JPH11131103A - Composition for powder injection molding and production of powder injection molded goods - Google Patents

Composition for powder injection molding and production of powder injection molded goods

Info

Publication number
JPH11131103A
JPH11131103A JP29531897A JP29531897A JPH11131103A JP H11131103 A JPH11131103 A JP H11131103A JP 29531897 A JP29531897 A JP 29531897A JP 29531897 A JP29531897 A JP 29531897A JP H11131103 A JPH11131103 A JP H11131103A
Authority
JP
Japan
Prior art keywords
powder
sintering
injection molding
organic binder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29531897A
Other languages
Japanese (ja)
Inventor
Shizue Itou
▲静▼枝 伊藤
Naoto Ogasawara
直人 小笠原
Yasumasa Kusano
泰正 草野
Kotaro Ishiyama
康太郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP29531897A priority Critical patent/JPH11131103A/en
Publication of JPH11131103A publication Critical patent/JPH11131103A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compsn. for powder injection molding for obtaining sintered compacts having excellent dimensional accuracy without the occurrence of warpage, deformation, etc., in parts by uniformly progressing sintering shrinkage in a powder injection molding method using powder for sintering and a process for producing powder injection molded goods by using the same. SOLUTION: The compsn. for powder injection molding is manufactured by kneading the powder for sintering and resins of which pyrolysis ends at a temp. below the sintering shrinkage initiation temp. of the powder for sintering as the respective components of an org. binder. This compsn. is molded to form injection moldings. The respective components of the org. binder are removed at the temp. below the sintering shrinkage initiation temp. of the powder for sintering by which the degreased moldings are obtd. in a degreasing stage of the injection moldings. This degreased bodies are sintered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結用粉末と有機
バインダ成分である少なくとも一種類の熱可塑性樹脂を
混練して粉末射出成形用組成物を作製し、これを成形し
て射出成形体とし、前記射出成形体中に含まれる有機バ
インダを除去して脱脂体を得た後、前記脱脂体を焼結し
て焼結体を作製する粉末射出成形方法で用いる粉末射出
成形用組成物および前記粉末射出成形品の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder injection molding composition by kneading a sintering powder and at least one kind of thermoplastic resin as an organic binder component, and molding the same to form an injection molded article. And removing the organic binder contained in the injection-molded body to obtain a degreased body, and then sintering the degreased body to form a sintered body, a powder injection molding composition used in a powder injection molding method, and The present invention relates to a method for producing the powder injection molded article.

【0002】[0002]

【従来の技術】粉末射出成形法は、三次元の複雑形状の
部品を高い寸法精度で量産できる技術として広く用いら
れている。粉末射出成形法では、焼結用粉末に熱可塑性
樹脂である有機バインダを分散、混合し、これを射出成
形法により成形し、次いでこの成形体中に含まれる樹脂
を除去、すなわち脱脂をおこなった後、前記成形体を焼
結し、所望の焼結部品を作製する。
2. Description of the Related Art The powder injection molding method is widely used as a technique capable of mass-producing three-dimensionally complex parts with high dimensional accuracy. In the powder injection molding method, an organic binder which is a thermoplastic resin is dispersed and mixed in a powder for sintering, molded by an injection molding method, and then the resin contained in the molded body is removed, that is, degreasing is performed. Thereafter, the compact is sintered to produce a desired sintered part.

【0003】この粉末射出成形法において、成形体から
有機バインダ除去する方法として加熱分解法が広く用い
られている。例えば、焼結用粉末として鉄系粉末を用
い、有機バインダとして熱可塑性樹脂および/またはワ
ックスを主体とし、可塑剤、潤滑剤、および脱脂促進剤
などを添加した例が特開平2−57615号公報に記載
されている。
In this powder injection molding method, a thermal decomposition method is widely used as a method for removing an organic binder from a molded article. For example, JP-A-2-57615 discloses an example in which an iron-based powder is used as a sintering powder, a thermoplastic resin and / or a wax is mainly used as an organic binder, and a plasticizer, a lubricant, and a degreasing accelerator are added. It is described in.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
加熱分解脱脂工程における有機バインダ組成および脱脂
条件では、焼結用粉末の焼結収縮開始温度と有機バイン
ダ成分の分解終了温度との関係が考慮されていなかっ
た。ここで粉末焼結収縮開始温度とは、成形体を構成し
ている焼結用粉末の焼結に伴う成形体寸法の収縮が開始
する温度であり、これは用いる粉末の材質、粒径、形状
や加熱雰囲気によって決まるものである。従来の技術に
おいて、焼結用粉末の焼結収縮開始温度よりも有機バイ
ンダ成分の分解終了温度が高い場合には、成形体の焼結
収縮が進行する際に、成形体中に含まれる有機バインダ
の分解ガスにより炉内雰囲気が汚染され、その結果、焼
結体の寸法精度が低下するという課題を有していた。以
下に、この課題について例を挙げて詳細に示す。
However, in the conventional organic binder composition and degreasing conditions in the thermal decomposition degreasing step, the relationship between the sintering shrinkage starting temperature of the sintering powder and the decomposition ending temperature of the organic binder component is considered. I didn't. Here, the powder sintering shrinkage start temperature is a temperature at which the shrinkage of the size of the compact starts due to sintering of the sintering powder constituting the compact, which is the material, particle size and shape of the powder used. And the heating atmosphere. In the prior art, when the decomposition end temperature of the organic binder component is higher than the sintering shrinkage starting temperature of the sintering powder, when the sintering shrinkage of the molded body proceeds, the organic binder contained in the molded body is increased. There is a problem that the atmosphere in the furnace is contaminated by the decomposition gas, and as a result, the dimensional accuracy of the sintered body is reduced. Hereinafter, this problem will be described in detail with examples.

【0005】例えば、焼結用粉末として、水素雰囲気中
での焼結収縮開始温度が450℃である鉄粉末を用い、
有機バインダの熱分解終了温度が600℃である有機バ
インダ組成を用いた場合について説明する。
For example, as a sintering powder, an iron powder having a sintering shrinkage initiation temperature of 450 ° C. in a hydrogen atmosphere is used.
A case where an organic binder composition in which the thermal decomposition end temperature of the organic binder is 600 ° C. will be described.

