JPS6351356B2 - - Google Patents

Info

Publication number
JPS6351356B2
JPS6351356B2 JP55144598A JP14459880A JPS6351356B2 JP S6351356 B2 JPS6351356 B2 JP S6351356B2 JP 55144598 A JP55144598 A JP 55144598A JP 14459880 A JP14459880 A JP 14459880A JP S6351356 B2 JPS6351356 B2 JP S6351356B2
Authority
JP
Japan
Prior art keywords
heating resistor
ceramic
molybdenum
resistance value
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55144598A
Other languages
Japanese (ja)
Other versions
JPS5767297A (en
Inventor
Naryoshi Yamamoto
Nobukazu Sagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP55144598A priority Critical patent/JPS5767297A/en
Publication of JPS5767297A publication Critical patent/JPS5767297A/en
Publication of JPS6351356B2 publication Critical patent/JPS6351356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツクのうち、窒化珪素セラミツ
ク体中に発熱抵抗体を埋設したセラミツクヒータ
に関するものである。 従来のセラミツクヒータとしては、例えば第1
図の如く、アルミナを原料とした焼成前のセラミ
ツク生シートの上下一対のシート1及び2のいず
れかの対向面に所定の電気抵抗値が得られるよう
に櫛歯状、渦巻状など任意の形状、幅、長さの発
熱抵抗パターン3がモリブテン−マンガン、モリ
ブテン−タングステン粉末等を混練したペースト
を用いてプリントし、形成した後、該発熱抵抗パ
ターン3を挾着する如くシート1とシート2とを
積層するとともに発熱抵抗パターン3の両末端
3′(他方は図示せず)を露出する如くシート2
の一部を切欠いておくか、あるいはシート1,2
のいずれか一方を若干ずらした位置にて重ね合せ
るか、又は積層した後、スルーホールをシート2
に設けるなどしてリード端子を取付ける溶着部分
を形成する如くシート1,2を積層して平板状あ
るいは第2図に示した円筒状など所望の形状に成
形した後1600℃付近の還元雰囲気中で焼結一体化
する。 このようにセラミツク体内部に発熱抵抗パター
ン3を内蔵し、該パターン3の始端3′及び図示
しない終端部分にはニツケルメツキ等を施した
後、銀ロウ付してリード端子4,4′を構成し、
これら端子4,4′より通電することによりジユ
ール熱を発生させるようにしたアルミナ焼結体よ
り成るセラミツクヒータが広く利用されている。 しかしながら、このようにアルミナ焼結体に上
述の如き厚膜法によつて形成し、埋設せしめた発
熱抵抗体を備えたセラミツクヒータでは1000℃以
上の飽和温度で約30秒間保持した後、電源を切り
60秒間経過してから再び飽和温度まで上昇させる
というくり返し試験を行ない発熱抵抗体自体の抵
抗値変化を調べたところ、飽和温度1000℃で1500
サイクルくり返した場合は約10%も抵抗値が増加
し、また、1100℃の飽和温度で同じく1500回くり
返した場合では、約20〜30%の抵抗値が増加する
など、例えばグロープラグとして飽和温度に近い
高い温度域でくり返し使用するような場合、抵抗
値が増加することによつて同一の印加電圧では発
熱量が漸減し、安定した高温発熱特性をもつたセ
ラミツクヒータを得ることができなかつた。また
高い温度にまで急速に発熱させた場合、アルミナ
セラミツクを用いたものでは熱衝撃によつて破損
することがある。さらに上述の如き従来例のプリ
ント手段による発熱抵抗パターンより成る発熱抵
抗体に代えてタングステン、モリブテン等の高融
点金属の線状体、板状体を発熱抵抗体としてアル
ミナセラミツク中に埋設したものでは比較的抵抗
値の変化は少ないもののアルミナセラミツクとの
熱膨張差が大きく、このためアルミナセラミツク
に亀裂が生じたり、破損する恐れが多かつた。 本発明は上述の如き事情に鑑みて、特に1000℃
近傍の温度にまで急速に加熱するグロープラグに
好適な高温加熱特性を有し、耐熱衝撃性に優れ、
熱膨張差をも吸収するようにしたセラミツクヒー
タを提供せんとするものである。 以下、本発明実施例を具体的に詳述すれば、第
3図に示したセラミツクヒータHとしては、窒化
珪素(Si3N4)粉末を所定形状に成形加工したも
ので、発熱抵抗体5を構成する高融点金属である
タングステンあるいはモリブテンの線状(もしく
は薄板状)体で発熱部5′とするべく櫛歯状に成
形したものをセラミツク成型用の金型中に設置し
た後窒化珪素を主成分とし、適当な添加物を加え
た粉末を充填してプレス成型を行ない、しかる後
セラミツクの焼成温度にあわせホツトプレス法に
より焼成して窒化珪素セラミツクヒータHを作成
した。 このように製作した窒化珪素セラミツクより成
るヒータHの昇温くり返し試験を行なつたところ
第1表、第2表のような結果が得られた。なお、
第1表に挙げた特性試験を行なつたヒータのサン
プルとしては窒化珪素セラミツクに埋設した発熱
抵抗体5は線径(φ)が200μmのタングステン
線状体を用いたものであり、また第2表に挙げた
特性は窒化珪素セラミツク中には厚さ50μmで幅
200μmのモリブテン薄板を発熱抵抗体7として
埋設して成る窒化珪素セラミツクヒータの特性を
調べたものである。 ところで、このヒータHは線径が200μmのタ
ングステン線より成る発熱抵抗体5を埋設したも
の、及びモリブテン薄板より成る発熱抵抗体7を
埋設して作製した窒化珪素セラミツクヒータHの
