JP6245865B2 - Infrared light source - Google Patents

Infrared light source Download PDF

Info

Publication number
JP6245865B2
JP6245865B2 JP2013139764A JP2013139764A JP6245865B2 JP 6245865 B2 JP6245865 B2 JP 6245865B2 JP 2013139764 A JP2013139764 A JP 2013139764A JP 2013139764 A JP2013139764 A JP 2013139764A JP 6245865 B2 JP6245865 B2 JP 6245865B2
Authority
JP
Japan
Prior art keywords
resistor
thin film
measured
light source
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013139764A
Other languages
Japanese (ja)
Other versions
JP2015014468A (en
Inventor
中川 伸一
伸一 中川
達典 伊藤
達典 伊藤
喜田 真史
真史 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013139764A priority Critical patent/JP6245865B2/en
Publication of JP2015014468A publication Critical patent/JP2015014468A/en
Application granted granted Critical
Publication of JP6245865B2 publication Critical patent/JP6245865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発熱により赤外線を発光する放射性膜を有する赤外線光源に関する。   The present invention relates to an infrared light source having a radioactive film that emits infrared light by heat generation.

赤外線光源と赤外線検出素子とを鏡筒内に配置し、鏡筒内に出入りする被測定ガスが特定波長の赤外線を吸収することを利用して、被測定ガスの種類と濃度を測定する赤外線光源が知られている。
この赤外線光源として、炭化珪素を主成分とするセラミックス粒子がガラス質材料により結合された多孔質の赤外線放射体を発熱体により加熱する構成が提案されている(特許文献1)。又、赤外線光源の放射体(放射膜)として、カーボンブラックを用いるものが提案されている(特許文献2)。
An infrared light source that measures the type and concentration of the gas to be measured by utilizing the fact that the gas to be measured that enters and exits the lens barrel absorbs infrared light of a specific wavelength by arranging an infrared light source and an infrared detector in the lens barrel It has been known.
As this infrared light source, there has been proposed a structure in which a porous infrared radiator in which ceramic particles mainly composed of silicon carbide are bonded by a vitreous material is heated by a heating element (Patent Document 1). Moreover, what uses carbon black is proposed as a radiator (radiation film) of an infrared light source (patent document 2).

特許第2712527号公報Japanese Patent No. 2712527 特許第4055697号公報Japanese Patent No. 4055697

ところで、赤外線放射体(放射膜)の赤外線放射率が高いほど、赤外線検出素子の検出精度も向上するが、この赤外線放射率は放射膜の最表面の組成によって変化する。そして、本発明者らが検討したところ、放射膜の最表面を特定の組成とすることにより、赤外線放射率が向上することが判明した。
すなわち、本発明は、赤外線放射率が高い赤外線光源の提供を目的とする。
By the way, the higher the infrared emissivity of the infrared radiator (radiation film), the better the detection accuracy of the infrared detection element, but this infrared emissivity varies depending on the composition of the outermost surface of the radiation film. And when the present inventors examined, it turned out that infrared emissivity improves by making the outermost surface of a radiation film into a specific composition.
That is, an object of the present invention is to provide an infrared light source having a high infrared emissivity.

本発明の第の態様の赤外線光源は、空洞部を有する半導体基板と、前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、前記薄膜部の内部に設けられ、通電により発熱する抵抗体と、前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともZnを含むガラス質材料とを含み、前記高放射性膜の表面において、X線光電子分光(XPS)によって分析したとき、Znと、Cに結合しているSiの原子数Si(C)との原子数比であるZn/(Si(C)+Zn)で示されるZnの表面添加率が81%以下で、かつZnを少なくとも含み、前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている。但し、前記X線光電子分光を、検出領域100μm中、検出深さ4〜5nm(取出角45°)の条件で、AlKα線(1486keV)を用い、前記高放射性膜に存在する元素のうち測定対象とする元素の光電子ピーク面積をそれぞれ測定し、以下の(1)に示す式によって測定対象とする各元素の原子数を定量(相対定量)し、定量された各元素の原子数を用いて上述した表面添加率を求める。Ci={(Ai/RSFi)/(ΣiAi/RSFi)}×100・・・(1)ここで、Ciは測定対象とする元素iの定量値(atomic%)、Aiは測定対象とする元素iの光電子ピーク面積、RSFiは測定対象とする元素iの相対感度係数を示す。
この赤外線光源によれば、高放射性膜の最表面を特定の組成とすることにより、赤外線放射率が向上し、例えば赤外線検知式ガスセンサに用いたときの検出精度も向上する。
An infrared light source according to a first aspect of the present invention includes a semiconductor substrate having a cavity, a thin film formed on the semiconductor substrate so as to cover the cavity, and an inside of the thin film that is energized. A resistor that generates heat; and a high-radiation film that is provided on the thin film portion and has an infrared emissivity greater than or equal to the infrared emissivity of the resistor and emits infrared rays by receiving heat from the resistor. An infrared light source, wherein the high radiation film includes ceramic particles mainly composed of silicon carbide and a vitreous material containing at least Zn, and X-ray photoelectron spectroscopy (XPS) is performed on a surface of the high radiation film. The surface addition rate of Zn represented by Zn / (Si (C) + Zn), which is the atomic ratio between Zn and the number of Si atoms Si (C) bonded to C, is 81% or less. in, and at least look at including the Zn, The high-radiation film is formed to extend to a region outside the thin film portion, and is provided at least on the region where the resistor is formed . However, the X-ray photoelectron spectroscopy is performed using AlKα rays (1486 keV) under the condition of a detection depth of 4 to 5 nm (extraction angle of 45 °) in a detection region of 100 μm, and an object to be measured among the elements present in the highly radioactive film. Measure the photoelectron peak area of each element, quantify the number of atoms of each element to be measured (relative quantification) according to the following formula (1), and use the quantified number of atoms of each element described above. Determine the surface addition rate. Ci = {(Ai / RSFi) / (ΣiAi / RSFi)} × 100 (1) Here, Ci is a quantitative value (atomic%) of the element i to be measured, and Ai is the element i to be measured. The photoelectron peak area, RSFi, indicates the relative sensitivity coefficient of the element i to be measured.
According to this infrared light source, by setting the outermost surface of the highly radioactive film to a specific composition, the infrared emissivity is improved, and for example, the detection accuracy when used in an infrared detection type gas sensor is improved.