【0006】脱脂工程において、有機バインダを完全に
除去するためには、脱脂工程を不活性雰囲気中600℃
以上でおこなえばよいのであるが、鉄のような酸化され
やすい粉末を用いて高い寸法精度が要求される部品を作
製する場合には、脱脂を600℃より低温でおこなわな
ければならない。なぜならば、不活性雰囲気下といえど
も、雰囲気中にわずかに含まれる酸素によって、成形体
のうち雰囲気に接した面の鉄粉末が酸化されてしまうか
らである。ここで、酸化が進行した面では、焼成治具に
接した面など酸化が進行していない面に比べて、粉末の
焼結収縮が阻害される。その結果、脱脂体が不均一に収
縮し、焼結体の変形が生じて寸法精度が低下する。した
がって鉄粉末の場合、粉末の酸化を防止するためには、
脱脂を少なくとも400℃以下でおこない、400℃で
は熱分解せずに脱脂体中に残留した有機バインダを焼結
工程の初期段階で除去しなければならない。
In the degreasing step, in order to completely remove the organic binder, the degreasing step is performed at 600 ° C. in an inert atmosphere.
As described above, when a component requiring high dimensional accuracy is manufactured using a powder that is easily oxidized, such as iron, degreasing must be performed at a temperature lower than 600 ° C. This is because, even under an inert atmosphere, the oxygen powder slightly contained in the atmosphere oxidizes the iron powder on the surface of the molded body that is in contact with the atmosphere. Here, sintering shrinkage of the powder is inhibited on the surface where oxidation has progressed, as compared with the surface where oxidation has not progressed such as the surface in contact with the firing jig. As a result, the degreased body shrinks non-uniformly, causing deformation of the sintered body and lowering dimensional accuracy. Therefore, in the case of iron powder, to prevent oxidation of the powder,
Degreasing must be performed at least at 400 ° C. or lower, and at 400 ° C., the organic binder remaining in the degreased body without being thermally decomposed must be removed in the initial stage of the sintering process.

【0007】次に、脱脂後の成形体、すなわち脱脂体を
焼結させて焼結体を得る。ここで、前記脱脂体中に残留
した有機バインダは、焼結工程の初期段階で熱分解し、
ガス化して除去される。ここで、特に成形体を大量に焼
結炉内に仕込んだ場合には、残留バインダに起因した分
解ガスが400℃付近から大量に発生する。そして、4
50℃付近からはこのように焼結炉内雰囲気がガスで汚
染された状態で鉄粉末の焼結収縮が進行する。この時、
脱脂体のうち、焼結雰囲気に接した面は、有機バインダ
の分解ガスによる焼結炉内の汚染のため、焼結に伴う収
縮の進行が妨げられ、焼結雰囲気に接していない面に比
べて相対的に収縮率が小さくなる。その結果、焼結体の
上面と下面とで収縮率に相対的な差が生じ、焼結体の変
形が発生する。特に薄型形状の部品では、この影響が顕
著に現れ、焼結体の反り変形不良の原因となる。
Next, a sintered body is obtained by sintering the degreased molded body, that is, the degreased body. Here, the organic binder remaining in the degreased body is thermally decomposed in an initial stage of the sintering process,
It is removed by gasification. Here, especially when a large amount of the compact is charged into the sintering furnace, a large amount of the decomposition gas due to the residual binder is generated from around 400 ° C. And 4
From around 50 ° C., the sintering shrinkage of the iron powder proceeds in such a state that the atmosphere in the sintering furnace is contaminated with the gas. At this time,
The surface of the degreased body that was in contact with the sintering atmosphere was contaminated in the sintering furnace by the decomposition gas of the organic binder. Therefore, the shrinkage ratio becomes relatively small. As a result, there is a relative difference in shrinkage between the upper surface and the lower surface of the sintered body, and the sintered body is deformed. In particular, in the case of a thin-shaped part, this effect appears remarkably, and causes a warp deformation defect of the sintered body.

【0008】このように、特に部品を大量に焼結した場
合、残留有機バインダの熱分解ガスに起因して発生する
変形不良は、歩留まりを低下させる大きな問題点となっ
ていた。
[0008] As described above, in particular, when parts are sintered in a large amount, the deformation defect generated due to the pyrolysis gas of the residual organic binder has been a serious problem of lowering the yield.

【0009】〔発明の目的〕したがって、本発明の目的
は、上記問題点を解決して部品の変形不良を防止し、寸
法精度の優れた焼結体およびその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a sintered body which solves the above problems, prevents defective deformation of parts, has excellent dimensional accuracy, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粉末射出成形用組成物は下記記載の構成を
採用する。
In order to achieve the above object, the composition for powder injection molding of the present invention adopts the following constitution.

【0011】すなわち、焼結用粉末と有機バインダ成分
である少なくとも一種類の熱可塑性樹脂を混練して粉末
射出成形用組成物を作製し、これを成形して射出成形体
とし、前記射出成形体を脱脂して脱脂体を得、前記脱脂
体を焼結して焼結体を作製することによる粉末射出成形
方法における粉末射出成形用組成物であって、前記有機
バインダの各成分は、前記焼結用粉末の焼結収縮開始温
度以下で熱分解が終了する樹脂であることを特徴とす
る。
That is, a powder injection molding composition is prepared by kneading a powder for sintering and at least one kind of thermoplastic resin as an organic binder component, and molding this into an injection molded body. Degreased to obtain a degreased body, and sintering the degreased body to produce a sintered body, the composition for powder injection molding in the powder injection molding method, wherein each component of the organic binder, It is characterized in that the resin is thermally decomposed below the sintering shrinkage starting temperature of the binder powder.

【0012】また、上記目的を達成するために、本発明
の粉末射出成形品の製造方法は下記記載の方法を採用す
る。
In order to achieve the above object, the method for producing a powder injection molded article of the present invention employs the following method.

【0013】すなわち、焼結用粉末と有機バインダの各
成分として前記焼結用粉末の焼結収縮開始温度以下で熱
分解が終了する樹脂を混練して粉末射出成形用組成物を
作製し、これを成形して射出成形体とし、前記射出成形
体の脱脂工程において前記有機バインダの各成分を前記
焼結用粉末の焼結収縮開始温度以下で除去して脱脂体を
得、前記脱脂体を焼結することを特徴とする。
That is, a resin that is thermally decomposed at or below the sintering shrinkage initiation temperature of the sintering powder as a component of the sintering powder and the organic binder is kneaded to prepare a powder injection molding composition. Is molded into an injection molded body, and in the degreasing step of the injection molded body, each component of the organic binder is removed at a temperature equal to or lower than a sintering shrinkage start temperature of the sintering powder to obtain a degreased body, and the degreased body is fired. It is characterized by tying.

【0014】〔作用〕本発明は、焼結用粉末と有機バイ
ンダである少なくとも一種類の熱可塑性樹脂を混練して
粉末射出成形用組成物を作製し、これを成形して射出成
形体とし、前記射出成形体を脱脂して得られる脱脂体を
焼結して焼結体を作製する粉末射出成形用組成物および
前記粉末射出成形品の製造方法であって、前記有機バイ
ンダの各成分が、前記焼結用粉末の焼結開始温度以下で
熱分解が終了する樹脂であることを特徴とする。これに
よって、成形体の焼結収縮が進行する際に、残留有機バ
インダからの分解ガスは発生せず、焼結炉内雰囲気を汚
染させることなく焼結を進行させることができるため、
焼結収縮が均一に進行し、変形のない寸法精度に優れた
焼結体を得ることができる。
According to the present invention, a powder injection molding composition is produced by kneading a sintering powder and at least one kind of thermoplastic resin as an organic binder, and molding this into an injection molded article. A method for producing a composition for powder injection molding and a method for producing the powder injection molded article, wherein the degreased body obtained by degreased the injection molded body is sintered to produce a sintered body, wherein each component of the organic binder is: The resin is characterized by being thermally decomposed below the sintering start temperature of the sintering powder. Thereby, when the sintering shrinkage of the molded body proceeds, no decomposition gas is generated from the residual organic binder, and the sintering can proceed without polluting the atmosphere in the sintering furnace.
Sintering shrinkage proceeds uniformly, and a sintered body having excellent dimensional accuracy without deformation can be obtained.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施するための最
良の形態における粉末射出成形用組成物および粉末射出
成形品の製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, a composition for powder injection molding and a method for producing a powder injection molded product in the best mode for carrying out the present invention will be described.

