JPH0532872B2 - - Google Patents

Info

Publication number
JPH0532872B2
JPH0532872B2 JP61052129A JP5212986A JPH0532872B2 JP H0532872 B2 JPH0532872 B2 JP H0532872B2 JP 61052129 A JP61052129 A JP 61052129A JP 5212986 A JP5212986 A JP 5212986A JP H0532872 B2 JPH0532872 B2 JP H0532872B2
Authority
JP
Japan
Prior art keywords
glass layer
ceramic
far
infrared
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61052129A
Other languages
Japanese (ja)
Other versions
JPS62211888A (en
Inventor
Yoshiro Maeda
Tamotsu Sakai
Hiroshi Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP5212986A priority Critical patent/JPS62211888A/en
Publication of JPS62211888A publication Critical patent/JPS62211888A/en
Publication of JPH0532872B2 publication Critical patent/JPH0532872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はセラミツク遠赤外線放射体の製造方法
に係り、特に加熱によつて効率的な遠赤外線は放
射するセラミツク遠赤外線放射体の製造方法に関
する。 [従来の技術] 遠赤外線は、赤外線域の特に波長の長い電磁波
(5.6〜1000μm)で、物質の熱運動を励起させ、
温度を上昇させる効果が強いため、熱線とも呼ば
れ、 被加熱物に吸収されやすい。(遠赤外線域に
しか吸収帯がないものもある。) したがつて被加熱物に対し遠赤外線の受光量
が多くなるため、内部熱浸透性が高い。 輻射による直接加熱方式となる。(空気など
の媒体を暖めることがなく省エネルギー的。) 雰囲気が低温でも加熱ができる。(ヒーター
の取扱が容易になる。また、焼き付き、色むら
が防止される。) 等の特徴を有することから、暖房や乾燥、調理等
の幅広い分野で利用されてきている。 このような遠赤外線の放射体としては、従来よ
り、遠赤外線の高効率放射体(放射率0.95以上)
で、しかも熱的、化学的に安定であることから、
セラミツクが用いられている。 従来、セラミツク遠赤外線放射体としては、 ジルコニア系セラミツクを溶融し、それを金
属基体に溶射して被膜を形成したもの、 第2図に示す如く、金属基体1に先ず、密着
力の強い下釉2を塗着焼き付け、次にジルコニ
ア、シリカ等の粒子3を含む上釉4を塗着焼き
付けたもの、 更に、、の改良策として、 第3図に示す如く、特定のセラミツク粒子5
を特定の釉薬6に混合して、金属基体1上に直
接塗着焼き付けたもの(特開昭58−190838)、 などが知られている。 [発明が解決しようとする問題点] しかしながら、で得られる放射体は、セラミ
ツク被膜が金属基体から剥離したり、クラツクを
生じ易く、しかも製造コストが高いという欠点を
有する。 また、、のものは、いずれも、表面の釉薬
層(第2図の4、第3図の6)の内部にセラミツ
ク粒子(第2図の3、第3図の5)が完全に埋没
しているため、遠赤外線の放射特性が悪いという
欠点を有する。 [問題点を解決するための手段] 本発明は上記従来の問題点を解決し、遠赤外線
の放射効率が高く、しかもセラミツクの剥離やク
ラツクの発生等の問題のない、セラミツク遠赤外
線放射体の製造方法を提供するものであつて、 基体表面にガラス層を焼き付け、その上にセラ
ミツク遠赤外線放射材粒子を焼き付ける遠赤外線
放射体の製造方法であつて、ガラス層の焼き付け
焼成温度よりも50〜150℃高い温度でセラミツク
遠赤外線放射材粒子をガラス層表面に焼き付ける
ことを特徴とするセラミツク遠赤外線放射体の製
造方法、 を要旨とするものである。 以下に本発明につき図面を参照して詳細に説明
する。 第1図a,bは、いずれも本発明の方法により
製造されるセラミツク遠赤外線放射体の一実施例
を示す断面図である。 第1図a,bに示す如く、本発明の方法により
製造されるセラミツク遠赤外線放射体10は、基
体11、基体11の表面のガラス層12、または
ガラス層12の表面12aに焼き付けたセラミツ
ク遠赤外線放射材粒子13を有するものである。 本発明において、基体11としては、例えば、
金属又はセラミツク焼結体が挙げられる。金属基
体としては、表面に形成するガラス層が炭素と反
応する可能性があることから、低炭素鋼や極低炭
素鋼が好ましく、また、放射体の用途が比較的低
温度域(例えば400℃以下)である場合にはステ
ンレス、Al合金、その他の各種合金を用いるこ
ともできる。 セラミツク焼結体の基体としては500〜600℃で
の使用が可能なものであれば良く、特に制限はな
いが、低熱膨張性で物理的・化学的に安定な基体
を与えることから、コージエライト、スポジユメ
ン、ジルコン等が好ましい。 基体11の表面に形成するガラス層12のガラ
ス組成には特に制限はなく、放射体の使用温度よ
りも高い軟化点を有するものであればよい。代表
的なものとしては下記第1表に示すようなものが
挙げられる。このようなガラス層の厚さは50〜
500μm程度とするのが好ましい。
[Industrial Field of Application] The present invention relates to a method for manufacturing a ceramic far-infrared radiator, and more particularly to a method for manufacturing a ceramic far-infrared ray radiator that radiates efficient far-infrared rays by heating. [Conventional technology] Far-infrared rays are electromagnetic waves with particularly long wavelengths (5.6 to 1000 μm) in the infrared region, which excite thermal motion of substances.
Because it has a strong effect of raising temperature, it is also called heat ray and is easily absorbed by the object being heated. (Some materials have an absorption band only in the far-infrared region.) Therefore, the amount of far-infrared rays received by the object to be heated increases, resulting in high internal heat penetration. Direct heating method using radiation. (Energy saving as there is no need to heat media such as air.) Heating can be done even in low temperature atmospheres. (It makes it easier to handle the heater. It also prevents burn-in and color unevenness.) Because of these characteristics, it has been used in a wide range of fields such as heating, drying, and cooking. Conventionally, far-infrared rays with high efficiency (emissivity of 0.95 or higher) have been used as far-infrared radiators.
