing the same, and particularly provides a radiator whose radiation characteristics do not deteriorate even after repeated heating and cooling.

〔従来の技術1 従来、遠赤外線放射体としては、ステンレス基体上に遠
赤外線放射体物質を溶射等により被覆したものが一般的
であり、例えば特開昭49−119244号公報等に見
られるように、被覆厚さを限定しなければ剥離や亀裂が
生じ易いものであった。また、たとえ限定された密度で
、厚さを制御したとしても、所詮、表面塗布によるもの
では遠赤外線塗料と基体との結合は弱く、長期間の繰り
返し使用によって剥離が生しることを避けることができ
ない。これは、基体に対して、溶射等のいかなる方法に
よって施工しても、塗装方法では剥離に対する抵抗力は
塗膜と基体との結合力のみによるからである。
[Prior art 1] Conventionally, far-infrared radiators have generally been coated with a far-infrared radiator material on a stainless steel substrate by thermal spraying or the like. Moreover, peeling and cracking were likely to occur unless the coating thickness was limited. Furthermore, even if the density is limited and the thickness is controlled, the bond between the far-infrared paint and the substrate is weak if it is applied on the surface, so it is important to avoid peeling due to repeated use over a long period of time. I can't. This is because no matter what method such as thermal spraying is applied to the substrate, the resistance to peeling in the coating method depends only on the bonding force between the coating and the substrate.

一方、遠赤外線の放射特性は塗装される物質の特性と、
表面積効果、すなわち凹凸が多く、有効放射面積の大き
いことによる。塗装による場合、表面積を増加させるた
めに、ポーラスな被覆を行うと、界面強度が低下する。
On the other hand, the radiation characteristics of far infrared rays depend on the characteristics of the material being painted,
This is due to the surface area effect, that is, there are many irregularities and the effective radiation area is large. In the case of painting, if a porous coating is applied to increase the surface area, the interfacial strength will decrease.

従って、放射特性を向上させ、同時に剥離抵抗を増加さ
せることは、塗装方法では基本的に無理がある。
Therefore, it is basically impossible to improve the radiation characteristics and increase the peel resistance at the same time using the coating method.

本出願人はこれらの問題を同時に解決するために、特願
昭61−169422を提案した。
The present applicant proposed Japanese Patent Application No. 61-169422 in order to solve these problems at the same time.

[発明が解決しようとする課題] 本発明者らはその後の研究により、Ce、La以外の希
土類元素Y、Nd、Gdについて新たな知見を得た。
[Problems to be Solved by the Invention] Through subsequent research, the present inventors obtained new knowledge regarding rare earth elements Y, Nd, and Gd other than Ce and La.

本発明は放射特性が高く、被覆層が安定で剥離に対する
高い抵抗を有する放射体とその製造方法を提供すること
を目的とする。
An object of the present invention is to provide a radiator having high radiation characteristics, a stable coating layer, and high resistance to peeling, and a method for manufacturing the same.

[課題を解決するための手段] 本発明者等は、広範な実験の結果、以下の如き組成のス
テンレス鋼を酸化性雰囲気下で酸化させることにより針
状もしくは棒状のアルミナ皮膜を表面に形成させること
ができ、優れた遠赤外線放射特性を有する放射体を発明
するに至った。
[Means for Solving the Problem] As a result of extensive experiments, the present inventors formed an acicular or rod-shaped alumina film on the surface of stainless steel having the following composition by oxidizing it in an oxidizing atmosphere. This led to the invention of a radiator with excellent far-infrared radiation characteristics.

すなわち、 C:O,10重量%以下 Si:1.0重量%以下 Mn:3.0重量%以下 Cr:8重量%以上30重量%以下 Aff:1重量%以上8重量%以下 Y、Nd、Gdのうち一種または二種以上:O,OO1
重量%以上以下 i重量%以下N  :0.05重量%
以下 であって、残部がFeおよび不可避不純物から成るステ
ンレス鋼の表面に、針状または棒状の八β203を有す
る皮膜を形成させたことを特徴とする遠赤外線放射体で
ある。また上記Y等の希土類元素とLaおよび/または
Ceとの合計量がo、ooi重量%以上0.1重量%以
下でもよい。
That is, C: O, 10 wt% or less Si: 1.0 wt% or less Mn: 3.0 wt% or less Cr: 8 wt% or more and 30 wt% or less Aff: 1 wt% or more and 8 wt% or less Y, Nd, One or more of Gd: O, OO1
Weight% or more, i Weight% or lessN: 0.05% by weight
The following is a far-infrared radiator characterized in that a film having needle-shaped or rod-shaped 8β203 is formed on the surface of stainless steel, the balance of which is Fe and unavoidable impurities. Further, the total amount of rare earth elements such as Y and La and/or Ce may be o, ooi weight % or more and 0.1 weight % or less.