【0016】まず、本発明においては、一般に粉末射出
成形に用いられる金属およびセラミックの任意の焼結用
粉末を用いることができる。また、粒径や形状、材質の
異なる二種類以上の粉末を混合して用いることもでき
る。ここで、粉末の成形体を炉内で昇温させた場合、あ
る温度から粉末の焼結に伴って成形体の寸法収縮が開始
する。この寸法収縮が開始する温度を焼結収縮開始温度
と呼ぶ。ここで、各粉末の焼結収縮開始温度は、前記成
形体を所定の雰囲気中で任意の温度まで加熱した後、取
り出した成形体の寸法変化によって知ることができる。
成形体の焼結に伴う寸法収縮が開始する温度がその粉末
の焼結収縮開始温度である。
First, in the present invention, any sintering powder of metals and ceramics generally used for powder injection molding can be used. In addition, two or more kinds of powders having different particle diameters, shapes, and materials can be mixed and used. Here, when the temperature of the powder compact is increased in a furnace, the dimensional shrinkage of the compact starts at a certain temperature with sintering of the powder. The temperature at which the dimensional shrinkage starts is called the sintering shrinkage start temperature. Here, the sintering shrinkage starting temperature of each powder can be known from the dimensional change of the compact taken out after heating the compact to an arbitrary temperature in a predetermined atmosphere.
The temperature at which dimensional shrinkage due to sintering of the molded body starts is the sintering shrinkage starting temperature of the powder.

【0017】ここで、焼結収縮開始温度を支配する要因
としては、用いる粉末の材質や粉末中の酸素量、形状や
粒径、加熱雰囲気などが挙げられる。一般的に、同じ材
質の粉末の場合には、粒径が細かく、充填密度が高いほ
ど粉末焼結収縮開始温度は低くなる。本発明は、特に粒
径が細かく焼結収縮開始温度が低い粉末を用いる場合に
有効である。
The factors governing the sintering shrinkage initiation temperature include the material of the powder used, the amount of oxygen in the powder, the shape and particle size, the heating atmosphere, and the like. Generally, in the case of powders of the same material, the smaller the particle size and the higher the packing density, the lower the powder sintering shrinkage onset temperature. The present invention is particularly effective when a powder having a small particle diameter and a low sintering shrinkage initiation temperature is used.

【0018】次に、本発明に用いられる有機バインダ
は、少なくとも一種類の熱可塑性樹脂から成る。ここ
で、本発明における有機バインダを構成するすべての成
分は、その粉末射出成形用組成物中に含まれる焼結用粉
末の焼結収縮開始温度以下で熱分解除去される樹脂であ
ることを特徴とする。
Next, the organic binder used in the present invention is made of at least one kind of thermoplastic resin. Here, all the components constituting the organic binder in the present invention are resins that are thermally decomposed and removed at or below the sintering shrinkage starting temperature of the sintering powder contained in the powder injection molding composition. And

【0019】たとえば、焼結用粉末として平均粒径約1
μmのカルボニル鉄粉末を用いた場合、その焼結収縮開
始温度は約450℃である。たとえばここで、上記の粉
末を用いた場合には、粉末射出成形用組成物に流動性を
付与する目的でパラフィンワックス、ステアリン酸、ジ
ブチルフタレートなどを使用することができる。これら
の樹脂2種類以上を組み合わせて用いることも可能であ
る。これらの成分は不活性雰囲気中、400℃以下で加
熱分解除去される。次に、粉末射出成形体に強度を付与
する高分子成分として、ポリブチルメタクリレート、ポ
リαメチルスチレンなどが用いられる。これらの高分子
成分も、不活性雰囲気中400℃程度で分解が完了する
樹脂である。なお、これらの樹脂を2種類以上組み合わ
せて用いることも可能である。
For example, as a powder for sintering, an average particle size of about 1
When a carbonyl iron powder of μm is used, its sintering shrinkage onset temperature is about 450 ° C. For example, when the above powder is used, paraffin wax, stearic acid, dibutyl phthalate and the like can be used for imparting fluidity to the composition for powder injection molding. It is also possible to use a combination of two or more of these resins. These components are removed by heating at 400 ° C. or lower in an inert atmosphere. Next, polybutyl methacrylate, poly-α-methylstyrene, or the like is used as a polymer component that imparts strength to the powder injection molded article. These polymer components are also resins whose decomposition is completed at about 400 ° C. in an inert atmosphere. Note that two or more of these resins can be used in combination.

【0020】まず、前記焼結用粉末と前記有機バインダ
を加圧ニーダー等を用いて混練し、粉末射出成形用組成
物を得る。混練後は必要に応じてペレタイザー等を利用
して造粒し、射出成形用組成物を得る。
First, the sintering powder and the organic binder are kneaded using a pressure kneader or the like to obtain a powder injection molding composition. After kneading, the mixture is granulated using a pelletizer or the like, if necessary, to obtain a composition for injection molding.

【0021】次に、前記射出成形用組成物を射出成形機
により成形し、所望の形状の射出成形体を得る。
Next, the injection molding composition is molded by an injection molding machine to obtain an injection molded article having a desired shape.

【0022】次に、前記成形体中に含まれる有機バイン
ダを除去するため、脱脂をおこなう。脱脂雰囲気は、大
気、不活性雰囲気、還元雰囲気など、使用する粉末に応
じて選択する。焼結用粉末として鉄のように酸化しやす
い材料を用いた場合には、脱脂工程は窒素、アルゴンな
どの不活性雰囲気でおこなうことが好ましい。また、本
発明では、任意の減圧雰囲気下で脱脂をおこなってもよ
い。さらに本発明において、前記有機バインダ成分の一
部を溶媒抽出などによって除去してもよい。これらの手
法を用いて、本発明においては、粉末の焼結収縮開始温
度以下ですべての有機バインダ成分を除去することがで
きる。
Next, degreasing is performed to remove the organic binder contained in the compact. The degreasing atmosphere is selected according to the powder used, such as air, an inert atmosphere, and a reducing atmosphere. When a material that is easily oxidized such as iron is used as the sintering powder, the degreasing step is preferably performed in an inert atmosphere such as nitrogen or argon. In the present invention, degreasing may be performed under an arbitrary reduced pressure atmosphere. Further, in the present invention, a part of the organic binder component may be removed by solvent extraction or the like. By using these techniques, in the present invention, all the organic binder components can be removed below the sintering shrinkage onset temperature of the powder.