本発明の第の態様の赤外線光源は、空洞部を有する半導体基板と、前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、前記薄膜部の内部に設けられ、通電により発熱する抵抗体と、前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともBを含むガラス質材料とを含み、前記高放射性膜の表面において、X線光電子分光(XPS)によって分析したとき、Bと、Cに結合しているSiの原子数Si(C)との原子数比であるB/(Si(C)+B)で示されるBの表面添加率が67%以下で、かつBを少なくとも含み、前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている。但し、前記X線光電子分光を、検出領域100μm中、検出深さ4〜5nm(取出角45°)の条件で、AlKα線(1486keV)を用い、前記高放射性膜に存在する元素のうち測定対象とする元素の光電子ピーク面積をそれぞれ測定し、以下の(1)に示す式によって測定対象とする各元素の原子数を定量(相対定量)し、定量された各元素の原子数を用いて上述した表面添加率を求める。Ci={(Ai/RSFi)/(ΣiAi/RSFi)}×100・・・(1)ここで、Ciは測定対象とする元素iの定量値(atomic%)、Aiは測定対象とする元素iの光電子ピーク面積、RSFiは測定対象とする元素iの相対感度係数を示す。
この赤外線光源によれば、高放射性膜の最表面を特定の組成とすることにより、赤外線放射率が向上し、例えば赤外線検知式ガスセンサに用いたときの検出精度も向上する。
An infrared light source according to a second aspect of the present invention includes a semiconductor substrate having a cavity, a thin film formed on the semiconductor substrate so as to cover the cavity, and an inside of the thin film that is energized. A resistor that generates heat; and a high-radiation film that is provided on the thin film portion and has an infrared emissivity greater than or equal to the infrared emissivity of the resistor and emits infrared rays by receiving heat from the resistor. An infrared light source, wherein the high-radiation film includes ceramic particles containing silicon carbide as a main component and a vitreous material containing at least B, and X-ray photoelectron spectroscopy (XPS) is performed on a surface of the high-radiation film. The surface addition rate of B represented by B / (Si (C) + B), which is the atomic ratio between B and the number of Si atoms Si (C) bonded to C, is 67% or less. in, and at least it looks including the B, the high radioactive The film is formed so as to extend to a region outside the thin film portion, and is provided at least on the region where the resistor is formed . However, the X-ray photoelectron spectroscopy is performed using AlKα rays (1486 keV) under the condition of a detection depth of 4 to 5 nm (extraction angle of 45 °) in a detection region of 100 μm, and an object to be measured among the elements present in the highly radioactive film. Measure the photoelectron peak area of each element, quantify the number of atoms of each element to be measured (relative quantification) according to the following formula (1), and use the quantified number of atoms of each element described above. Determine the surface addition rate. Ci = {(Ai / RSFi) / (ΣiAi / RSFi)} × 100 (1) Here, Ci is a quantitative value (atomic%) of the element i to be measured, and Ai is the element i to be measured. The photoelectron peak area, RSFi, indicates the relative sensitivity coefficient of the element i to be measured.
According to this infrared light source, by setting the outermost surface of the highly radioactive film to a specific composition, the infrared emissivity is improved, and for example, the detection accuracy when used in an infrared detection type gas sensor is improved.

本発明の第の態様の赤外線光源は、空洞部を有する半導体基板と、前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、前記薄膜部の内部に設けられ、通電により発熱する抵抗体と、前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともSiOを含むガラス質材料とを含み、前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている。
高放射性膜が薄膜部の形成領域の外側まで延びて設けられると、赤外線の発光面積が広くなり、より多くの赤外線を放射できる。又、高放射性膜が少なくとも抵抗体の形成領域上に設けられていれば、その部分で抵抗体の熱が高放射性膜に伝わって赤外線を放射できる。


An infrared light source according to a third aspect of the present invention is provided in a semiconductor substrate having a cavity, a thin film part formed on the semiconductor substrate so as to cover the cavity, and provided inside the thin film part. A resistor that generates heat; and a high-radiation film that is provided on the thin film portion and has an infrared emissivity greater than or equal to the infrared emissivity of the resistor and emits infrared rays by receiving heat from the resistor. The high-radiation film includes ceramic particles containing silicon carbide as a main component and a vitreous material containing at least SiO 2, and the high-radiation film is a region outside the thin film portion. And at least on the region where the resistor is formed.
If the high emissivity film is provided so as to extend to the outside of the region where the thin film portion is formed, the infrared light emission area is increased, and more infrared rays can be emitted. Further, if the high-radiation film is provided at least on the region where the resistor is formed, the heat of the resistor is transmitted to the high-radiation film in that portion, and infrared rays can be emitted.


この発明によれば、赤外線放射率が高い赤外線光源が得られる。   According to the present invention, an infrared light source having a high infrared emissivity can be obtained.

赤外線光源の構成を示す平面図である。It is a top view which shows the structure of an infrared light source. 図1におけるA−A線及びB−B線に沿った断面図である。It is sectional drawing along the AA line and BB line in FIG. 赤外線光源を備えた赤外線検知式ガスセンサの断面図である。It is sectional drawing of the infrared detection type gas sensor provided with the infrared light source. 赤外線検出素子の出力を求めるための方法を示す図である。It is a figure which shows the method for calculating | requiring the output of an infrared detection element. 実施例2の高放射性膜のX線光電子分光(XPS)による光電子ピークを示す図である。It is a figure which shows the photoelectron peak by X-ray photoelectron spectroscopy (XPS) of the high emissivity film | membrane of Example 2. FIG.

以下に、本発明の実施形態を図面と共に説明する。図1は赤外線光源1の平面図を示し、図2は図1のA−A線切断部およびB−B線切断部におけるそれぞれの端面図を示す。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of the infrared light source 1, and FIG. 2 is an end view of each of the AA line cutting part and the BB line cutting part of FIG.

図1に示すように、赤外線光源1は、半導体基板13と、半導体基板13上に形成される薄膜部Dと、抵抗体15と、高放射性膜30と、を備えている。赤外線光源1は、平板形状(平面視四角形状)をなし、その表面の一の辺に沿ってそれぞれ電極21、23が形成され、他方の面(裏面)の中心付近に、詳しくは後述する平面視矩形の薄膜部Dが形成されている。
又、図2に示すように、基板13の上面側に絶縁層である薄膜支持層45が形成されている。薄膜支持層45は、表面側から半導体基板13側へ向かって順に、上層41と下層43を積層してなる。上層41及び下層43は、例えば窒化珪素層(Si34層)、酸化ケイ素(SiO2)層等の絶縁層から形成することができる。
As shown in FIG. 1, the infrared light source 1 includes a semiconductor substrate 13, a thin film portion D formed on the semiconductor substrate 13, a resistor 15, and a highly radioactive film 30. The infrared light source 1 has a flat plate shape (square shape in plan view), electrodes 21 and 23 are respectively formed along one side of the surface, and a plane described later in detail near the center of the other surface (back surface). A thin film portion D having a rectangular shape is formed.
Further, as shown in FIG. 2, a thin film support layer 45 as an insulating layer is formed on the upper surface side of the substrate 13. The thin film support layer 45 is formed by laminating an upper layer 41 and a lower layer 43 in order from the surface side toward the semiconductor substrate 13 side. The upper layer 41 and the lower layer 43 can be formed from an insulating layer such as a silicon nitride layer (Si 3 N 4 layer) or a silicon oxide (SiO 2 ) layer.

そして、図2に示すように、薄膜支持層45が部分的(平面から見てほぼ正方形)に露出するように半導体基板13の一部を除去することで、図2に示すように薄膜支持層45の下側に凹部(空洞部)13Cが形成されたダイヤフラム構造をなしている。薄膜支持層45のうち、凹部13Cの上側部分がダイヤフラムをなす薄膜部Dを形成する。
なお、凹部13Cは半導体基板13の底面側から薄膜部Dに向かってピラミッド形状(四角錐形状)に除去されている。
Then, as shown in FIG. 2, by removing a part of the semiconductor substrate 13 so that the thin film support layer 45 is partially exposed (substantially square when viewed from above), the thin film support layer as shown in FIG. A diaphragm structure in which a recess (cavity) 13C is formed below 45 is formed. Of the thin film support layer 45, the upper portion of the recess 13C forms a thin film portion D that forms a diaphragm.
The recess 13 </ b> C is removed in a pyramid shape (square pyramid shape) from the bottom surface side of the semiconductor substrate 13 toward the thin film portion D.