Moreover, since it is thermally and chemically stable,
Ceramic is used. Conventionally, ceramic far-infrared radiators have been made by melting zirconia ceramic and spraying it onto a metal base to form a coating.As shown in Figure 2, the metal base 1 is first coated with a strong underglaze. 2 is applied and baked, and then a top glaze 4 containing particles 3 of zirconia, silica, etc.
It is known that the mixture is mixed with a specific glaze 6 and then applied and baked directly onto the metal substrate 1 (Japanese Patent Application Laid-Open No. 190838/1983). [Problems to be Solved by the Invention] However, the radiator obtained in the above method has drawbacks in that the ceramic coating tends to peel off from the metal substrate or cracks occur, and the manufacturing cost is high. In addition, the ceramic particles (3 in Figure 2, 5 in Figure 3) are completely buried inside the glaze layer on the surface (4 in Figure 2, 6 in Figure 3). Therefore, it has the disadvantage of poor far-infrared radiation characteristics. [Means for Solving the Problems] The present invention solves the above-mentioned conventional problems and provides a ceramic far-infrared radiator that has high far-infrared radiation efficiency and is free from problems such as ceramic peeling and cracking. The present invention provides a manufacturing method for a far-infrared radiator, which comprises baking a glass layer on the surface of a substrate and baking ceramic far-infrared radiating material particles thereon, the method comprising: baking a glass layer on the surface of the substrate; The gist of the present invention is a method for producing a ceramic far-infrared ray emitter, which is characterized by baking ceramic far-infrared ray emitter particles onto the surface of a glass layer at a temperature 150°C higher. The present invention will be explained in detail below with reference to the drawings. FIGS. 1a and 1b are sectional views showing one embodiment of a ceramic far-infrared radiator manufactured by the method of the present invention. As shown in FIGS. 1a and 1b, the ceramic far-infrared radiator 10 produced by the method of the present invention includes a base 11, a glass layer 12 on the surface of the base 11, or a ceramic far-infrared radiator baked on the surface 12a of the glass layer 12. It has infrared radiation material particles 13. In the present invention, as the base body 11, for example,
Examples include metal or ceramic sintered bodies. As the metal substrate, low-carbon steel or ultra-low carbon steel is preferable because the glass layer formed on the surface may react with carbon, and the radiator is used in a relatively low temperature range (e.g. 400℃). (below), stainless steel, Al alloy, and other various alloys can also be used. The substrate for the ceramic sintered body is not particularly limited as long as it can be used at 500 to 600°C, but cordierite, Spodium, zircon, etc. are preferred. There are no particular limitations on the glass composition of the glass layer 12 formed on the surface of the base 11, as long as it has a softening point higher than the operating temperature of the radiator. Typical examples include those shown in Table 1 below. The thickness of such a glass layer is 50 ~
The thickness is preferably about 500 μm.