【0023】次に、得られた脱脂体を所定の雰囲気、温
度で焼結をおこない焼結体を得る。本発明においては、
粉末の焼結収縮が開始する温度以下で、すべての有機バ
インダ成分が分解除去されているため、粉末の焼結収縮
が進行する段階で残留有機バインダの分解ガスは発生し
ない。したがって、焼結炉内雰囲気が分解ガスで汚染さ
れることがなく、脱脂体の焼結収縮が均一に進行し、変
形のない寸法精度に優れた焼結部品を作製することがで
きる。
Next, the obtained degreased body is sintered at a predetermined atmosphere and temperature to obtain a sintered body. In the present invention,
Since all the organic binder components are decomposed and removed at a temperature lower than the temperature at which the sintering shrinkage of the powder starts, no decomposition gas of the residual organic binder is generated at the stage where the sintering shrinkage of the powder proceeds. Therefore, the atmosphere in the sintering furnace is not contaminated by the decomposition gas, the sintering shrinkage of the degreased body proceeds uniformly, and a sintered part having excellent dimensional accuracy without deformation can be produced.

【0024】[0024]

【実施例】以下、実施例をあげて本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0025】(実施例1)焼結用粉末として、平均粒径
1μmであり、球形であるカルボニル鉄粉末を用い、有
機バインダとして、ポリαメチルスチレン65重量%、
パラフィンワックス30重量%、ステアリン酸5重量%
からなる混合物を添加し、加圧ニーダーを用いて150
℃にて混練をおこない粉末射出成形用組成物を得た。な
お、粉末と有機バインダとの混合比は、鉄粉末100重
量部に対して有機バインダ9.2重量部とした。ここ
で、本実施例における有機バインダ組成の熱分解終了温
度は約400℃である。
(Example 1) Spherical carbonyl iron powder having an average particle diameter of 1 µm was used as a sintering powder, and poly-α-methylstyrene was 65% by weight as an organic binder.
Paraffin wax 30% by weight, stearic acid 5% by weight
And a mixture of 150 parts
The mixture was kneaded at ℃ to obtain a composition for powder injection molding. The mixing ratio of the powder and the organic binder was 9.2 parts by weight of the organic binder with respect to 100 parts by weight of the iron powder. Here, the thermal decomposition end temperature of the organic binder composition in this embodiment is about 400 ° C.

【0026】このようにして得られた射出成形用組成物
を射出成形機を用いて成形し、厚さ1.5mm、直径2
0mmの平板状の時計用部品を得た。ここで、本実施例
において、収縮率を考慮した焼結体の厚さの狙い値は、
1230±50μmである。
The composition for injection molding obtained in this manner is molded using an injection molding machine, and has a thickness of 1.5 mm and a diameter of 2 mm.
A 0 mm flat watch component was obtained. Here, in the present embodiment, the target value of the thickness of the sintered body in consideration of the shrinkage rate is:
1230 ± 50 μm.

【0027】次に、前記成形体を12cm四方のアルミ
ナ製の平板上に16個並べ、この平板を42枚分すなわ
ち合計672個をそれぞれバッチ式の炉を用いて、脱
脂、焼結をおこなった。
Next, 16 compacts were arranged on a 12 cm square alumina plate, and 42 plates, that is, 672 in total, were degreased and sintered using a batch furnace. .

【0028】まず、前記成形体を窒素雰囲気中にて加熱
分解脱脂をおこなった。まず、室温から150℃までを
2.5℃/分で昇温させ、続いて250℃までを0.4
℃/分、続いて350℃までを0.6℃/分、続いて4
00℃までを0.7℃/分で昇温させ、400℃で1時
間保持をおこなった。脱脂終了後の成形体の有機バイン
ダ除去率、すなわち脱脂率は97%であった。
First, the molded body was subjected to thermal decomposition degreasing in a nitrogen atmosphere. First, the temperature is raised from room temperature to 150 ° C. at a rate of 2.5 ° C./min.
° C / min, followed by 0.6 ° C / min up to 350 ° C, followed by 4 ° C.
The temperature was raised to 00 ° C. at a rate of 0.7 ° C./min and held at 400 ° C. for 1 hour. The organic binder removal rate of the molded body after the completion of degreasing, that is, the degreasing rate was 97%.

【0029】次に、前記成形体を炉内容積80Lの焼結
炉を用い、水素フロー1L/分の雰囲気下で焼結をおこ
なった。なお、本実施例で用いた鉄粉末の水素雰囲気中
での焼結収縮開始温度を調査したところ、450℃から
収縮が顕著に進行することがわかった。すなわち本実施
例で用いた鉄粉末の焼結収縮開始温度は450℃であ
る。焼結工程における昇温速度は10℃/分とし、40
0℃で2時間保持した後、さらに1250℃で2時間保
持をおこなって、焼結体を得た。
Next, the compact was sintered in a sintering furnace having an inner volume of 80 L in an atmosphere of hydrogen flow of 1 L / min. The sintering shrinkage start temperature of the iron powder used in the present example in a hydrogen atmosphere was investigated. As a result, it was found that the shrinkage significantly progressed from 450 ° C. That is, the sintering shrinkage start temperature of the iron powder used in this example is 450 ° C. The temperature rise rate in the sintering step was 10 ° C./min,
After holding at 0 ° C. for 2 hours, it was further held at 1250 ° C. for 2 hours to obtain a sintered body.

【0030】次に、得られた焼結体の寸法精度を調べる
ため、図1に示した部分の厚さを測定した。寸法測定は
アルミナ製の板1枚につき4個を42枚、合計168個
の焼結体についておこなった。その結果、反り変形など
の不良は全く発生せず、すべて狙い値寸法公差内の焼結
体が得られた。焼結体の寸法を表1に示す。
Next, in order to examine the dimensional accuracy of the obtained sintered body, the thickness of the portion shown in FIG. 1 was measured. The dimensional measurement was performed on a total of 168 sintered bodies, 42 pieces of 4 pieces per alumina plate. As a result, defects such as warpage did not occur at all, and sintered bodies all within the target value dimensional tolerance were obtained. Table 1 shows the dimensions of the sintered body.