薄膜部Dの内部には、渦巻き状にパターン形成されて通電により発熱する抵抗体15が埋設されている。抵抗体15は、温度抵抗係数が大きい導電性材料で構成され、本実施形態では白金(Pt)で形成されている。そして、薄膜部D上には、抵抗体15の赤外線放射率以上の赤外線放射率を有し、抵抗体15からの熱を受けて赤外線を発光する高放射性膜30が設けられている。ダイヤフラムをなす薄膜部D内に抵抗体15を設けることにより、抵抗体15が周囲から断熱されるため、短時間にて昇温して高放射性膜30から赤外線を発光させることができる。
なお、抵抗体15は、上層41と下層43との間に埋設されている。又、最表層をなす上層41は、抵抗体15、配線膜16の汚染や損傷を防止すべくそれらを覆うように設けられている。又、抵抗体15の左右の端は、抵抗体15が形成された平面と同じ平面にそれぞれ埋設された配線をなすヒータリード部16を介して、各電極21、23に接続されている。なお、電極23がグランド電極となっている。電極21、23は、抵抗体15に接続される配線の引き出し部位であり、コンタクトホール(図2)を介して露出し、例えば、アルミニウム(Al)又は金(Au)で形成されている。
Inside the thin film portion D, a resistor 15 that is patterned in a spiral shape and generates heat when energized is embedded. The resistor 15 is made of a conductive material having a large temperature resistance coefficient, and is made of platinum (Pt) in this embodiment. On the thin film portion D, a highly radioactive film 30 having an infrared emissivity equal to or higher than the infrared emissivity of the resistor 15 and emitting infrared rays upon receiving heat from the resistor 15 is provided. By providing the resistor 15 in the thin film portion D that forms the diaphragm, the resistor 15 is thermally insulated from the surroundings. Therefore, the infrared rays can be emitted from the highly radioactive film 30 by raising the temperature in a short time.
The resistor 15 is embedded between the upper layer 41 and the lower layer 43. The upper layer 41 that is the outermost layer is provided so as to cover the resistor 15 and the wiring film 16 in order to prevent contamination and damage. The left and right ends of the resistor 15 are connected to the electrodes 21 and 23 via heater lead portions 16 that form wirings embedded in the same plane as that on which the resistor 15 is formed. The electrode 23 is a ground electrode. The electrodes 21 and 23 are lead-out portions of wiring connected to the resistor 15, are exposed through contact holes (FIG. 2), and are formed of, for example, aluminum (Al) or gold (Au).

一方、高放射性膜30は上層41の表面に露出するように積層されている。
本発明の第1の態様において、高放射性膜30は、炭化珪素を主成分とするセラミックス粒子と、少なくともSiOを含むガラス質材料とを含み、高放射性膜の表面において、Cに結合しているSiの原子数Si(C)と、Oに結合しているSiの原子数Si(O)との原子数比であるSi(C)/(Si(O)+Si(C))で示されるSi-Cの表面添加率が11%以上で、かつSi(O)を少なくとも含む。
高放射性膜30の赤外線放射率が高いほど、赤外線光源1と共にガスセンサとして用いられる赤外線検出素子の検出精度も向上するが、この赤外線放射率は高放射性膜30の最表面の組成によって大きな影響を受ける。そして、本発明者らが検討したところ、高放射性膜30の最表面を上記組成とすることにより、赤外線放射率が向上することが判明した。
Si-Cの表面添加率が11%未満であると、赤外線放射率の向上効果が十分に得られない。一方、高放射性膜30がSi(O)を含まない(つまり、Si-Cの表面添加率が100%の)場合、高放射性膜30の密着性が低下し、高放射性膜30が半導体基板13(薄膜支持層45)から剥離する虞がある。つまり、Si(O)は密着性を向上させるので、高放射性膜30のSi(O)の含有量の下限は、例えば1%とする(Si-Cの表面添加率の上限が99%)とよい。
高放射性膜30の最表面の組成は、X線光電子分光(XPS又はESCA)によって分析することができる。
また、本発明において「主成分」とは、その成分が、含有される全成分のうち80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上を占める成分であることを示す。
On the other hand, the highly radioactive film 30 is laminated so as to be exposed on the surface of the upper layer 41.
In the first aspect of the present invention, the highly radioactive film 30 includes ceramic particles mainly composed of silicon carbide and a vitreous material containing at least SiO 2 , and is bonded to C on the surface of the highly radioactive film. Si (C) / (Si (O) + Si (C)), which is the atomic ratio between the number of Si atoms Si (C) and the number of Si atoms Si (O) bonded to O The surface addition rate of Si—C is 11% or more and contains at least Si (O).
The higher the infrared emissivity of the high emissivity film 30 is, the better the detection accuracy of an infrared detecting element used as a gas sensor together with the infrared light source 1 is. However, this infrared emissivity is greatly influenced by the composition of the outermost surface of the high emissivity film 30. . And when the present inventors examined, it turned out that infrared emissivity improves by making the outermost surface of the high emissivity film | membrane 30 into the said composition.
If the surface addition rate of Si—C is less than 11%, the effect of improving the infrared emissivity cannot be sufficiently obtained. On the other hand, when the highly radioactive film 30 does not contain Si (O) (that is, the Si—C surface addition rate is 100%), the adhesiveness of the highly radioactive film 30 is lowered, and the highly radioactive film 30 becomes the semiconductor substrate 13. There is a risk of peeling from the (thin film support layer 45). That is, since Si (O) improves adhesion, the lower limit of the content of Si (O) in the highly radioactive film 30 is, for example, 1% (the upper limit of the Si-C surface addition rate is 99%). Good.
The composition of the outermost surface of the highly radioactive film 30 can be analyzed by X-ray photoelectron spectroscopy (XPS or ESCA).
In the present invention, the “main component” means that the component is a component that occupies 80% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more of the total components contained. .