焼成温度がNo.1〜20ののサンプルの各々は第1
表、第2表中に示した1400〜1800℃の範囲内のそ
れぞれ異なつた温度で焼成されることによつて各
焼成温度に対応した異なつた厚さのケイ化タング
ステン又はケイ化モリブテン層などのケイ化物層
が1〜70μmの範囲の厚さで発熱抵抗体5,7の
表面に生成されている。
The present invention relates to a ceramic heater in which a heating resistor is embedded in a silicon nitride ceramic body. As a conventional ceramic heater, for example, the first
As shown in the figure, any shape such as a comb-like shape or a spiral shape can be formed so that a predetermined electrical resistance value can be obtained on the opposing surfaces of either the upper and lower pair of sheets 1 and 2 of the unfired ceramic raw sheet made of alumina. After the heating resistor pattern 3 with width and length is printed using a paste kneaded with molybdenum-manganese, molybdenum-tungsten powder, etc. The sheet 2 is laminated so as to expose both ends 3' (the other is not shown) of the heating resistor pattern 3.
Either cut out a part of the sheet or cut out a part of the sheet.
After overlapping or laminating one of the sheets at a slightly shifted position, insert the through holes into the sheet 2.
The sheets 1 and 2 are stacked to form a welded part for attaching a lead terminal, and formed into a desired shape such as a flat plate or a cylinder as shown in Fig. 2, and then heated in a reducing atmosphere at around 1600°C. Sintered and integrated. As described above, the heating resistor pattern 3 is built inside the ceramic body, and the starting end 3' and the terminal end (not shown) of the pattern 3 are plated with nickel, etc., and then silver soldered to form the lead terminals 4, 4'. ,
Ceramic heaters made of an alumina sintered body are widely used to generate Joule heat by passing current through these terminals 4, 4'. However, in a ceramic heater equipped with a heating resistor formed on an alumina sintered body by the above-mentioned thick film method and embedded, the power supply is turned off after being held at a saturation temperature of 1000°C or higher for approximately 30 seconds. Cut
When we repeated the test by raising the temperature to the saturation temperature again after 60 seconds and investigated the change in resistance of the heating resistor itself, we found that at the saturation temperature of 1000℃,
When the cycle is repeated, the resistance value increases by about 10%, and when the same cycle is repeated 1500 times at a saturation temperature of 1100°C, the resistance value increases by about 20 to 30%. For example, as a glow plug, the resistance value increases by about 10%. When used repeatedly in a high temperature range close to . Furthermore, when rapidly heated to a high temperature, those made of alumina ceramic may be damaged by thermal shock. Furthermore, instead of the heating resistor consisting