【表】 ガラス層12の表面に焼き付けるセラミツク遠
赤外線放射材粒子としては、Al2O3系、MgO・
Al2O3系、Al2O3・TiO2系、ZrO2系、ZrO2・Y2
O3系、ZrO2・SiO2系、SiC系、Al2O3・SiO2
(3Al2O3・2SiO2)系、MnO系、ZrO2化合物、そ
の他各種のセラミツク粒子を用いることができ
る。セラミツク遠赤外線放射材粒子の粒径は0.2
〜200μm程度が好ましい。 本発明の方法において、ガラス層12の表面に
焼き付けたセラミツク遠赤外線放射材粒子は、ガ
ラス層の表面に粒子がなるべく密集分布している
ことが好ましいのであるが、分布の状態として
は、第1図aの如く、ガラス層12の表面12a
から粒子13の一部が突出するように分布してい
るものであつても良く、また、第1図bに示す如
く、粒子13がガラス層12の表面12a直下に
埋没して分布しているものであつても良い。勿
論、分布の状態は第1図a、bに示すものに何ら
制限されず、ガラス層12の表面12aから突出
した粒子と表面12a下に埋没した粒子とが規則
的又は不規則に混在した状態でもよい。 特に、第1図aの如く、粒子13をその少なく
とも一部がガラス層12の表面12aから突出す
るようにして分散させることにより、放射体の放
射表面積が大きくなり、しかもガラス層の影響
(放射線の吸収)が殆どなくなるため、極めて優
れた放射性能を得ることができるようになる。 このような本発明の方法により製造される放射
体の形状としては、特に制限はなく、棒状、板
状、その他様々な形状を採用し得る。 板状放射体で作製されるヒーターの構成として
は、第4図に示す如く、マイカ板14で絶縁処理
したニクロム線15の発熱体に金属製基板11を
設け、ガラス層12を形成し、このガラス層12
の表面にセラミツク粒子13を焼き付けたもの、
第5図に示す如く、下面に連続した溝11aを刻
設したセラミツク製基板11の溝11aにニクロ
ム線15を装入し、この基板11の表面にガラス
層を形成し、更にセラミツク粒子13を焼き付け
たものなどが挙げられる。 本発明のセラミツク遠赤外線放射体の製造方法
は、金属あるいはセラミツク焼結体等からなる基
体表面にガラス層を焼き付け、その上にセラミツ
ク遠赤外線放射材粒子をガラス層の焼き付け温度
よりも50〜150℃高い温度で焼き付けて、該粒子
をガラス層表面に分布させるものである。 基体表面にガラス層を焼き付けるグラスライニ
ング方法としては、通常採用される方法で良く、
必要に応じてサンドブラスト等の表面処理を施し
た基体表面に、ガラスを適当な厚さに塗布して焼
き付ければ良い。ガラスの塗布方法には、フリツ
ト(ガラス粉末)を振りかける乾式法とスリツプ
(泥漿状ガラス組成物)をスプレーガンで均一に
吹き付ける湿式法とがあり、本発明ではこのいず
れも採用し得る。ガラスを塗布した基体は乾燥
し、通常800〜900℃程度の(焼き付け)温度で焼
成し、ガラスを溶融させて融着させる。 本発明においては、このようにして形成したガ
ラス層の表面に、適当な粒度に調整したセラミツ
ク遠赤外線放射材粒子を水に分散させて吹き付け
る等の方法により適当量散布した後焼き付けて、
ガラス層表面に該粒子をなるべく密集するように
分布させるが、その際、該粒子の焼き付けを、ガ
ラス層の(焼き付け)焼成温度よりも50〜150℃
高い温度で行なう。粒子の焼き付け温度がガラス
層の焼成温度+50℃よりも低い場合には、粒子を
確実に焼き付けることができない。逆に粒子の焼
き付け温度がガラス層の焼成温度+150℃よりも
高い場合には、粒子がガラス層内部に埋没してし
まい、ガラス層表面上、あるいは表面直下に分散
しなくなる。好ましい粒子の焼き付け温度はガラ
ス層の焼成温度よりも60〜120℃高い温度である。 このようにして得られるセラミツク遠赤外線放
射体は、広い範囲の波長の遠赤外線を極めて効率
的に放射することができ、特に600℃程度までの
加熱に極めて有効である。 [作用] 本発明の方法により、ガラス層表面にセラミツ
ク遠赤外線放射材粒子を、ガラス層の焼き付け温
度よりも50〜150℃高い温度で焼き付けることに
より、容易にガラス層表面にセラミツク遠赤外線
放射材粒子を焼き付けることができる。 このような本発明により製造されるセラミツク
遠赤外線放射体は、ガラス層表面にセラミツク遠
赤外線放射材粒子が焼き付けられているので、ガ
ラス層の影響により遠赤外線が吸収される割合が
殆どない。そのため、表面のセラミツク遠赤外線
放射材粒子により、極めて効率的な放射が可能と
なる。 [実施例] 以下に実施例及び比較例を挙げて本発明をより
具体的に説明するが、本発明はその要旨を超えな
い限り、以下の実施例に限定されるものではな
い。 実施例 1 基板として下記第2表に示す組成のオープンコ
イル脱炭極低炭素鋼(大きさ300mm×400mm×1.2
mm(厚み))を用い、基板表面に前記第1表の配
合Aの組成のガラスを溶融後の厚さで100μmの厚
さとなるように施釉し、800℃で5分間焼成して
焼き付けた。次いで、得られたガラス層表面に、
下記第3表に示す組成のMnO2系セラミツク粉末
(粒径0.5〜5μm)を水に分散させて、粉末重量で
焼く5g噴き付け、900℃で5分間焼成して焼き
付けた。
[Table] Ceramic far-infrared radiation material particles baked on the surface of the glass layer 12 include Al 2 O 3 series, MgO,
Al 2 O 3 series, Al 2 O 3・TiO 2 series, ZrO 2 series, ZrO 2・Y 2
O 3 system, ZrO 2・SiO 2 system, SiC system, Al 2 O 3・SiO 2
(3Al 2 O 3 .2SiO 2 )-based, MnO-based, ZrO 2 compounds, and various other ceramic particles can be used. The particle size of ceramic far infrared radiation material particles is 0.2