さらに放射体として種々の加工を要求される場合には、
上記成分にさらにTi、Nb、Zr、■、Taから選ば
れた一種または二種以上を添加した遠赤外線放射体とす
る。その添加量は前記CとNの合計の3倍以上0.7重
量%以下である。このTi、Nb、Zr、V、Taから
選ばれた一種または二種以上を添加したステンレス鋼の
表面に針状または棒状のAl2203を有する皮膜を形
成した遠赤外線放射体とする。
Furthermore, if various processing is required as a radiator,
A far-infrared radiator is obtained by adding one or more selected from Ti, Nb, Zr, (2), and Ta to the above components. The amount added is at least 3 times the total of C and N and at most 0.7% by weight. A far-infrared radiator is obtained by forming a film having needle-shaped or rod-shaped Al2203 on the surface of stainless steel to which one or more selected from Ti, Nb, Zr, V, and Ta are added.

これらのステンレス鋼は500℃以上1200°C以下
の酸化雰囲気で加熱することにより針状または棒状のア
ルミナ結晶を生成する。
These stainless steels produce needle-shaped or rod-shaped alumina crystals by heating in an oxidizing atmosphere of 500° C. or more and 1200° C. or less.

このアルミナ結晶は、基本的にAffが主体であるが、
実際にはFe、Cr、Mn、希土類金属が含まれており
、またTi、Zr、Nb、V、Taから選ばれた元素を
添加する場合にはこれらの元素も含まれる。
This alumina crystal is basically composed of Aff, but
Actually, Fe, Cr, Mn, and rare earth metals are included, and when an element selected from Ti, Zr, Nb, V, and Ta is added, these elements are also included.

本発明においては遠赤外線放射特性の優れた被覆を生成
するものであり、これらの元素がアルミナ中に不純物と
して混入していても、表面の結晶形状が針状あるいは棒
状となって表面積効果を有していれば放射特性への影響
は生じない。
In the present invention, a coating with excellent far-infrared radiation properties is produced, and even if these elements are mixed into alumina as impurities, the surface crystal shape becomes needle-like or rod-like and has a surface area effect. If it is, there will be no effect on the radiation characteristics.

また、ステンレス鋼の表面に、ブラスト処理を行って加
工歪を与えておくと、酸化処理によって有効に針状ある
いは棒状の結晶を生成することができる。
Furthermore, if the surface of stainless steel is subjected to a blasting process to give processing strain, acicular or rod-shaped crystals can be effectively generated by the oxidation process.

〔作用] 本発明による遠赤外線放射体の被覆層は基体から反応生
成したものであり、基体と結晶的に結合している。従っ
て、耐剥離性が大きい。また被覆層最表面が針状あるい
は棒状のアルミナの結晶から成っており、高い有効放射
面積を有する。
[Function] The coating layer of the far-infrared radiator according to the present invention is produced by reaction from the substrate, and is crystallized with the substrate. Therefore, peeling resistance is high. Furthermore, the outermost surface of the coating layer is made of needle-shaped or rod-shaped alumina crystals, and has a large effective radiation area.

ここで本発明の成分限定理由を説明すると以下の通りで
ある。
Here, the reasons for limiting the components of the present invention are as follows.

Cはステンレス鋼を硬化させ、延性を低下させるため低
くする必要がある。遠赤外線放射体としては、板のまま
で複雑な加工を施さないで使用することも可能であり、
上限を0.10重量%とした。
C hardens stainless steel and reduces ductility, so it needs to be low. As a far-infrared radiator, it is possible to use the plate as is without any complicated processing.
The upper limit was set to 0.10% by weight.