of the heating resistor pattern printed by the conventional printing means as described above, a wire or plate-like body of a high-melting point metal such as tungsten or molybdenum is embedded in the alumina ceramic as the heating resistor. Although the change in resistance value is relatively small, the difference in thermal expansion with alumina ceramic is large, and as a result, there is a high risk that the alumina ceramic will crack or break. In view of the above-mentioned circumstances, the present invention has been developed in particular to
It has high temperature heating characteristics suitable for glow plugs that rapidly heat up to nearby temperatures, and has excellent thermal shock resistance.
It is an object of the present invention to provide a ceramic heater that can also absorb differences in thermal expansion. The embodiments of the present invention will be described in detail below. The ceramic heater H shown in FIG. 3 is made by molding silicon nitride (Si 3 N 4 ) powder into a predetermined shape. A linear (or thin plate) body of tungsten or molybdenum, which is a high-melting point metal, is formed into a comb-like shape to form the heat generating part 5' and placed in a mold for ceramic molding. A silicon nitride ceramic heater H was prepared by filling powder containing the main ingredients and appropriate additives and press-molding, followed by firing by hot pressing at the firing temperature of ceramic. When the heater H made of silicon nitride ceramic thus manufactured was subjected to repeated heating tests, the results shown in Tables 1 and 2 were obtained. In addition,
As for the heater sample for which the characteristic tests listed in Table 1 were carried out, the heating resistor 5 embedded in silicon nitride ceramic was a tungsten linear body with a wire diameter (φ) of 200 μm; The properties listed in the table apply to silicon nitride ceramics with a thickness of 50 μm and a width of
The characteristics of a silicon nitride ceramic heater in which a 200 μm thin molybdenum plate was embedded as a heating resistor 7 were investigated. By the way, this heater H is a silicon nitride ceramic heater H in which a heating resistor 5 made of a tungsten wire with a wire diameter of 200 μm is embedded and a heating resistor 7 made of a thin molybdenum plate is embedded, and the firing temperature is No. Each of the samples from 1 to 20 is the first
By firing at different temperatures within the range of 1400 to 1800°C shown in Table 2, tungsten silicide or molybdenum silicide layers of different thicknesses corresponding to each firing temperature are formed. A silicide layer is formed on the surface of the heating resistors 5, 7 with a thickness in the range of 1 to 70 μm.