なお、図1に示すように、高放射性膜30は、薄膜部Dよりも外側の領域R2に延びて形成されると共に、少なくとも抵抗体15の形成領域R1上に設けられているとよい。高放射性膜30が、薄膜部Dの形成領域の外側まで延びて設けられると、赤外線の発光面積が広くなり、より多くの赤外線を放射できる。又、高放射性膜30が少なくとも抵抗体15の形成領域R1上に設けられていれば、その部分で抵抗体15の熱が高放射性膜30に伝わって赤外線を放射できる。なお、薄膜部Dよりも外側まで高放射性膜30を延ばした場合、上記したように抵抗体15は薄膜部Dよりも内側の領域に形成されることが好ましい。この場合、薄膜部Dよりも外側の高放射性膜30は、薄膜部Dよりも内側の高放射性膜30の余熱によって加熱される。
赤外線光源1は、縦横ともに数mm(例えば3mm×3mm)程度の大きさであり、例えば、シリコン半導体基板を用いたマイクロマシニング技術(マイクロマシニング加工)により製造される。
As shown in FIG. 1, the highly radioactive film 30 is preferably formed so as to extend to the region R <b> 2 outside the thin film portion D and is provided at least on the formation region R <b> 1 of the resistor 15. When the high emissivity film 30 is provided so as to extend to the outside of the region where the thin film portion D is formed, the infrared light emission area is increased, and more infrared light can be emitted. Further, if the high radiation film 30 is provided at least on the formation region R1 of the resistor 15, heat of the resistor 15 is transmitted to the high radiation film 30 at that portion, and infrared rays can be emitted. When the highly radioactive film 30 is extended to the outside of the thin film portion D, the resistor 15 is preferably formed in a region inside the thin film portion D as described above. In this case, the high radioactive film 30 outside the thin film portion D is heated by the residual heat of the high radioactive film 30 inside the thin film portion D.
The infrared light source 1 has a size of several millimeters (for example, 3 mm × 3 mm) in both vertical and horizontal directions, and is manufactured by, for example, a micromachining technique (micromachining process) using a silicon semiconductor substrate.

次に、図2を参照し、赤外線光源1の製造工程について簡単に説明する。
まず、シリコン半導体からなる半導体基板13を準備し、この半導体基板13を洗浄した上で半導体基板13の上面に、例えば窒化珪素膜(Si34膜)からなる下層43を減圧CVD法により成膜する。
次に、下層43の上に、スパッタ法により白金(Pt)等の金属膜を成膜した後、パターニングして抵抗体15を形成する。このとき、抵抗体15に電気的に接続されるヒータリード部16が、抵抗体15と同様にパターニング形成される。
続いて、抵抗体15を中心として上下方向(積層方向)の膜構成が対称となるように、例えば窒化珪素膜(Si34膜)からなる上層41を減圧CVD法により成膜する。
次に、ヒータリード部16上の所定位置に設けたコンタクトホール(図示せず)に対して、スパッタ法により金(Au)等の金属膜を成膜した後、パターニングして金(Au)等の金属材料からなるコンタクト電極21、23を形成する。
Next, a manufacturing process of the infrared light source 1 will be briefly described with reference to FIG.
First, a semiconductor substrate 13 made of a silicon semiconductor is prepared, the semiconductor substrate 13 is cleaned, and a lower layer 43 made of, for example, a silicon nitride film (Si 3 N 4 film) is formed on the upper surface of the semiconductor substrate 13 by a low pressure CVD method. Film.
Next, after depositing a metal film such as platinum (Pt) on the lower layer 43 by sputtering, the resistor 15 is formed by patterning. At this time, the heater lead portion 16 electrically connected to the resistor 15 is formed by patterning similarly to the resistor 15.
Subsequently, an upper layer 41 made of, for example, a silicon nitride film (Si 3 N 4 film) is formed by a low pressure CVD method so that the film configuration in the vertical direction (stacking direction) is symmetric about the resistor 15.
Next, a metal film such as gold (Au) is formed on a contact hole (not shown) provided at a predetermined position on the heater lead 16 by sputtering, and then patterned to obtain gold (Au) or the like. Contact electrodes 21 and 23 made of the above metal materials are formed.

次に、上層41の表面の所定領域内に、上記材料を含むペーストを用いて、スクリーン印刷により所定形状の高放射性膜30を形成する。その際、高放射性膜30は、抵抗体15の形成領域を覆うように、当該抵抗体15の形成領域よりも広く、且つ、薄膜部Dの形成領域より外側まで設けられる。尚、高放射性膜30の形成方法は、スクリーン印刷に限定されるものではない。高放射性膜30を構成する材料に適した種々の方法を用いることができる。例えば、インクジェット印刷により高放射性膜30を形成しても良い。また、CVD法により成膜し、フォトリソグラフィー処理によりパターニングして高放射性膜30を形成することもできる。   Next, in a predetermined region on the surface of the upper layer 41, a high-emission film 30 having a predetermined shape is formed by screen printing using a paste containing the above material. At this time, the highly radioactive film 30 is provided so as to cover the region where the resistor 15 is formed and is wider than the region where the resistor 15 is formed and to the outside of the region where the thin film portion D is formed. Note that the method for forming the highly radioactive film 30 is not limited to screen printing. Various methods suitable for the material constituting the highly radioactive film 30 can be used. For example, the highly radioactive film 30 may be formed by ink jet printing. Alternatively, the highly radioactive film 30 can be formed by a CVD method and patterning by a photolithography process.

最後に、半導体基板13の下面全面に、例えばプラズマCVD法によりエッチングマスク用の窒化シリコン膜47を形成する。そして、フォトリソグラフィー処理により窒化シリコン膜47に薄膜部Dを形成する領域に応じた開口部位を形成し、半導体基板13を異方性エッチング処理によりエッチングする。このエッチングは、半導体基板13の上面に設けられた下層43が露出するまで実施され、半導体基板13の上面に薄膜部Dの形成領域に対応して上面に開口した凹部13Cが形成される。   Finally, a silicon nitride film 47 for an etching mask is formed on the entire lower surface of the semiconductor substrate 13 by plasma CVD, for example. Then, an opening portion corresponding to the region where the thin film portion D is to be formed is formed in the silicon nitride film 47 by photolithography, and the semiconductor substrate 13 is etched by anisotropic etching. This etching is performed until the lower layer 43 provided on the upper surface of the semiconductor substrate 13 is exposed, and a recess 13 </ b> C opened on the upper surface corresponding to the formation region of the thin film portion D is formed on the upper surface of the semiconductor substrate 13.

赤外線光源1は、例えば図3に模式的に示すように赤外線検知式ガスセンサ100に適用することができる。赤外線検知式ガスセンサ100は、円筒状の鏡筒102、鏡筒102の両端に互いに対向して配置された赤外線光源1及び赤外線検出素子120を有する。赤外線検出素子120の受光面側には赤外線波長選択フィルタ110が配置されている。そして、鏡筒102側面に設けた導入口103から被測定ガスが導入され、鏡筒102側面に設けた出口104から被測定ガスが外部に排出される。そして、鏡筒102内で赤外線光源1から赤外線検出素子120に向かって照射された赤外線が被測定ガス中を通過する際、特定波長の赤外線が吸収されることを利用し、赤外線検出素子120の出力に基づいて被測定ガス中に含まれる特定ガスの濃度を測定する。特定ガスとしては、例えばアルコールガスが挙げられる。   The infrared light source 1 can be applied to an infrared detection type gas sensor 100 as schematically shown in FIG. 3, for example. The infrared detection type gas sensor 100 includes a cylindrical lens barrel 102, an infrared light source 1 and an infrared detection element 120 that are disposed opposite to each other at both ends of the lens barrel 102. An infrared wavelength selection filter 110 is disposed on the light receiving surface side of the infrared detection element 120. Then, the gas to be measured is introduced from the inlet 103 provided on the side surface of the lens barrel 102, and the gas to be measured is discharged to the outside from the outlet 104 provided on the side surface of the lens barrel 102. Then, when infrared rays irradiated from the infrared light source 1 toward the infrared detection element 120 in the lens barrel 102 pass through the gas to be measured, the infrared rays of the infrared detection element 120 are absorbed. Based on the output, the concentration of the specific gas contained in the gas to be measured is measured. As specific gas, alcohol gas is mentioned, for example.