【0031】(実施例2)焼結用粉末として、平均粒径
が3.6μmであり、球形であるカルボニル鉄粉末を用
い、有機バインダとして、ポリブチルメタクリレート7
0重量%、パラフィンワックス20重量%、フタル酸ジ
ブチル10重量%からなる混合物を添加し、加圧ニーダ
ーを用いて160℃にて混練をおこない粉末射出成形用
組成物を得た。なお、粉末と有機バインダとの混合比
は、鉄粉末100重量部に対して有機バインダ8.5重
量部とした。ここで、本実施例における有機バインダ組
成の熱分解終了温度は約400℃である。
Example 2 Spherical carbonyl iron powder having an average particle size of 3.6 μm was used as a sintering powder, and polybutyl methacrylate 7 was used as an organic binder.
A mixture consisting of 0% by weight, 20% by weight of paraffin wax, and 10% by weight of dibutyl phthalate was added and kneaded at 160 ° C. using a pressure kneader to obtain a composition for powder injection molding. The mixing ratio of the powder and the organic binder was 8.5 parts by weight of the organic binder with respect to 100 parts by weight of the iron powder. Here, the thermal decomposition end temperature of the organic binder composition in this embodiment is about 400 ° C.

【0032】このようにして得られた射出成形用組成物
を射出成形機を用いて成形し、実施例1と同様の成形体
を得た。ここで、本実施例において、収縮率を考慮した
焼結体の厚さの狙い値は、1250±50μmである。
The composition for injection molding thus obtained was molded using an injection molding machine to obtain a molded product similar to that of Example 1. Here, in this embodiment, the target value of the thickness of the sintered body in consideration of the shrinkage is 1250 ± 50 μm.

【0033】次に、前記成形体を実施例1と同様に、6
72個をそれぞれバッチ式の炉を用いて、脱脂、焼結を
おこなった。
Next, the molded body was treated in the same manner as in Example 1,
Each of 72 pieces was subjected to degreasing and sintering using a batch type furnace.

【0034】まず、前記成形体を実施例1と同様に、窒
素雰囲気中で加熱分解脱脂をおこなった。まず、室温か
ら150℃までを2.5℃/分で昇温させ、続いて25
0℃までを0.4℃/分、続いて350℃までを0.6
℃/分、続いて400℃までを0.7℃/分で昇温さ
せ、400℃で1時間保持をおこなった。ここで、有機
バインダの除去率、すなわち脱脂率は98%であった。
First, the molded body was subjected to thermal decomposition and degreasing in a nitrogen atmosphere in the same manner as in Example 1. First, the temperature is raised from room temperature to 150 ° C. at a rate of 2.5 ° C./min.
0.4 ° C / min up to 0 ° C, then 0.6 ° C up to 350 ° C.
The temperature was raised at a rate of 0.7 ° C./minute from the temperature of 400 ° C./minute to 400 ° C., and the temperature was maintained at 400 ° C. for 1 hour. Here, the removal rate of the organic binder, that is, the degreasing rate was 98%.

【0035】次に、前記成形体を実施例1と同様の焼結
炉を用い、水素フロー1L/分の雰囲気下で焼結をおこ
なった。なお、本実施例で用いたカルボニル鉄粉末の水
素雰囲気中での焼結収縮開始温度を調査したところ、5
00℃であることがわかった。焼結工程における昇温速
度は10℃/分とし、400℃で2時間保持した後、さ
らに1250℃で2時間保持をおこなって、焼結体を得
た。
Next, the compact was sintered in the same sintering furnace as in Example 1 under an atmosphere of hydrogen flow of 1 L / min. The sintering shrinkage onset temperature of the carbonyl iron powder used in this example in a hydrogen atmosphere was investigated.
It was found to be 00 ° C. The temperature was raised at a rate of 10 ° C./min in the sintering step. The temperature was maintained at 400 ° C. for 2 hours, and then the temperature was further maintained at 1250 ° C. for 2 hours to obtain a sintered body.

【0036】次に、得られた焼結体の寸法精度を調べる
ため、実施例1と同様に焼結体の厚さを測定した。その
結果、反り変形などの不良は全く発生せず、すべて狙い
値寸法公差内の焼結体が得られた。焼結体の寸法を表1
に示す。
Next, in order to examine the dimensional accuracy of the obtained sintered body, the thickness of the sintered body was measured in the same manner as in Example 1. As a result, defects such as warpage did not occur at all, and sintered bodies all within the target value dimensional tolerance were obtained. Table 1 shows the dimensions of the sintered body.
Shown in

【0037】(実施例3)焼結用粉末として、実施例1
と同一のカルボニル鉄粉末を用い、有機バインダとし
て、パラフィンワックス68重量%、ウレタンワックス
10重量%、ポリブチルメタクリレート20重量%、ス
テアリン酸2重量%からなる混合物を添加し、プラネタ
リー式ミキサーを用いて150℃にて混練をおこない粉
末射出成形用組成物を得た。なお、粉末と有機バインダ
との混合比は、鉄粉末100重量部に対して有機バイン
ダ8.8重量部とした。ここで、本実施例における有機
バインダの熱分解終了温度は、約400℃である。
Example 3 Example 1 was used as a sintering powder.
The same carbonyl iron powder as above was used, and as an organic binder, a mixture of 68% by weight of paraffin wax, 10% by weight of urethane wax, 20% by weight of polybutyl methacrylate, and 2% by weight of stearic acid was added, and a planetary mixer was used. And kneaded at 150 ° C. to obtain a composition for powder injection molding. The mixing ratio of the powder and the organic binder was 8.8 parts by weight of the organic binder with respect to 100 parts by weight of the iron powder. Here, the thermal decomposition end temperature of the organic binder in this embodiment is about 400 ° C.

【0038】このようにして得られた射出成形用組成物
を射出成形機を用いて成形し、実施例1と同様の成形体
を得た。ここで、本実施例において、収縮率を考慮した
焼結体の厚さの狙い値は、1245±50μmである。
The composition for injection molding thus obtained was molded using an injection molding machine to obtain a molded product similar to that of Example 1. Here, in this embodiment, the target value of the thickness of the sintered body in consideration of the shrinkage is 1245 ± 50 μm.

【0039】次に、前記成形体672個を次のような条
件で脱脂、焼結をおこなった。まず、前記成形体をヘプ
タンの気相中85℃にて5時間保持して、パラフィンワ
ックス、ウレタンワックス、ステアリン酸を抽出除去し
た。その後、残りのポリブチルメタクリレートを除去す
るため、前記成形体を窒素雰囲気中、4℃/分で400
℃まで昇温させ、400℃で1時間保持をおこない、加
熱分解脱脂をおこなった。ここで、有機バインダの除去
率、すなわち脱脂率は98%であった。
Next, the 672 compacts were degreased and sintered under the following conditions. First, the molded body was kept in a heptane gas phase at 85 ° C. for 5 hours to extract and remove paraffin wax, urethane wax and stearic acid. Thereafter, in order to remove the remaining polybutyl methacrylate, the molded body was subjected to 400 ° C./min.
The temperature was raised to 400 ° C., the temperature was maintained at 400 ° C. for 1 hour, and thermal decomposition degreasing was performed. Here, the removal rate of the organic binder, that is, the degreasing rate was 98%.