Sl: Siは酸化皮膜と基体の界面に濃化して、界面酸化物と
なり皮膜の剥離抵抗を高めるが、高過ぎると界面で厚い
5i02層を形成し、かえって剥離抵抗を損なうため、
上限を1.0重量%とする必要がある。
Sl: Si concentrates at the interface between the oxide film and the substrate, becomes an interfacial oxide, and increases the peeling resistance of the film, but if it is too high, it forms a thick 5i02 layer at the interface, which actually impairs the peeling resistance.
The upper limit needs to be 1.0% by weight.

Mn・ Mnは酸化物中の拡散速度が大きく、酸化皮膜を厚(す
る効果があり、針状あるいは棒状の結晶を成長させるた
めに有効であり、これらを通じて遠赤外線特性を高める
が、多量に過ぎると、耐酸化性そのものを劣化させるた
め、上限は3.0重量%に限定される。
Mn/Mn has a high diffusion rate in oxides, has the effect of thickening the oxide film, and is effective for growing needle-shaped or rod-shaped crystals, and through these enhances far-infrared characteristics, but too much Since the oxidation resistance itself deteriorates, the upper limit is limited to 3.0% by weight.

CF= C,rはステンレス鋼としての基本組成であり、有効な
酸化皮膜を形成するためには8重量%以上必要である。
CF=C,r is the basic composition of stainless steel, and 8% by weight or more is required to form an effective oxide film.

30重量%を超えると、靭性が低下し、遠赤外線放射体
素材としての高AI2添加を行った場合、製造上の問題
が生じる。
If it exceeds 30% by weight, the toughness decreases, and if high AI2 is added as a far-infrared radiator material, manufacturing problems will occur.

Al1: A℃はステンレス表面にアルミナの皮膜を形成するため
に必須の元素であるが、1重量%未満ではアルミナ皮膜
が得られない。8重量%を超えるとC「を8重量%程度
にしても靭性が低下し、製造上の問題が生じる。
Al1: A°C is an essential element for forming an alumina film on the stainless steel surface, but if it is less than 1% by weight, an alumina film cannot be obtained. If it exceeds 8% by weight, the toughness will decrease even if the C content is about 8% by weight, causing manufacturing problems.

Y、Nd、Gd・ これらの希土類元素は酸化皮膜の密着性を改善する作用
を有し、そのためには多量の添加が望ましいが、0.1
重量%を超えると粒界に偏析して熱間加工性を損なう。
Y, Nd, Gd - These rare earth elements have the effect of improving the adhesion of the oxide film, and for that purpose it is desirable to add a large amount, but 0.1
If it exceeds % by weight, it will segregate at grain boundaries and impair hot workability.

これらの希土類元素はアルミナの結晶を針状にするのに
有効であり、その効果は0.001重量%以上で発揮さ
れ、放射特性の向」二に有効である。またこれらの希土
類元素の一種または二種以上にさらにCeまたは/およ
びLaを加えた合計量が0.1重量%以下0.001重
量%以」二の範囲にあっても同様の作用効果を得ること
ができる。
These rare earth elements are effective in making the alumina crystals needle-like, and this effect is exhibited at 0.001% by weight or more, and is effective in improving the radiation characteristics. Furthermore, similar effects can be obtained even if the total amount of one or more of these rare earth elements plus Ce or/and La is within the range of 0.1% by weight or less and 0.001% by weight or more. be able to.

N。N.

NはCと同様ステンレス鋼を脆くする。特に高A、2で
ある本発明鋼においては、粗大なA℃Nとなって清浄度
を低下させる。平板のままでの使用を考慮すると、上限
は0.05重量%に限定される。
Like C, N makes stainless steel brittle. In particular, in the steel of the present invention having a high A.2, the A° C.N becomes coarse and the cleanliness deteriorates. Considering the use as a flat plate, the upper limit is limited to 0.05% by weight.

Ti、Nb、Zr、V、Ta: T1、Nb、Zr、V、Taは、C,Nを固定しステン
レス鋼の加工性を高める。その効果は、少なくとも(C
十N)の3倍以上で発揮されるが、0.7重量%を超え
ると、かえって、鋼をもろくする。
Ti, Nb, Zr, V, Ta: T1, Nb, Zr, V, and Ta fix C and N and improve the workability of stainless steel. The effect is at least (C
10N), but if it exceeds 0.7% by weight, it will actually make the steel brittle.