The thickness is preferably about 200 μm. In the method of the present invention, it is preferable that the ceramic far-infrared radiation material particles baked on the surface of the glass layer 12 are distributed as densely as possible on the surface of the glass layer. As shown in figure a, the surface 12a of the glass layer 12
The particles 13 may be distributed such that some of them protrude from the glass layer 12, or the particles 13 may be distributed so as to be buried directly under the surface 12a of the glass layer 12, as shown in FIG. 1b. It's okay if it's something. Of course, the state of distribution is not limited to that shown in FIGS. 1a and 1b, and may be a state in which particles protruding from the surface 12a of the glass layer 12 and particles buried below the surface 12a are mixed regularly or irregularly. But that's fine. In particular, as shown in FIG. (absorption) is almost eliminated, making it possible to obtain extremely excellent radiation performance. The shape of the radiator manufactured by the method of the present invention is not particularly limited, and various shapes such as a rod shape, a plate shape, and others can be adopted. As shown in FIG. 4, the configuration of a heater made of a plate-shaped radiator is as follows: a heating element made of nichrome wire 15 insulated with a mica plate 14 is provided with a metal substrate 11, a glass layer 12 is formed on the heating element, and a glass layer 12 is formed on the heating element. glass layer 12
Ceramic particles 13 are baked onto the surface of
As shown in FIG. 5, a nichrome wire 15 is inserted into the groove 11a of a ceramic substrate 11 with continuous grooves 11a carved on the lower surface, a glass layer is formed on the surface of this substrate 11, and ceramic particles 13 are further applied. Examples include baked items. The method for producing a ceramic far-infrared radiator of the present invention involves baking a glass layer on the surface of a base made of metal or ceramic sintered body, and applying ceramic far-infrared radiating material particles thereon at a temperature of 50 to 150 degrees higher than the baking temperature of the glass layer. The particles are distributed on the surface of the glass layer by baking at a high temperature. As the glass lining method of baking a glass layer onto the surface of the substrate, any commonly used method may be used.