次に、本発明の第2の態様について説明する。なお、本発明の第2の態様は、高放射性膜30の組成が異なること以外は、本発明の第1の態様と同様である。
第2の態様において、高放射性膜30は、炭化珪素を主成分とするセラミックス粒子と、少なくともZnを含むガラス質材料とを含み、高放射性膜30の表面において、Znと、Cに結合しているSiの原子数Si(C)との原子数比であるZn/(Si(C)+Zn)で示されるZnの表面添加率が81%以下で、かつZnを少なくとも含む。
高放射性膜30の最表面を上記組成とすることにより、赤外線放射率が向上する。
Znの表面添加率が81%を超えると、赤外線放射率の向上効果が十分に得られない。一方、高放射性膜30がZnを含まない(つまり、Si-Cの表面添加率が100%の)場合、高放射性膜30の密着性が低下し、高放射性膜30が半導体基板13(薄膜支持層45)から剥離する虞がある。なお、高放射性膜30のZnの含有量の下限は、例えば1%である(Znの表面添加率の下限が1%)とよい。
Next, the second aspect of the present invention will be described. The second aspect of the present invention is the same as the first aspect of the present invention except that the composition of the highly radioactive film 30 is different.
In the second embodiment, the highly radioactive film 30 includes ceramic particles mainly composed of silicon carbide and a vitreous material containing at least Zn, and is bonded to Zn and C on the surface of the highly radioactive film 30. The surface addition ratio of Zn represented by Zn / (Si (C) + Zn), which is the atomic ratio of Si to the number of atoms Si (C), is 81% or less and contains at least Zn.
By setting the outermost surface of the high emissivity film 30 to the above composition, the infrared emissivity is improved.
When the surface addition rate of Zn exceeds 81%, the effect of improving the infrared emissivity cannot be sufficiently obtained. On the other hand, when the highly radioactive film 30 does not contain Zn (that is, the surface addition rate of Si—C is 100%), the adhesiveness of the highly radioactive film 30 is lowered, and the highly radioactive film 30 becomes the semiconductor substrate 13 (thin film support). There is a risk of delamination from layer 45). The lower limit of the Zn content in the highly radioactive film 30 is, for example, 1% (the lower limit of the Zn surface addition rate is 1%).

次に、本発明の第3の態様について説明する。なお、本発明の第3の態様は、高放射性膜30の組成が異なること以外は、本発明の第1の態様と同様である。
第3の態様において、高放射性膜30は、炭化珪素を主成分とするセラミックス粒子と、少なくともBを含むガラス質材料とを含み、高放射性膜30の表面において、Bと、Cに結合しているSiの原子数Si(C)との原子数比であるB/(Si(C)+B)で示されるBの表面添加率が67%以下で、かつBを少なくとも含む。
高放射性膜30の最表面を上記組成とすることにより、赤外線放射率が向上する。
Bの表面添加率が67%を超えると、赤外線放射率の向上効果が十分に得られない。一方、高放射性膜30がBを含まない(つまり、Si-Cの表面添加率が100%の)場合、高放射性膜30の密着性が低下し、高放射性膜30が半導体基板13(薄膜支持層45)から剥離する虞がある。なお、高放射性膜30のBの含有量の下限は、例えば1%である(Si-Cの表面添加率の下限が1%)とよい。
Next, a third aspect of the present invention will be described. The third aspect of the present invention is the same as the first aspect of the present invention except that the composition of the highly radioactive film 30 is different.
In the third aspect, the highly radioactive film 30 includes ceramic particles mainly composed of silicon carbide and a vitreous material containing at least B, and is bonded to B and C on the surface of the highly radioactive film 30. The surface addition rate of B represented by B / (Si (C) + B), which is the ratio of the number of Si atoms to the number of atoms Si (C), is 67% or less and contains at least B.
By setting the outermost surface of the high emissivity film 30 to the above composition, the infrared emissivity is improved.
When the surface addition rate of B exceeds 67%, the effect of improving the infrared emissivity cannot be sufficiently obtained. On the other hand, when the high radioactive film 30 does not contain B (that is, the Si-C surface addition rate is 100%), the adhesiveness of the high radioactive film 30 is lowered, and the high radioactive film 30 becomes the semiconductor substrate 13 (thin film support). There is a risk of delamination from layer 45). In addition, the lower limit of the B content in the highly radioactive film 30 is preferably 1%, for example (the lower limit of the surface addition rate of Si—C is 1%).

なお、高放射性膜30に用いるガラス質材料としては、アルカリ金属酸化物、アルカリ土類金属酸化物、アルミナ、シリカ、リン酸、フッ化物、ホウ酸、酸化亜鉛の群から選ばれる1種又は2種以上が挙げられる。
高放射性膜30は、炭化珪素を主成分とするセラミックス粒子と、SiO、Zn(ZnO)及びB(B)を含むガラス質材料とを含む組成とすることが好ましい。
The vitreous material used for the highly radioactive film 30 is one or two selected from the group consisting of alkali metal oxides, alkaline earth metal oxides, alumina, silica, phosphoric acid, fluoride, boric acid, and zinc oxide. More than species.
High radiation film 30 is preferably composed of ceramic particles containing silicon carbide as a main component and a vitreous material containing SiO 2 , Zn (ZnO) and B (B 2 O 3 ).

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.

平均粒径2〜3μmの炭化珪素粉末と、平均粒径1.5μmの無鉛のガラス質材料粉末(製品名:ASF1891F、旭硝子株式会社製)を混合し、バインダーにエチルセルロース、溶剤にテルピネオールを用いたペーストを、図1、図2に示す構成の赤外線光源1の表面に塗布した。塗布後に全体を600℃で熱処理した。なお、上記ガラス質粉末は、SiO、ZnO及びBの3成分を含むガラス質材料からなり、以下に示す表1の実施例1〜5及び比較例1では、炭化珪素粉末とガラス質粉末との配合比を適宜変更した。また、参照例として、炭化珪素粉末を含まずに上記した無鉛のガラス質材料粉末を含むペーストを用いて放射性膜を形成した赤外線光源を作製した。さらに、比較例2として、ガラス質材料粉末を含まずに炭化珪素粉末を含むペーストを用いて放射性膜を形成した赤外線光源を作成した。 Silicon carbide powder having an average particle diameter of 2 to 3 μm and lead-free vitreous material powder (product name: ASF1891F, manufactured by Asahi Glass Co., Ltd.) having an average particle diameter of 1.5 μm were mixed, and ethyl cellulose was used as a binder and terpineol was used as a solvent. The paste was applied to the surface of the infrared light source 1 having the configuration shown in FIGS. The whole was heat-treated at 600 ° C. after coating. The above glass powders is made vitreous material comprising three components of SiO 2, ZnO and B 2 O 3, in Examples 1-5 and Comparative Example 1 of Table 1 below, silicon carbide powder and glass The mixing ratio with the powder was appropriately changed. Further, as a reference example, an infrared light source in which a radioactive film was formed using a paste containing the above lead-free vitreous material powder without containing silicon carbide powder was produced. Further, as Comparative Example 2, an infrared light source was formed in which a radioactive film was formed using a paste containing silicon carbide powder without containing glassy material powder.