【0040】次に、前記脱脂体を実施例1と同様の条件
で焼結をおこない焼結体を得た。また実施例1と同様に
焼結体の寸法測定をおこなった。その結果、反りなどの
変形は全く発生せず、すべて狙い値寸法公差内の焼結体
が得られた。焼結体の寸法を表1に示す。
Next, the degreased body was sintered under the same conditions as in Example 1 to obtain a sintered body. The dimensions of the sintered body were measured in the same manner as in Example 1. As a result, no deformation such as warpage occurred at all, and sintered bodies all within the target value dimensional tolerance were obtained. Table 1 shows the dimensions of the sintered body.

【0041】(比較例1)焼結用粉末として、実施例1
と同一のカルボニル鉄粉末を用い、有機バインダとし
て、エチレン酢酸ビニル共重合体46重量%、ポリエチ
レン9重量%、パラフィンワックス35重量%、フタル
酸ジブチル10重量%からなる混合物を添加し、加圧ニ
ーダーを用いて150℃にて混練をおこない、粉末射出
成形用組成物を得た。なお、粉末と有機バインダとの混
合比は、鉄粉末100重量部に対して有機バインダ9.
2重量部とした。ここで、本比較例における有機バイン
ダ組成の熱分解終了温度は約600℃である。
Comparative Example 1 Example 1 was used as a sintering powder.
Using the same carbonyl iron powder as above, a mixture composed of 46% by weight of ethylene-vinyl acetate copolymer, 9% by weight of polyethylene, 35% by weight of paraffin wax, and 10% by weight of dibutyl phthalate was added as an organic binder. And kneaded at 150 ° C. to obtain a composition for powder injection molding. The mixing ratio between the powder and the organic binder was such that 100 parts by weight of the iron powder and 9 parts of the organic binder were mixed.
2 parts by weight. Here, the thermal decomposition end temperature of the organic binder composition in this comparative example is about 600 ° C.

【0042】得られた射出成形用組成物を実施例1と同
様に射出成形機を用いて成形し、成形体を得た。次に、
前記成形体を実施例1と同様に672個をそれぞれバッ
チ式の炉を用いて、脱脂、焼結をおこなった。
The obtained composition for injection molding was molded using an injection molding machine in the same manner as in Example 1 to obtain a molded article. next,
In the same manner as in Example 1, 672 pieces of the compact were subjected to degreasing and sintering using a batch furnace.

【0043】まず、前記成形体を実施例1と同様の脱脂
条件で加熱分解脱脂をおこなった。ここで、脱脂率は7
8%であった。次に、前記脱脂体を実施例1と同様の焼
結炉を用い、同様の条件で焼結をおこない、得られた焼
結体の厚さを測定した。その結果、焼結時に炉内雰囲気
に接していた面の焼結収縮が阻害され、図2に示したよ
うに、すべての焼結体に下方向への反り変形が発生し
た。この反り変形によって見かけ上の焼結体の厚さが大
きくなり、寸法公差外となった。焼結体の寸法を表1に
示す。
First, the molded body was subjected to thermal decomposition degreasing under the same degreasing conditions as in Example 1. Here, the degreasing rate is 7
8%. Next, the degreased body was sintered in the same sintering furnace as in Example 1 under the same conditions, and the thickness of the obtained sintered body was measured. As a result, the sintering shrinkage of the surface that was in contact with the furnace atmosphere during sintering was inhibited, and as shown in FIG. 2, all the sintered bodies were warped downward. The warp deformation increased the apparent thickness of the sintered body and was out of the dimensional tolerance. Table 1 shows the dimensions of the sintered body.

【0044】(比較例2)比較例1で得られた成形体
を、実施例1と同様の脱脂炉を用いて脱脂をおこなっ
た。まず、室温から150℃までを2.5℃/分で昇温
させ、続いて250℃までを0.4℃/分、続いて35
0℃までを0.6℃/分、続いて600℃までを0.7
℃/分で昇温させ、600℃で1時間保持をおこなっ
た。ここで、脱脂率は96%であった。しかし、脱脂終
了後の成形体のうち、脱脂雰囲気に接した上面では、鉄
粉末の酸化に起因して成形体の変色が認められた。
Comparative Example 2 The compact obtained in Comparative Example 1 was degreased using the same degreasing furnace as in Example 1. First, the temperature is raised from room temperature to 150 ° C. at a rate of 2.5 ° C./min.
0.6 ° C./min up to 0 ° C., followed by 0.7 ° C. up to 600 ° C.
The temperature was raised at a rate of ° C / min, and the temperature was maintained at 600 ° C for 1 hour. Here, the degreasing rate was 96%. However, in the molded body after the completion of degreasing, discoloration of the molded body due to oxidation of the iron powder was observed on the upper surface in contact with the degreasing atmosphere.

【0045】次に、得られた成形体を実施例1と同様の
条件で焼結をおこない焼結体を得た。また、実施例1と
同様に得られた焼結体の寸法を測定した。その結果、す
べての焼結体に図2に示したような反り変形が認めら
れ、寸法公差外となった。焼結体の寸法を表1に示す。
Next, the obtained compact was sintered under the same conditions as in Example 1 to obtain a sintered body. Further, the dimensions of the obtained sintered body were measured in the same manner as in Example 1. As a result, all the sintered bodies were warped as shown in FIG. 2 and were out of dimensional tolerance. Table 1 shows the dimensions of the sintered body.

【0046】(比較例3)焼結用粉末として、実施例2
と同一のカルボニル鉄粉末を用い、有機バインダとし
て、ポリエチレン24重量%、ポリプロピレン24重量
%、ポリメチルメタクリレート28重量%、ステアリン
酸15重量%、フタル酸ジブチル9重量%からなる混合
物を添加し、加圧ニーダーを用いて170℃にて混練を
おこない、粉末射出成形用組成物を得た。なお、粉末と
有機バインダとの混合比は、鉄粉末100重量部に対し
て有機バインダ8.5重量部とした。ここで、本比較例
における有機バインダ組成の熱分解終了温度は約600
℃である。
Comparative Example 3 Example 2 was used as a sintering powder.
Using the same carbonyl iron powder as above, a mixture consisting of 24% by weight of polyethylene, 24% by weight of polypropylene, 28% by weight of polymethyl methacrylate, 15% by weight of stearic acid, and 9% by weight of dibutyl phthalate was added as an organic binder. Kneading was performed at 170 ° C. using a pressure kneader to obtain a composition for powder injection molding. The mixing ratio of the powder and the organic binder was 8.5 parts by weight of the organic binder with respect to 100 parts by weight of the iron powder. Here, the thermal decomposition end temperature of the organic binder composition in this comparative example is about 600.
° C.

【0047】得られた射出成形用組成物を実施例2と同
様に射出成形機を用いて成形し、成形体を得た。次に、
前記成形体を実施例2と同様の仕込み条件で、脱脂、焼
結をおこなった。
The obtained composition for injection molding was molded using an injection molding machine in the same manner as in Example 2 to obtain a molded product. next,
The molded body was degreased and sintered under the same preparation conditions as in Example 2.