Glass may be coated to an appropriate thickness on the surface of the substrate, which has been subjected to surface treatment such as sandblasting as necessary, and then baked. Glass coating methods include a dry method in which frit (glass powder) is sprinkled, and a wet method in which slip (slily glass composition) is uniformly sprayed with a spray gun, both of which can be employed in the present invention. The substrate coated with glass is dried and fired at a (baking) temperature, usually around 800 to 900 degrees Celsius, to melt and fuse the glass. In the present invention, an appropriate amount of ceramic far-infrared radiation material particles adjusted to an appropriate particle size are dispersed in water and sprayed onto the surface of the glass layer thus formed, and then baked.
The particles are distributed as densely as possible on the surface of the glass layer, and in this case, the particles are baked at a temperature of 50 to 150°C higher than the baking temperature of the glass layer.
Perform at high temperature. If the baking temperature of the particles is lower than the baking temperature of the glass layer +50°C, the particles cannot be baked reliably. Conversely, if the baking temperature of the particles is higher than the baking temperature of the glass layer + 150°C, the particles will be buried inside the glass layer and will not be dispersed on the surface of the glass layer or just below the surface. The preferred baking temperature for the particles is 60 to 120° C. higher than the baking temperature for the glass layer. The ceramic far-infrared radiator thus obtained can extremely efficiently radiate far-infrared rays in a wide range of wavelengths, and is particularly effective in heating up to about 600°C. [Function] According to the method of the present invention, by baking the ceramic far-infrared radiating material particles on the surface of the glass layer at a temperature 50 to 150°C higher than the baking temperature of the glass layer, the ceramic far-infrared radiating material can be easily formed on the surface of the glass layer. Can burn particles. In the ceramic far-infrared ray emitter manufactured according to the present invention, particles of the ceramic far-infrared ray radiator are baked onto the surface of the glass layer, so that there is almost no absorption of far-infrared rays due to the effect of the glass layer. Therefore, the ceramic far-infrared radiation emitting material particles on the surface enable extremely efficient radiation. [Examples] The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 The substrate was an open coil decarburized ultra-low carbon steel (size 300 mm x 400 mm x 1.2
mm (thickness)), glass having the composition A in Table 1 above was glazed on the substrate surface to a thickness of 100 μm after melting, and baked at 800° C. for 5 minutes. Next, on the surface of the obtained glass layer,
MnO 2 -based ceramic powder (particle size: 0.5 to 5 μm) having the composition shown in Table 3 below was dispersed in water, and 5 g of the powder was sprayed on the powder, followed by baking at 900° C. for 5 minutes.