得られた実施例1〜5、比較例1、2、参照例それぞれの赤外線光源1の高放射性膜30表面の組成をX線光電子分光(XPS)装置によって分析し、表面添加率を求めた。具体的には上記装置により、検出領域100μm中、検出深さ4〜5nm(取出角45°)の条件で、AlKα線(1486keV)を用い、高放射性膜30に存在する元素のうち測定対象とする元素の光電子ピーク面積をそれぞれ測定し、以下の(1)に示す式によって測定対象とする各元素の原子数を定量(相対定量)し、定量された各元素の原子数を用いて上述した表面添加率を求めた。
Ci={(Ai/RSFi)/(ΣiAi/RSFi)}×100・・・(1)
ここで、Ciは測定対象とする元素iの定量値(atomic%)、Aiは測定対象とする元素iの光電子ピーク面積、RSFiは測定対象とする元素iの相対感度係数を示す。
The composition of the surface of the high emissivity film 30 of each of the obtained infrared light sources 1 of Examples 1 to 5, Comparative Examples 1 and 2, and Reference Example was analyzed by an X-ray photoelectron spectroscopy (XPS) apparatus to obtain the surface addition rate. Specifically, using the above-described apparatus, an AlKα ray (1486 keV) is used in the detection region of 100 μm and a detection depth of 4 to 5 nm (extraction angle of 45 °), and the measurement target is selected from the elements present in the highly radioactive film 30. The photoelectron peak areas of the elements to be measured are respectively measured, the number of atoms of each element to be measured is quantified (relative quantification) by the equation shown in (1) below, and the number of atoms of each quantified element is used as described above. The surface addition rate was determined.
Ci = {(Ai / RSFi) / (ΣiAi / RSFi)} × 100 (1)
Here, Ci is a quantitative value (atomic%) of the element i to be measured, Ai is a photoelectron peak area of the element i to be measured, and RSFi is a relative sensitivity coefficient of the element i to be measured.

さらに、得られた赤外線光源1を図3に示す赤外線検知式ガスセンサ100に組み付け、赤外線放射率を測定すると共に、高放射性膜の密着性を評価した。赤外線放射率の測定(評価)にあたっては、具体的に、各赤外線光源1を別個に組み付けた赤外線検知式ガスセンサ100をそれぞれ準備して、赤外線検知式ガスセンサ100の被測定ガスを大気とし、赤外線検出素子120の出力ΔVを測定した。赤外線検出素子120の受光面側に、それぞれ波長3.9μm、9.5μmの赤外線波長選択フィルタ110を配置し、これら波長3.9μm、9.5μmにおける赤外線検出素子120の出力ΔVをそれぞれ測定した。
なお、図4に示すように、赤外線光源1の抵抗体15を設定温度400℃で断続的に(2Hz,デューティ比50%のON−OFF)加熱し、抵抗体15のON時の赤外線検出素子120の最大出力をV1とし、抵抗体15のOFF時の赤外線検出素子120の最小出力をV2とし、ΔV=V1−V2とした。
出力ΔVが大きいほど、電圧感度(V/W;入射光量1W当りの赤外線検出素子120の出力(V))が大きくなり、赤外線検出素子の検出精度も向上する。
そして、赤外線放射率としては、参照例の赤外線光源を用いた赤外線検知式ガスセンサ100の赤外線検出素子120における波長3.9μm、9.5μmのそれぞれの出力ΔV(参照出力ΔV)の値に対する、実施例1〜5、比較例1の赤外線光源を用いた赤外線検知式ガスセンサ100の赤外線検出素子120における波長3.9μm、9.5μmのそれれぞの出力ΔVの値の倍率で評価した。そのため、参照例での赤外線放射率は、波長3.9μm、9.5μmのそれぞれにおいて、1.00となっている。波長3.9μmにおいて、出力ΔVの参照出力ΔVに対する倍率として1.20を超えた場合を○とし、1.20以下の場合を×とし、波長9.5μmにおいて、出力ΔVの参照出力ΔVに対する倍率として1.60を超えた場合を○とし、1.60以下の場合を×とした。
また、各赤外線光源における放射性膜の密着性の評価として、赤外線光源を赤外線検知式ガスセンサ100に組み付けたときに、薄膜支持層45に対して放射性膜の剥離が生じたか否かを目視にて確認した。剥離が生じなかった場合を○とし、剥離が生じた場合を×とした。
得られた結果を表1に示す。
Furthermore, the obtained infrared light source 1 was assembled in the infrared detection type gas sensor 100 shown in FIG. 3, and the infrared emissivity was measured, and the adhesion of the highly radioactive film was evaluated. In the measurement (evaluation) of the infrared emissivity, specifically, an infrared detection type gas sensor 100 in which each infrared light source 1 is separately assembled is prepared, and the measurement gas of the infrared detection type gas sensor 100 is set to the atmosphere to detect infrared rays. The output ΔV of the element 120 was measured. An infrared wavelength selection filter 110 having wavelengths of 3.9 μm and 9.5 μm is disposed on the light receiving surface side of the infrared detection element 120, and the output ΔV of the infrared detection element 120 at the wavelengths of 3.9 μm and 9.5 μm is measured. .
As shown in FIG. 4, the resistor 15 of the infrared light source 1 is heated intermittently at a set temperature of 400 ° C. (2 Hz, duty ratio 50% ON-OFF), and the infrared detector when the resistor 15 is ON. The maximum output of 120 is V1, the minimum output of the infrared detecting element 120 when the resistor 15 is OFF is V2, and ΔV = V1−V2.
As the output ΔV increases, the voltage sensitivity (V / W; the output (V) of the infrared detection element 120 per 1 W of incident light quantity) increases, and the detection accuracy of the infrared detection element also improves.
And as an infrared emissivity, with respect to the value of each output (DELTA) V (reference output (DELTA) V) of wavelength 3.9micrometer and 9.5micrometer in the infrared detection element 120 of the infrared detection type gas sensor 100 using the infrared light source of a reference example. Evaluation was performed at the magnification of the output ΔV values of wavelengths 3.9 μm and 9.5 μm in the infrared detection element 120 of the infrared detection type gas sensor 100 using the infrared light source of Examples 1 to 5 and Comparative Example 1. Therefore, the infrared emissivity in the reference example is 1.00 at each of the wavelengths of 3.9 μm and 9.5 μm. The case where the magnification of the output ΔV with respect to the reference output ΔV exceeds 1.20 at the wavelength of 3.9 μm is set as ◯, the case of 1.20 or less is set as ×, and the magnification of the output ΔV with respect to the reference output ΔV at the wavelength of 9.5 μm As for the case where 1.60 was exceeded, it was set as (circle), and the case where it was 1.60 or less was set as x.
Further, as an evaluation of the adhesion of the radioactive film in each infrared light source, it is visually confirmed whether or not the radioactive film is peeled off from the thin film support layer 45 when the infrared light source is assembled to the infrared detection type gas sensor 100. did. The case where peeling did not occur was rated as ◯, and the case where peeling occurred was marked as x.
The obtained results are shown in Table 1.