以上のステンレス鋼表面に有効に酸化皮膜を形成するに
は、500℃以上の温度で加熱する必要があるが、加熱
温度が1200℃を超えると、針状または棒状の酸化物
が得られなくなるため、加熱温度範囲は500℃以上1
200°C以下に限定される。
In order to effectively form an oxide film on the above stainless steel surface, it is necessary to heat it at a temperature of 500°C or higher; however, if the heating temperature exceeds 1200°C, needle-shaped or rod-shaped oxides cannot be obtained. , heating temperature range is 500℃ or higher1
Limited to 200°C or less.

ステンレス鋼表面にブラスト処理により加工歪を加える
と針状結晶が生成し易い。ブラストの程度は大きいほど
良い。しかし全くなくても針状結晶は生成する。
When processing strain is applied to the stainless steel surface by blasting, needle-like crystals are likely to form. The greater the degree of blasting, the better. However, needle-shaped crystals can be formed even if there is no such substance.

〔実施例1 第1表に示す組成の材料を1.5 m m厚の扱に圧延
し、950℃で光輝焼鈍仕上げした。これらの材料を第
2表に示す酸化処理条件で処理し、遠赤外線放射特性を
測定した。また500°Cに加熱後、水焼入を行い、皮
膜の剥離抵抗を調べた。これらの結果を第2表に示した
[Example 1] A material having the composition shown in Table 1 was rolled to a thickness of 1.5 mm and bright annealed at 950°C. These materials were treated under the oxidation treatment conditions shown in Table 2, and their far-infrared radiation characteristics were measured. Further, after heating to 500°C, water quenching was performed, and the peeling resistance of the film was examined. These results are shown in Table 2.

第1表、第2表から明らかなように、本発明による放射
材料は遠赤外線放射特性と皮膜の耐剥離性に優れており
、このような材料は本発明方法により製造することがで
きる。
As is clear from Tables 1 and 2, the radiation material according to the present invention has excellent far-infrared radiation characteristics and film peeling resistance, and such a material can be produced by the method of the present invention.

第  2  表 註) *l・放射特性は400°Cでの3〜10μの波
長における対黒体比*2 : 500℃加熱後、水冷に
よる剥離の有無による+2−336一 [発明の効果〕 本発明の遠赤外線放射体は急激な熱応力を受ける用途に
対しても皮膜の耐剥離性が優れており、高い遠赤外線放
射特性を有することから、各種暖房装置、乾燥炉、媒焼
炉なと応用範囲は広(、遠赤外線の省エネルギー効果や
浸透効果を有効に利用することができ、またTi、Nb
、Zr、V、Taを含むと加工性に優れたものとなる。
Table 2 (Note) *Radiation characteristics: Ratio to black body at wavelengths of 3 to 10μ at 400°C *2: After heating to 500°C, +2-336 depending on the presence or absence of peeling due to water cooling [Effects of the invention] This book The far-infrared radiator of the invention has excellent film peeling resistance even in applications that are subject to sudden thermal stress, and has high far-infrared radiation characteristics, so it can be used in various heating devices, drying furnaces, and mortar furnaces. The range of applications is wide (the energy saving effect and penetration effect of far infrared rays can be effectively used, and Ti, Nb
, Zr, V, and Ta provide excellent workability.

本発明方法によれば、針状または棒状のAff203を
有する皮膜を容易に形成することができ、熱処理前にブ
ラスト処理をすれば、−層容易となる。
According to the method of the present invention, a film having needle-like or rod-like Aff203 can be easily formed, and if blasting is performed before heat treatment, a -layer can be easily formed.

Claims (1)