【表】【table】

【表】 製造された放射体に、第4図に示すようにニク
ロム線(500W)を配し、表面温度を364℃に制御
して、室温にて、分光分析測定器により、その放
射特性(波長別放射率)を調べた。結果を第6図
に示す。 実施例 2 ガラス層を、前記第1表の配合Dのガラスを施
釉して900℃で10分間焼成することにより形成し、
このガラス層の表面にセラミツク粉末を焼き付け
る温度を950℃としたこと以外は実施例1と同様
に放射体を作製し、その放射特性を調べた。結果
を第6図に示す。 比較例 1 市販のシーズヒータを用いて、同一条件下にそ
の放射特性を調べた。結果を第6図に示す。 比較例 2(特開昭58−190838の方法) 第4表に示す組成のフリツト100重量部に、カ
リ長石175、粘土5、止め剤(炭酸アンモン、炭
酸ソーダ)0.5、MnO2及びFe2O32、水55(いず
れも重量部)を混合し、これを基体表面に施釉し
て830℃で焼き付けた放射体を用い、実施例1と
同様にしてその放射特性を調べた。結果を第6図
に示す。
[Table] A nichrome wire (500W) was placed on the manufactured radiator as shown in Figure 4, the surface temperature was controlled at 364℃, and its radiation characteristics ( The emissivity by wavelength) was investigated. The results are shown in Figure 6. Example 2 A glass layer was formed by glazing the glass of formulation D in Table 1 and firing it at 900°C for 10 minutes,
A radiator was prepared in the same manner as in Example 1, except that the temperature at which the ceramic powder was baked on the surface of the glass layer was 950°C, and its radiation characteristics were examined. The results are shown in Figure 6. Comparative Example 1 Using a commercially available sheathed heater, its radiation characteristics were investigated under the same conditions. The results are shown in Figure 6. Comparative Example 2 (method of JP-A-58-190838) To 100 parts by weight of frit having the composition shown in Table 4, 175 parts of potassium feldspar, 5 parts of clay, 0.5 parts of a stopper (ammonium carbonate, soda carbonate), MnO 2 and Fe 2 O were added. The radiation characteristics were investigated in the same manner as in Example 1 using a radiator prepared by mixing 3.2 and 55 parts by weight of water, glazing the mixture onto the surface of the substrate, and baking the mixture at 830°C. The results are shown in Figure 6.

【表】 第6図より、本発明の放射体は、赤外線全域に
わたつて、高い放射率を有する高効率放射体であ
ることが認められる。 [発明の効果] 以上詳述した通り、本発明の方法により製造さ
れるセラミツク遠赤外線放射体は、基体と、基体
表面のガラス層と、ガラス層表面に焼き付けたセ
ラミツク遠赤外線放射材粒子とを有するものであ
つて、ガラス層表面にセラミツク遠赤外線放射材
粒子が焼き付けられているため、ガラス層の影響
により遠赤外線が吸収される場合が殆どないた
め、表面のセラミツク遠赤外線放射材粒子によ
り、広い範囲の波長の赤外線を極めて効率的に放
射することが可能となる。 しかして、このようなセラミツク遠赤外線放射
体は、基板表面にガラス層を焼き付け、その上に
ガラス層の焼き付け焼成温度よりも50〜150℃高
い温度でセラミツク遠赤外線放射材粒子をガラス
層表面に焼き付けることを特徴とする本発明のセ
ラミツク遠赤外線放射体の製造方法により容易に
製造される。
[Table] From FIG. 6, it is recognized that the radiator of the present invention is a highly efficient radiator that has high emissivity over the entire infrared range. [Effects of the Invention] As detailed above, the ceramic far-infrared radiator manufactured by the method of the present invention comprises a base, a glass layer on the surface of the base, and ceramic far-infrared radiator particles baked on the surface of the glass layer. Since the ceramic far-infrared ray emitting material particles are baked on the surface of the glass layer, far infrared rays are rarely absorbed due to the effect of the glass layer. It becomes possible to radiate infrared rays with a wide range of wavelengths extremely efficiently. However, such ceramic far-infrared ray emitters are manufactured by baking a glass layer on the substrate surface, and applying ceramic far-infrared radiating material particles onto the surface of the glass layer at a temperature 50 to 150 degrees Celsius higher than the firing temperature of the glass layer. The ceramic far-infrared radiator can be easily manufactured by the method of manufacturing the ceramic far-infrared radiator of the present invention, which is characterized by baking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは、各々、本発明の方法により
製造されるセラミツク遠赤外線放射体の一実施例
を示す断面図である。第2図及び第3図は従来の
放射体を示す断面図である。第4図及び第5図
は、各々、本発明の方法により製造される放射体
により作製されるヒーターの一例を示す断面図で
ある。第6図は実施例1、2及び比較例1、2に
おける放射特性の測定結果を示すグラフである。 10……セラミツク遠赤外線放射体、11……
基体、12……ガラス層、13……セラミツク遠
赤外線放射材粒子。
FIGS. 1a and 1b are sectional views each showing an embodiment of a ceramic far-infrared radiator manufactured by the method of the present invention. FIGS. 2 and 3 are cross-sectional views showing conventional radiators. FIGS. 4 and 5 are cross-sectional views each showing an example of a heater manufactured using a radiator manufactured by the method of the present invention. FIG. 6 is a graph showing the measurement results of radiation characteristics in Examples 1 and 2 and Comparative Examples 1 and 2. 10... Ceramic far infrared radiator, 11...
Substrate, 12...Glass layer, 13...Ceramic far-infrared radiating material particles.