【表】【table】

【表】【table】

【表】 これら第1表、第2表に挙げたくり返し試験の
条件は室温(20℃)より800℃までを2秒間で立
ち上らせその後、通電を停止し、60秒間経過して
から再び2秒間で800℃まで立ち上らせるくり返
しを行なつた結果である。 このくり返し試験の結果から明らかなように発
熱抵抗体5としてタングステン線を埋設し、該タ
ングステン線の表面上に生成されるケイ化タング
ステン層の厚みが0〜5μmと20〜50μmの範囲に
ある場合は昇温くり返し回数の増加に伴い比較的
大きく抵抗値が変化していることがわかる。これ
に対し、ほぼ5〜25μmの厚さのケイ化タングス
テン層を有する場合は比較的安定しており、昇温
くり返し回数の増加によつても抵抗値の増え方は
少く、発熱特性の安定したセラミツクヒータを得
ることができる。 一方、モリブテン薄板を発熱抵抗体7として埋
設し、該モリブテン薄板の表面に形成したケイ化
モリブテン層の厚さと抵抗値変化の関係は第2表
で示したようにケイ化モリブテン層の厚みが0〜
6μmの範囲で形成されているものでは、初期抵
抗値0.23Ωに対し1500回くり返しで27%から大き
いもので57%もの抵抗値が増大している。また厚
みが30〜70μmの場合も同様に抵抗値が大幅に増
大している。これに対して厚みが6〜30μmのケ
イ化モリブテン層が形成されているものにおいて
は、例えば初期抵抗値が0.489Ωに対して、1500
回の昇温くり返し後で0.491Ωであるなどほとん
ど変化が見られず、抵抗値の変動が少く、所定の
電圧を印加した場合も安定した発熱性能を発揮す
るものであつた。 上記のように発熱抵抗体としてのタングステン
線モリブテン薄板にそれぞれ形成されるケイ化タ
ングステン、ケイ化モリブテンなどの層(皮膜)
の厚さは第1表、第2表に示した窒化珪素セラミ
ツクヒータ製作時の焼成温度と深い関連を持つて
いる。 即ち、焼成温度が1400〜1800℃の範囲において
高い焼成温度になるほど薄い層が形成されている
が、これは窒化珪素セラミツクの主成分を成して
いる珪素(Si)と金属(タングステン、モリブテ
ンなど)が高い温度になるほど結合反応が大きく
なるためであると考えられる。 また、このような焼成時に表面に生成、被着さ
れるケイ化物層が発熱抵抗体の酸化保護膜として
作用する。従つてケイ化タングステン、ケイ化モ
リブテンなど、ケイ化物層の厚みが0〜5μm程
度では酸化保護膜としてはほとんど作用せず、そ
れ故、0〜5μm程度のケイ化物層が生成された
発熱抵抗体では昇温くり返し回数が多くなるに従
い、次第に酸化されることによつて抵抗値が増大
する。一方、発熱抵抗体表面のケイ化物層の厚さ
が30〜70μmと比較的厚い場合は酸化保護(防
止)膜としてより完全な作用を期待できるかの如
く思われるが、実際には上述の如く大きな抵抗値
の変動を示している。この原因としてはケイ化タ
ングステン、ケイ化モリブテン等のケイ化物層を
構成する結晶が大きく、そのため昇温くり返しに
よる熱サイクルでもつてケイ化物層に多数の微細
なクラツクが生じやすく、したがつてケイ化物層
が厚い割りには酸化防止の保護層としての役目は
小さく、その結果、熱サイクルを重ねるに従つて
発熱抵抗体としての抵抗値が比較的大きな変化を
するものと考えられる。 以上のように本発明によれば、窒化珪素を主成
分とするセラミツク体中にタングステン、モリブ
テンなどより成る高融点金属で作つた線状、板状
の発熱抵抗体表面に適度の厚みをもつたケイ化物
層を形成したものが埋設されたヒータであるため
抵抗値が使用回数によつて変化するようなことも
なく、またケイ化物層でもつて熱膨張差が吸収さ
れるため高温使用においても長寿命で安定した高
温発熱特性をもつた窒化珪素セラミツクヒータを
提供することができる。
[Table] The conditions for the repeated tests listed in Tables 1 and 2 are to raise the temperature from room temperature (20°C) to 800°C in 2 seconds, then stop the electricity supply, and then restart the test after 60 seconds. This is the result of repeatedly raising the temperature to 800℃ in 2 seconds. As is clear from the results of this repeated test, when a tungsten wire is buried as the heating resistor 5 and the thickness of the tungsten silicide layer formed on the surface of the tungsten wire is in the range of 0 to 5 μm and 20 to 50 μm. It can be seen that the resistance value changes relatively significantly as the number of repeated heating increases. On the other hand, when it has a tungsten silicide layer with a thickness of approximately 5 to 25 μm, it is relatively stable, and the resistance value does not increase much even with an increase in the number of repetitions of heating, and the heat generation characteristics are stable. Ceramic heaters can be obtained. On the other hand, a molybdenum thin plate is buried as the heating resistor 7, and the relationship between the thickness of the molybdenum silicide layer formed on the surface of the molybdenum thin plate and the resistance change is as shown in Table 2. ~
For those formed in the 6 μm range, the initial resistance value was 0.23Ω, but after 1500 repetitions, the resistance value increased from 27% to 57% for the larger ones. Similarly, when the thickness is 30 to 70 μm, the resistance value increases significantly. On the other hand, in the case where a molybdenum silicide layer with a thickness of 6 to 30 μm is formed, the initial resistance value is 0.489Ω, for example, 1500Ω.
After repeated heating times, the resistance was 0.491Ω, showing almost no change, with little variation in resistance value, and stable heat generation performance even when a predetermined voltage was applied. As mentioned above, layers (films) of tungsten silicide, molybdenum silicide, etc. formed on the tungsten wire and molybdenum thin plates used as heating resistors.