表1から明らかなように、Si−Cの表面添加率が11%以上で、かつSi(O)を含み、Znの表面添加率が81%以下で、かつZnを含み、Bの表面添加率が67%以下で、かつBを含む各実施例の場合、赤外線放射率(詳細には、波長3.9μm、9.5μmにおける赤外線放射率)が大きくなり、赤外線検出素子の検出精度が向上したと共に、高放射性膜の薄膜支持層45に対する密着性も向上した。
Si−Cの表面添加率が11%未満で、Znの表面添加率が81%未満で、Bの表面添加率が67%未満である比較例1の場合、赤外線放射率の向上が十分に得られなかった。
Si−Cの表面添加率が100%で、高放射性膜中にSi(O)を含まない比較例2の場合、放射性膜の密着性が劣った。
なお、図5は、実施例2の高放射性膜の表面のX線光電子分光(XPS)装置による光電子ピークを示す。SiにCが結合している場合とOが結合している場合とで、結合エネルギが異なるために、2つのピークに分離することができ、Si(O)とSi(C)を求めることができる。
As is apparent from Table 1, the surface addition rate of Si-C is 11% or more, Si (O) is contained, the surface addition rate of Zn is 81% or less, Zn is contained, and the surface addition rate of B In the case of each example in which B is 67% or less and B is included, the infrared emissivity (specifically, the infrared emissivity at wavelengths of 3.9 μm and 9.5 μm) is increased, and the detection accuracy of the infrared detecting element is improved. At the same time, the adhesion of the highly radioactive film to the thin film support layer 45 was also improved.
In the case of Comparative Example 1 in which the surface addition rate of Si—C is less than 11%, the surface addition rate of Zn is less than 81%, and the surface addition rate of B is less than 67%, the infrared emissivity is sufficiently improved. I couldn't.
In the case of Comparative Example 2 in which the surface addition rate of Si—C was 100% and Si (O) was not included in the highly radioactive film, the adhesiveness of the radioactive film was inferior.
FIG. 5 shows a photoelectron peak by the X-ray photoelectron spectroscopy (XPS) apparatus on the surface of the highly radioactive film of Example 2. Since the binding energy differs between when C is bonded to Si and when O is bonded, it can be separated into two peaks, and Si (O) and Si (C) can be obtained. it can.

1 赤外線光源
13 半導体基板
13C 空洞部
15 抵抗体
30 高放射性膜
D 薄膜部
DESCRIPTION OF SYMBOLS 1 Infrared light source 13 Semiconductor substrate 13C Cavity part 15 Resistor 30 High radiation film D Thin film part

Claims (3)

空洞部を有する半導体基板と、
前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、
前記薄膜部の内部に設けられ、通電により発熱する抵抗体と、
前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、
前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともZnを含むガラス質材料とを含み、
前記高放射性膜の表面において、X線光電子分光(XPS)によって分析したとき、Znと、Cに結合しているSiの原子数Si(C)との原子数比であるZn/(Si(C)+Zn)で示されるZnの表面添加率が81%以下で、かつZnを少なくとも含み、
前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている赤外線光源。
但し、前記X線光電子分光を、検出領域100μm中、検出深さ4〜5nm(取出角45°)の条件で、AlKα線(1486keV)を用い、前記高放射性膜に存在する元素のうち測定対象とする元素の光電子ピーク面積をそれぞれ測定し、以下の(1)に示す式によって測定対象とする各元素の原子数を定量(相対定量)し、定量された各元素の原子数を用いて上述した表面添加率を求める。
Ci={(Ai/RSFi)/(ΣiAi/RSFi)}×100・・・(1)
ここで、Ciは測定対象とする元素iの定量値(atomic%)、Aiは測定対象とする元素iの光電子ピーク面積、RSFiは測定対象とする元素iの相対感度係数を示す。
A semiconductor substrate having a cavity,
A thin film portion formed on the semiconductor substrate so as to cover the cavity,
A resistor which is provided inside the thin film portion and generates heat when energized;
An infrared light source provided on the thin film portion, and having a high emissivity greater than that of the resistor, and receiving a heat from the resistor to emit infrared rays. ,
The highly radioactive film includes ceramic particles mainly composed of silicon carbide, and a vitreous material containing at least Zn,
When analyzed by X-ray photoelectron spectroscopy (XPS) on the surface of the high-emissivity film, Zn / (Si (C (C)) is the atomic ratio between Zn and the number of Si atoms Si (C) bonded to C. ) + Zn), the surface addition rate of Zn is 81% or less, and contains at least Zn,
The high-radiation film is an infrared light source that is formed to extend to a region outside the thin film portion and is provided at least on a region where the resistor is formed .
However, the X-ray photoelectron spectroscopy is performed using AlKα rays (1486 keV) under the condition of a detection depth of 4 to 5 nm (extraction angle of 45 °) in a detection region of 100 μm, and an object to be measured among the elements present in the highly radioactive film. Measure the photoelectron peak area of each element, quantify the number of atoms of each element to be measured (relative quantification) according to the following formula (1), and use the quantified number of atoms of each element described above. Determine the surface addition rate.
Ci = {(Ai / RSFi) / (ΣiAi / RSFi)} × 100 (1)
Here, Ci is a quantitative value (atomic%) of the element i to be measured, Ai is a photoelectron peak area of the element i to be measured, and RSFi is a relative sensitivity coefficient of the element i to be measured.
空洞部を有する半導体基板と、
前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、
前記薄膜部に設けられ、通電により発熱する抵抗体と、
前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、
前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともBを含むガラス質材料とを含み、
前記高放射性膜の表面において、X線光電子分光(XPS)によって分析したとき、Bと、Cに結合しているSiの原子数Si(C)との原子数比であるB/(Si(C)+B)で示されるBの表面添加率が67%以下で、かつBを少なくとも含み、
前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている赤外線光源。
但し、前記X線光電子分光を、検出領域100μm中、検出深さ4〜5nm(取出角45°)の条件で、AlKα線(1486keV)を用い、前記高放射性膜に存在する元素のうち測定対象とする元素の光電子ピーク面積をそれぞれ測定し、以下の(1)に示す式によって測定対象とする各元素の原子数を定量(相対定量)し、定量された各元素の原子数を用いて上述した表面添加率を求める。
Ci={(Ai/RSFi)/(ΣiAi/RSFi)}×100・・・(1)
ここで、Ciは測定対象とする元素iの定量値(atomic%)、Aiは測定対象とする元素iの光電子ピーク面積、RSFiは測定対象とする元素iの相対感度係数を示す。
A semiconductor substrate having a cavity,
A thin film portion formed on the semiconductor substrate so as to cover the cavity,
A resistor provided in the thin film portion and generating heat when energized;
An infrared light source provided on the thin film portion, and having a high emissivity greater than that of the resistor, and receiving a heat from the resistor to emit infrared rays. ,
The high radiation film includes ceramic particles mainly composed of silicon carbide, and a vitreous material containing at least B,
When analyzed by X-ray photoelectron spectroscopy (XPS) on the surface of the high-emissivity film, B / (Si (C (C)) is the atomic ratio between B and the number of Si atoms Si (C) bonded to C. ) + B) the surface addition rate of B is 67% or less, and contains at least B,
The high-radiation film is an infrared light source that is formed to extend to a region outside the thin film portion and is provided at least on a region where the resistor is formed .
However, the X-ray photoelectron spectroscopy is performed using AlKα rays (1486 keV) under the condition of a detection depth of 4 to 5 nm (extraction angle of 45 °) in a detection region of 100 μm, and an object to be measured among the elements present in the highly radioactive film. Measure the photoelectron peak area of each element, quantify the number of atoms of each element to be measured (relative quantification) according to the following formula (1), and use the quantified number of atoms of each element described above. Determine the surface addition rate.
Ci = {(Ai / RSFi) / (ΣiAi / RSFi)} × 100 (1)
Here, Ci is a quantitative value (atomic%) of the element i to be measured, Ai is a photoelectron peak area of the element i to be measured, and RSFi is a relative sensitivity coefficient of the element i to be measured.
空洞部を有する半導体基板と、
前記空洞部を覆うように前記半導体基板上に形成される薄膜部と、
前記薄膜部に設けられ、通電により発熱する抵抗体と、
前記薄膜部上に設けられ、前記抵抗体の赤外線放射率以上の赤外線放射率を有し、前記抵抗体からの熱を受けて赤外線を発光する高放射性膜と、を備えた赤外線光源であって、
前記高放射性膜は、炭化珪素を主成分とするセラミックス粒子と、少なくともSiO を含むガラス質材料とを含み、
前記高放射性膜の表面において、Cに結合しているSiの原子数Si(C)と、Oに結合しているSiの原子数Si(O)との原子数比であるSi(C)/(Si(O)+Si(C))で示されるSi−Cの表面添加率が11%以上で、かつSi(O)を少なくとも含み、
前記高放射性膜は、前記薄膜部よりも外側の領域に延びて形成されると共に、少なくとも前記抵抗体の形成領域上に設けられている赤外線光源。
A semiconductor substrate having a cavity,
A thin film portion formed on the semiconductor substrate so as to cover the cavity,
A resistor provided in the thin film portion and generating heat when energized;
An infrared light source provided on the thin film portion, and having a high emissivity greater than that of the resistor, and receiving a heat from the resistor to emit infrared rays. ,
The highly radioactive film includes ceramic particles mainly composed of silicon carbide, and a vitreous material containing at least SiO 2 ;
Si (C) / which is the atomic ratio between the number of Si atoms Si (C) bonded to C and the number of Si atoms Si (O) bonded to O on the surface of the highly radioactive film. The surface addition rate of Si—C represented by (Si (O) + Si (C)) is 11% or more, and contains at least Si (O),
The high-radiation film is an infrared light source that is formed to extend to a region outside the thin film portion and is provided at least on a region where the resistor is formed .
JP2013139764A 2013-07-03 2013-07-03 Infrared light source Active JP6245865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139764A JP6245865B2 (en) 2013-07-03 2013-07-03 Infrared light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139764A JP6245865B2 (en) 2013-07-03 2013-07-03 Infrared light source