【特許請求の範囲】 1 C:0.10重量%以下 Si: 1.0重量%以下 Mn:3.0重量%以下 Cr:8重量%以上30重量%以下 Al:1重量%以上8重量%以下 Y、Nd、Gdのうち一種または二種以上 :0.001重量%以上0.1重量%以下 N:0.05重量%以下 残部はFeおよび不可避的不純物から成るステンレス鋼
であって、表面に針状または棒状のAl_2O_3を有
する皮膜を形成したことを特徴とする遠赤外線放射体。 2 Y、Nd、Gdのうち一種または二種以上とLa及
び/またはCeとの合計量が0.001重量%以上0.
1重量%以下である請求項1記載の遠赤外線放射体。 3 含有成分としてさらにTi、Nb、Zr、V、Ta
から選ばれた一種または二種以上を前記CとNの合計の
3倍以上0.7重量%以下を含み、残部Feおよび不可
避的不純物から成る請求項1または2記載の遠赤外線放
射 体。 4 ステンレス鋼を酸化性雰囲気中で500℃以上12
00℃以下の温度で加熱することを特徴とする請求項1
ないし3記載の遠赤外線放射体の製造方法。 5 ステンレス鋼表面に、ブラスト処理をして加工歪を
与えた後、加熱することを特徴とする請求項4記載の製
造方法。
[Claims] 1 C: 0.10 wt% or less Si: 1.0 wt% or less Mn: 3.0 wt% or less Cr: 8 wt% or more and 30 wt% or less Al: 1 wt% or more and 8 wt% One or more of the following Y, Nd, and Gd: 0.001% to 0.1% by weight N: 0.05% by weight or less The remainder is stainless steel consisting of Fe and unavoidable impurities, and the surface A far-infrared radiator characterized in that a film having needle-like or rod-like Al_2O_3 is formed on the material. 2 The total amount of one or more of Y, Nd, and Gd and La and/or Ce is 0.001% by weight or more.0.
The far-infrared radiator according to claim 1, wherein the amount is 1% by weight or less. 3 In addition, Ti, Nb, Zr, V, Ta are included as components.
The far-infrared radiator according to claim 1 or 2, wherein the far-infrared radiator contains at least 3 times the total amount of C and N and at most 0.7% by weight of one or more selected from the following, and the remainder is Fe and unavoidable impurities. 4 Stainless steel heated to 500℃ or higher in an oxidizing atmosphere12
Claim 1 characterized in that the heating is performed at a temperature of 00°C or less.
A method for producing a far-infrared radiator according to items 3 to 3. 5. The manufacturing method according to claim 4, wherein the stainless steel surface is heated after being subjected to a blasting process to give processing strain.
JP706088A 1988-01-18 1988-01-18 Far infrared radiator and its production Pending JPH01184257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP706088A JPH01184257A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP706088A JPH01184257A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Publications (1)

Publication Number Publication Date
JPH01184257A true JPH01184257A (en) 1989-07-21

Family

ID=11655522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP706088A Pending JPH01184257A (en) 1988-01-18 1988-01-18 Far infrared radiator and its production

Country Status (1)

Country Link
JP (1) JPH01184257A (en)

Similar Documents

Publication Publication Date Title
JPS6317901B2 (en)
CA1127940A (en) Method of making surface layers with improved corrosion properties on articles of iron-chromium alloys, and a surface layer made by the method
JPS6326205A (en) Production of steel sheet having excellent weatherability and sea water resistance
JPS58157953A (en) Manufacture of high strength surface layer peelability resistant aluminum alloy and alloy thereof
JPS60149729A (en) Production of cold rolled steel sheet for press forming
WO2022048990A1 (en) Steel component produced by hot-shaping a steel flat product, steel flat product and method for producing a steel component
JPH01184257A (en) Far infrared radiator and its production
JPH01184255A (en) Far infrared radiator and its production
JPH01184258A (en) Far infrared radiator and its production
JPH01184256A (en) Far infrared radiator and its production
TWI243211B (en) Method for manufacturing high adherence enamel-coating steel sheet with superior formability
JPS6326335A (en) Far infrared ray radiator and its production
US3074829A (en) Titanium article
JP2002249858A (en) Iron - chromium - aluminum alloy for heating wire
KR910018560A (en) Manufacturing method of low iron loss grain oriented silicon steel sheet
JPH02156043A (en) Al killed steel sheet for porcelain enameling and its production
JPH02205660A (en) Manufacture of aluminum alloy sheet having excellent baking hardenability of paint
JPH0621334B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent deep drawability and method for producing the same
JPH0354186B2 (en)
JPS6053087B2 (en) Method for producing hot-rolled steel plate for enameling with excellent formability and chipping resistance
JPH0452252A (en) Ferritic stainless steel excellent in activated alumina coating characteristic and its production
JPS63227790A (en) High strength stainless steel and its production
JPH01139750A (en) Far infrared radiator excellent in corrosion resistance and its production
JPH02228451A (en) Iron-base shape memory alloy
JPH0288231A (en) Far infrared ray radiating object