【0048】まず、前記成形体を実施例2と同様の条件
で加熱して、脱脂をおこなった。ここで、脱脂率は75
%であった。次に、前記脱脂体を実施例2と同様の焼結
炉を用い、同様の条件で焼結をおこなった。
First, the compact was heated under the same conditions as in Example 2 to degrease it. Here, the degreasing rate is 75
%Met. Next, the degreased body was sintered in the same sintering furnace as in Example 2 under the same conditions.

【0049】次に、実施例2と同様に、得られた焼結体
の寸法を測定した。その結果、すべての焼結体に図2に
示したような反り変形が発生し、寸法公差外となった。
焼結体の寸法を表1に示す。
Next, the dimensions of the obtained sintered body were measured in the same manner as in Example 2. As a result, all the sintered bodies were warped as shown in FIG. 2 and were out of dimensional tolerance.
Table 1 shows the dimensions of the sintered body.

【0050】(比較例4)比較例3で得られた成形体
を、実施例2と同様の脱脂炉を用いて脱脂をおこなっ
た。まず、室温から150℃までを2.5℃/分で昇温
させ、続いて250℃までを0.4℃/分、続いて35
0℃までを0.6℃/分、続いて600℃までを0.7
℃/分で昇温させ、600℃で1時間保持して脱脂体を
得た。ここで、脱脂率は98%であった。しかし、脱脂
終了後の成形体のうち、雰囲気に接した面では、鉄粉末
の酸化に起因した成形体の変色が認められた。
Comparative Example 4 The compact obtained in Comparative Example 3 was degreased using the same degreasing furnace as in Example 2. First, the temperature is raised from room temperature to 150 ° C. at a rate of 2.5 ° C./min.
0.6 ° C./min up to 0 ° C., followed by 0.7 ° C. up to 600 ° C.
The temperature was raised at a rate of ° C / min, and the temperature was maintained at 600 ° C for 1 hour to obtain a degreased body. Here, the degreasing rate was 98%. However, in the molded body after the completion of degreasing, discoloration of the molded body due to oxidation of the iron powder was observed on the surface in contact with the atmosphere.

【0051】次に、得られた脱脂体を実施例2と同様の
条件で焼結をおこない焼結体を得た。さらに実施例2と
同様に、得られた焼結体の寸法を測定した。その結果、
すべての焼結体に図2に示したような反り変形が認めら
れ、寸法公差外となった。焼結体の寸法を表1に示す。
Next, the obtained degreased body was sintered under the same conditions as in Example 2 to obtain a sintered body. Further, in the same manner as in Example 2, the dimensions of the obtained sintered body were measured. as a result,
All the sintered bodies were warped as shown in FIG. 2 and were out of dimensional tolerance. Table 1 shows the dimensions of the sintered body.

【0052】(比較例5)焼結用粉末として、実施例1
と同一のカルボニル鉄粉末を用い、有機バインダとし
て、パラフィンワックス68重量%、ウレタンワックス
10重量%、ポリエチレン20重量%、ステアリン酸2
重量%からなる混合物を添加し、プラネタリー式ミキサ
ーを用いて150℃にて混練をおこない粉末射出成形用
組成物を得た。なお、粉末と有機バインダとの混合比
は、鉄粉末100重量部に対して有機バインダ8.8重
量部とした。ここで、本比較例における有機バインダ組
成の熱分解終了温度は約550℃である。
Comparative Example 5 Example 1 was used as a sintering powder.
The same carbonyl iron powder as above was used, and as an organic binder, 68% by weight of paraffin wax, 10% by weight of urethane wax, 20% by weight of polyethylene, and 2% by weight of stearic acid
A mixture consisting of 100% by weight was added and kneaded at 150 ° C. using a planetary mixer to obtain a composition for powder injection molding. The mixing ratio of the powder and the organic binder was 8.8 parts by weight of the organic binder with respect to 100 parts by weight of the iron powder. Here, the thermal decomposition end temperature of the organic binder composition in this comparative example is about 550 ° C.

【0053】次に、前記成形体672個を次のような条
件で脱脂、焼結をおこなった。まず、前記成形体をヘプ
タンの気相中85℃にて5時間保持して、パラフィンワ
ックス、ウレタンワックス、ステアリン酸の抽出除去を
おこなった。その後、残りのポリエチレンを除去するた
め、前記成形体を窒素雰囲気中、4℃/分で400℃ま
で昇温させ、400℃で1時間保持をおこない、加熱分
解脱脂をおこなった。得られた脱脂体の脱脂率は84%
であった。
Next, the 672 compacts were degreased and sintered under the following conditions. First, the compact was held in a heptane gas phase at 85 ° C. for 5 hours to extract and remove paraffin wax, urethane wax and stearic acid. Thereafter, in order to remove the remaining polyethylene, the molded body was heated to 400 ° C. at a rate of 4 ° C./min in a nitrogen atmosphere, held at 400 ° C. for 1 hour, and subjected to thermal decomposition degreasing. The degreasing rate of the obtained degreased body is 84%
Met.

【0054】次に、前記脱脂体を実施例1と同様の条件
で焼結をおこなった後、焼結体の寸法を測定した。その
結果、すべての焼結体に図2に示したような反り変形が
認められ、寸法公差外となった。焼結体の寸法を表1に
示す。
Next, after sintering the degreased body under the same conditions as in Example 1, the dimensions of the sintered body were measured. As a result, all the sintered bodies were warped as shown in FIG. 2 and were out of dimensional tolerance. Table 1 shows the dimensions of the sintered body.

【0055】(比較例6)比較例5で得られた成形体
を、比較例5と同様の仕込み数で脱脂、焼結をおこなっ
た。まず、前記成形体をヘプタンの気相中85℃にて5
時間保持して、パラフィンワックス、ウレタンワック
ス、ステアリン酸の抽出除去をおこなった。その後、残
りのポリエチレンを除去するため、前記成形体を窒素雰
囲気中、4℃/分で550℃まで昇温させ、550℃で
1時間保持をおこない、加熱分解脱脂をおこなった。得
られた脱脂体の脱脂率は94%であった。しかし、脱脂
終了後の成形体のうち、雰囲気に接した面では、鉄粉末
の酸化に起因した成形体の変色が認められた。
(Comparative Example 6) The compact obtained in Comparative Example 5 was degreased and sintered with the same number of charges as in Comparative Example 5. First, the molded body was heated at 85 ° C in a heptane gas phase at 5 ° C.
After holding for a while, paraffin wax, urethane wax and stearic acid were extracted and removed. Thereafter, in order to remove the remaining polyethylene, the molded body was heated to 550 ° C. at a rate of 4 ° C./min in a nitrogen atmosphere, held at 550 ° C. for 1 hour, and subjected to thermal decomposition degreasing. The degreasing rate of the obtained degreased body was 94%. However, in the molded body after the completion of degreasing, discoloration of the molded body due to oxidation of the iron powder was observed on the surface in contact with the atmosphere.