Publications (2)

Publication Number Publication Date
JP2015014468A JP2015014468A (en) 2015-01-22
JP6245865B2 true JP6245865B2 (en) 2017-12-13

Family

ID=52436292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139764A Active JP6245865B2 (en) 2013-07-03 2013-07-03 Infrared light source

Country Status (1)

Country Link
JP (1) JP6245865B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113254B1 (en) * 2015-11-26 2017-04-12 三菱電機株式会社 Infrared light source
CN107451532B (en) * 2017-07-07 2020-09-04 Oppo广东移动通信有限公司 Infrared light source, iris recognition module and electronic device
JP7456903B2 (en) 2020-09-18 2024-03-27 旭化成エレクトロニクス株式会社 Light receiving/emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054750B2 (en) * 1977-06-29 1985-12-02 株式会社日立ホームテック Manufacturing method of far infrared heater
JPS62211888A (en) * 1986-03-10 1987-09-17 株式会社ノリタケカンパニーリミテド Far-infrared radiating ceramic unit and manufacture of the same
JP2712527B2 (en) * 1989-04-18 1998-02-16 松下電器産業株式会社 Heating device for infrared radiation
US6297511B1 (en) * 1999-04-01 2001-10-02 Raytheon Company High frequency infrared emitter
JP2001221689A (en) * 2000-02-08 2001-08-17 Yokogawa Electric Corp Infrared light source and infrared gas analyzer
JP3949483B2 (en) * 2001-04-27 2007-07-25 ハリソン東芝ライティング株式会社 Plate heater, fixing device, and image forming apparatus
JP4055697B2 (en) * 2003-11-05 2008-03-05 株式会社デンソー Infrared light source
JP2007035899A (en) * 2005-07-27 2007-02-08 Sumitomo Electric Ind Ltd Wafer holding body for wafer prober, and wafer prober mounting the same
JP5160043B2 (en) * 2006-03-31 2013-03-13 Hoya株式会社 Glass material for mold press and method for producing glass optical element
KR101164863B1 (en) * 2007-10-29 2012-07-18 쿄세라 코포레이션 Ceramic heater, and oxygen sensor and hair iron employing the ceramic heater

Also Published As

Publication number Publication date
JP2015014468A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6245865B2 (en) Infrared light source
US20070212263A1 (en) Micro Thermoelectric Type Gas Sensor
JP5260858B2 (en) Infrared detector manufacturing method
FI127446B (en) Infrared emitter having a layered structure
JP5321595B2 (en) Thermal sensor, non-contact thermometer device, and non-contact temperature measurement method
CN108140533B (en) Photomultiplier tube and method for manufacturing the same
JP2014075572A (en) Electrostatic chuck
WO2021241628A1 (en) Capacitive sensor
TW201804872A (en) Infrared panel radiator and process for production of the infrared panel radiator
CN106093138B (en) Pass through the manufacturing method and sensor of the sensor of metal oxide detection gas
KR101078187B1 (en) Micro Gas Sensor And Method of manufacturing the same
JP2016065786A (en) Infrared radiating element, manufacturing method thereof, and gas analyzer
JP4055697B2 (en) Infrared light source
CN106124576A (en) Integrated humidity sensor and multiple-unit gas sensor and manufacture method thereof
TW201445666A (en) Low emissivity electrostatic chuck and ion implantation system having the same
JP5821462B2 (en) Infrared absorbing film and infrared detecting element using the same
CN108135516B (en) Measurement sensor package and measurement sensor
JP2014115244A (en) Infrared detector
JP6142618B2 (en) Infrared sensor
Wang et al. Infrared thermal detector array using Eu (TTA) 3-based temperature sensitive paint for optical readable thermal imaging device
JP2017098129A (en) Infrared light source
EP3533286A1 (en) Infrared radiator
JP6245036B2 (en) Infrared detector
CN105668504A (en) Infrared light source and manufacturing method thereof
JP5803435B2 (en) Infrared temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6245865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250