The thickness is closely related to the firing temperature when manufacturing the silicon nitride ceramic heater shown in Tables 1 and 2. In other words, when the firing temperature is in the range of 1400 to 1800°C, the higher the firing temperature, the thinner the layer is formed. ) is thought to be because the higher the temperature, the stronger the bonding reaction becomes. Further, the silicide layer formed and deposited on the surface during such firing acts as an oxidation protective film for the heating resistor. Therefore, when the silicide layer of tungsten silicide, molybdenum silicide, etc. has a thickness of about 0 to 5 μm, it hardly acts as an oxidation protective film. As the number of repeated heating increases, the resistance value increases due to gradual oxidation. On the other hand, if the thickness of the silicide layer on the surface of the heating resistor is relatively thick (30 to 70 μm), it seems that it can be expected to have a more complete effect as an oxidation protection (prevention) film, but in reality, as mentioned above, It shows a large resistance value fluctuation. The reason for this is that the crystals constituting the silicide layer, such as tungsten silicide and molybdenum silicide, are large, and therefore, many fine cracks are likely to occur in the silicide layer even during thermal cycles due to repeated temperature increases, and therefore the silicide layer Although the layer is thick, its role as a protective layer for preventing oxidation is small, and as a result, the resistance value as a heat generating resistor is thought to change relatively greatly as thermal cycles are repeated. As described above, according to the present invention, a linear or plate-shaped heating resistor made of a high melting point metal such as tungsten or molybdenum in a ceramic body mainly composed of silicon nitride has an appropriate thickness on its surface. Since the heater has a buried silicide layer, the resistance value does not change depending on the number of times it is used, and the silicide layer also absorbs the difference in thermal expansion, so it can last for a long time even when used at high temperatures. It is possible to provide a silicon nitride ceramic heater that has stable high-temperature heat generation characteristics over its lifetime.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアルミナセラミツクを用いたヒ
ータの製造工程中途図、第2図は従来のセラミツ
クヒータの一部破断面図、第3図は本発明実施例
としての窒化珪素を用い板状に形成したヒータの
斜視図、第4図は本発明窒化珪素セラミツクを用
いたヒータを応用したグロープラグを一部破断し
て示す図である。 1,2:アルミナセラミツク生シート、3,
5,7:発熱抵抗体、6:窒化珪素セラミツク。
Fig. 1 is a partial view of a conventional ceramic heater manufacturing process, Fig. 2 is a partially cutaway cross-sectional view of a conventional ceramic heater, and Fig. 3 is a plate-shaped heater made of silicon nitride according to an embodiment of the present invention. FIG. 4 is a perspective view of the formed heater, and is a partially cutaway view showing a glow plug to which a heater using silicon nitride ceramic of the present invention is applied. 1, 2: Alumina ceramic raw sheet, 3,
5, 7: Heat generating resistor, 6: Silicon nitride ceramic.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素を主成分とするセラミツク体中にタ
ングステン、モリブデンなどの高融点金属より成
る発熱抵抗体を埋設し、該発熱抵抗体の表面に厚
みが2〜30μmの珪化物層が形成されていること
を特徴とするセラミツクヒータ。
1 A heating resistor made of a high melting point metal such as tungsten or molybdenum is embedded in a ceramic body mainly composed of silicon nitride, and a silicide layer with a thickness of 2 to 30 μm is formed on the surface of the heating resistor. A ceramic heater characterized by:
JP55144598A 1980-10-15 1980-10-15 Ceramic heater Granted JPS5767297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55144598A JPS5767297A (en) 1980-10-15 1980-10-15 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55144598A JPS5767297A (en) 1980-10-15 1980-10-15 Ceramic heater