Claims (1)

【特許請求の範囲】 1 基体表面にガラス層を焼き付け、その上にセ
ラミツク遠赤外線放射材粒子を焼き付ける遠赤外
線放射体の製造方法であつて、ガラス層の焼き付
け焼成温度よりも50〜150℃高い温度でセラミツ
ク遠赤外線放射材粒子をガラス層表面に焼き付け
ることを特徴とするセラミツク遠赤外線放射体の
製造方法。 2 基体は金属又はセラミツク焼結体であること
を特徴とする特許請求の範囲第1項に記載のセラ
ミツク遠赤外線放射体の製造方法。
[Claims] 1. A method for producing a far-infrared radiator, in which a glass layer is baked on the surface of a substrate, and ceramic far-infrared radiant material particles are baked on the glass layer, the firing temperature being 50 to 150°C higher than the baking temperature of the glass layer. A method for producing a ceramic far-infrared radiator, which comprises baking ceramic far-infrared radiator particles onto the surface of a glass layer at a temperature. 2. The method for manufacturing a ceramic far-infrared radiator according to claim 1, wherein the substrate is a metal or ceramic sintered body.
JP5212986A 1986-03-10 1986-03-10 Far-infrared radiating ceramic unit and manufacture of the same Granted JPS62211888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5212986A JPS62211888A (en) 1986-03-10 1986-03-10 Far-infrared radiating ceramic unit and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212986A JPS62211888A (en) 1986-03-10 1986-03-10 Far-infrared radiating ceramic unit and manufacture of the same

Publications (2)

Publication Number Publication Date
JPS62211888A JPS62211888A (en) 1987-09-17
JPH0532872B2 true JPH0532872B2 (en) 1993-05-18

Family

ID=12906259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212986A Granted JPS62211888A (en) 1986-03-10 1986-03-10 Far-infrared radiating ceramic unit and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62211888A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038894U (en) * 1989-06-15 1991-01-28
JP6245865B2 (en) * 2013-07-03 2017-12-13 日本特殊陶業株式会社 Infrared light source
CN109526070B (en) * 2018-11-30 2021-08-03 苏州艾默特材料技术有限公司 Heating element with metal ceramic composite coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145086A (en) * 1982-02-24 1983-08-29 株式会社日立ホームテック Far infrared ray heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145086A (en) * 1982-02-24 1983-08-29 株式会社日立ホームテック Far infrared ray heater

Also Published As

Publication number Publication date
JPS62211888A (en) 1987-09-17

Similar Documents

Publication Publication Date Title
US4377618A (en) Infrared radiator
US3953646A (en) Two-component ceramic coating for silica insulation
JPH0532872B2 (en)
JPS58190839A (en) Production of enamel for irradiation of far ultraviolet light
JPS6311298B2 (en)
JPH0362798B2 (en)
JPS5836821B2 (en) far infrared radiation device
JPS58190838A (en) Production of enamelled heatng element for irradiation of far ultraviolet light
JPS60134126A (en) Far infrared ray radiant material
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPH0247555B2 (en)
JPH0151463B2 (en)
KR900005393B1 (en) Composition of ceramic-coat and paint agent
JPS6124770B2 (en)
JPS5934233B2 (en) far infrared radiation device
JP3168456B2 (en) How to apply fluororesin to ceramic pots
JPH0419181B2 (en)
JPS6054750B2 (en) Manufacturing method of far infrared heater
JPS60125363A (en) Long wavelength ir radiating body plasma sprayed with ceramics
JPS63111185A (en) Enamel coating
JP2003325356A (en) Method for producing electromagnetic cooking container
JPH0229638B2 (en)
JPS61190080A (en) Far infrared radiator of metallic base material and its production
JP2581291B2 (en) Construction method of concrete lining
JPH017990Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term