Publications (2)

Publication Number Publication Date
JPS5767297A JPS5767297A (en) 1982-04-23
JPS6351356B2 true JPS6351356B2 (en) 1988-10-13

Family

ID=15365767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55144598A Granted JPS5767297A (en) 1980-10-15 1980-10-15 Ceramic heater

Country Status (1)

Country Link
JP (1) JPS5767297A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165395A (en) * 1983-03-09 1984-09-18 いすゞ自動車株式会社 Heat generating element
JPS62132754A (en) * 1985-12-06 1987-06-16 株式会社アイジー技術研究所 Ceramic formed body
JP2534847B2 (en) * 1986-07-31 1996-09-18 京セラ株式会社 Ceramic Heater
JP2538973B2 (en) * 1988-03-24 1996-10-02 日本碍子株式会社 Ceramic heater manufacturing method
JP2754814B2 (en) * 1989-12-12 1998-05-20 松下電器産業株式会社 Heater element
KR100280634B1 (en) * 1996-05-05 2001-02-01 세이이치로 미야타 Electric heating element and electrostatic chuck using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914500A (en) * 1973-09-04 1975-10-21 United Aircraft Corp Tungsten wire reinforced silicon nitride articles and method for making the same
JPS523649A (en) * 1975-06-25 1977-01-12 Mitsubishi Chem Ind Ltd Improved method for sealing
JPS55126989A (en) * 1979-03-24 1980-10-01 Kyoto Ceramic Ceramic heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914500A (en) * 1973-09-04 1975-10-21 United Aircraft Corp Tungsten wire reinforced silicon nitride articles and method for making the same
JPS523649A (en) * 1975-06-25 1977-01-12 Mitsubishi Chem Ind Ltd Improved method for sealing
JPS55126989A (en) * 1979-03-24 1980-10-01 Kyoto Ceramic Ceramic heater

Also Published As

Publication number Publication date
JPS5767297A (en) 1982-04-23

Similar Documents

Publication Publication Date Title
JPS6219034B2 (en)
JP2002533646A (en) New ceramic igniter with improved oxidation resistance and method of use
JPS6351356B2 (en)
JPH0275188A (en) Ceramic heating element
CN209376697U (en) A kind of electronic cigarette and its chip heater
JPS598293A (en) Ceramic heater
JPS61235613A (en) Glow plug
JPH0452598B2 (en)
JP4044245B2 (en) Silicon nitride ceramic heater
JPH0286086A (en) Manufacture of ceramic heater
JP2534847B2 (en) Ceramic Heater
JP4044244B2 (en) Silicon nitride ceramic heater
KR0141656B1 (en) Method for manufacturing ceramic heaters of rod or tube type
JPH07106055A (en) Quick temperature raising heating element and manufacture thereof
JP2001244053A (en) Resistive element for heating
JPH04129189A (en) Ceramic heater
JP3366546B2 (en) Ceramic heater
JPH07151332A (en) Ceramic glow plug
JP2001351809A (en) Thick film resistor
JPH10335049A (en) Ceramic heater
JPH06201128A (en) Heat generating body for ignition
JPH0763027B2 (en) Ceramic heater and method of manufacturing the same
JP2000040603A (en) High temperature thermistor element, manufacture of the same and temperature sensor for high temperature using the same
JPH07139737A (en) Ceramic heater
JP2000286042A (en) Resistance element