【0056】次に、前記脱脂体を実施例1と同様の条件
で焼結をおこない焼結体を得た。また実施例1と同様に
焼結体の寸法測定をおこなった。その結果、すべての焼
結体に図2に示したような反り変形が認められ、寸法公
差外となった。焼結体の寸法を表1に示す。
Next, the degreased body was sintered under the same conditions as in Example 1 to obtain a sintered body. The dimensions of the sintered body were measured in the same manner as in Example 1. As a result, all the sintered bodies were warped as shown in FIG. 2 and were out of dimensional tolerance. Table 1 shows the dimensions of the sintered body.

【0057】[0057]

【表1】 [Table 1]

【0058】表1において、本発明である実施例1から
実施例3は、焼結体の厚さがすべて狙い寸法公差内であ
り、比較例1から6に比べて寸法精度に優れていること
が明らかである。
In Table 1, in Examples 1 to 3 of the present invention, the thicknesses of the sintered bodies were all within the target dimensional tolerance, and the dimensional accuracy was superior to Comparative Examples 1 to 6. Is evident.

【0059】まず、実施例1では、粉末の焼結開始温度
以下の脱脂温度で有機バインダの97%を除去できるた
め、粉末の焼結収縮が進行する温度では、脱脂体から残
留バインダの分解ガスは発生しない。そのため、脱脂体
の焼結収縮が均一に進行し、寸法公差内の焼結体を得る
ことができる。
First, in Example 1, 97% of the organic binder can be removed at a degreasing temperature lower than the sintering temperature of the powder. Therefore, at a temperature at which the sintering shrinkage of the powder progresses, the decomposed gas of the residual binder is removed from the degreased body. Does not occur. Therefore, the sintering shrinkage of the degreased body proceeds uniformly, and a sintered body having a dimensional tolerance can be obtained.

【0060】一方、比較例1の場合、粉末の焼結収縮開
始温度以下の400℃の脱脂では、脱脂率が78%と実
施例1に比べて低く、脱脂体には残留バインダが多く含
まれている。この残留バインダは、焼結工程において、
脱脂体の焼結収縮が進行する際に熱分解してガスとして
放出される。本比較例のように、特に焼結炉内への成形
体の仕込み量が多い場合には、残留バインダによる分解
ガスの発生量が多くなり、焼結炉内雰囲気が汚染され
る。このように焼結炉内雰囲気が汚染された状態で脱脂
体の焼結が進行する場合には、雰囲気に接した脱脂体面
の焼結収縮が阻害される。一方、焼結用の治具に接した
反対側の面では、そのような阻害は認められない。その
結果、脱脂体の表面と裏面とで相対的に焼結収縮率の差
が生じて焼結体の反りが発生し、寸法公差外となってい
る。このような現象は、本比較例のような薄型の平板形
状の部品の場合に顕著に認められる。
On the other hand, in the case of Comparative Example 1, when the powder was degreased at a temperature of 400 ° C. or less, which is equal to or lower than the sintering shrinkage starting temperature of the powder, the degrease rate was 78%, which was lower than that in Example 1, and the degreased body contained much residual binder. ing. This residual binder is used in the sintering process.
When the sintering shrinkage of the degreased body proceeds, it is thermally decomposed and released as a gas. As in the present comparative example, particularly when the amount of the formed body charged into the sintering furnace is large, the amount of decomposition gas generated by the residual binder increases, and the atmosphere in the sintering furnace is contaminated. When the sintering of the degreased body proceeds while the atmosphere in the sintering furnace is contaminated, the sintering shrinkage of the degreased body surface in contact with the atmosphere is hindered. On the other hand, no such inhibition is observed on the surface opposite to the sintering jig. As a result, there is a relative difference in the sintering shrinkage ratio between the front surface and the back surface of the degreased body, and the sintered body is warped and out of dimensional tolerance. Such a phenomenon is remarkably observed in the case of a thin flat plate-shaped component as in this comparative example.

【0061】次に、比較例2では比較例1と同様のバイ
ンダ組成を用いた成形体を600℃まで脱脂をおこなっ
ている。脱脂温度を600℃にすることにより脱脂率は
96%まで向上しているが、脱脂温度が高いため、脱脂
体の表面では鉄粉末が酸化している。この時、酸化の進
行した面では、後の焼結収縮が進行する際に収縮が阻害
される。そのため、焼結体に反りが発生し、寸法公差外
となっているのである。
Next, in Comparative Example 2, a molded article using the same binder composition as in Comparative Example 1 was degreased to 600 ° C. By setting the degreasing temperature to 600 ° C., the degreasing rate is improved to 96%. However, since the degreasing temperature is high, the iron powder is oxidized on the surface of the degreased body. At this time, on the surface where oxidation has progressed, shrinkage is inhibited when subsequent sintering shrinkage proceeds. As a result, the sintered body is warped and out of dimensional tolerance.

【0062】実施例2と比較例3および比較例4の関
係、実施例3と比較例5および6の関係もこれらと同様
の現象が生じている。
Similar phenomena occur in the relationship between Example 2 and Comparative Examples 3 and 4, and in the relationship between Example 3 and Comparative Examples 5 and 6.

【0063】以上のように、本発明による粉末射出成形
用組成物および粉末射出成形部品の製造方法を用いるこ
とにより、焼結工程で発生する部品の変形を防止し、寸
法精度に優れた粉末射出成形部品を製造し、提供するこ
とができる。
As described above, by using the composition for powder injection molding and the method for producing a powder injection molded part according to the present invention, the deformation of the part caused in the sintering process is prevented, and the powder injection molding excellent in dimensional accuracy is achieved. Molded parts can be manufactured and provided.

【0064】[0064]

【発明の効果】本発明により、焼結用粉末と有機バイン
ダの各成分として前記焼結用粉末の焼結収縮開始温度以
下で熱分解が終了する樹脂を混練して粉末射出成形用組
成物を作製し、これを成形して射出成形体とし、前記射
出成形体の脱脂工程において前記有機バインダの各成分
を前記焼結用粉末の焼結収縮開始温度以下で除去して脱
脂体を得、前記脱脂体を焼結することにより、粉末の焼
結収縮が均一に進行し、変形がなく、寸法精度に優れた
粉末射出成形部品を得ることができる。
According to the present invention, a resin which is thermally decomposed at or below the sintering shrinkage starting temperature of the sintering powder is kneaded as a component of the sintering powder and the organic binder to obtain a composition for powder injection molding. Prepared, molded this to an injection molded body, in the degreasing step of the injection molded body, removing each component of the organic binder at or below the sintering shrinkage start temperature of the sintering powder to obtain a degreased body, By sintering the degreased body, sintering shrinkage of the powder proceeds uniformly, and a powder injection molded part having no deformation and excellent dimensional accuracy can be obtained.

【0065】特に、薄型形状部品では、焼結用治具に接
した面と焼結雰囲気に接した面での焼結収縮率の違いが
反り変形として現れやすい。また、成形体を大量に脱
脂、焼結する場合には、脱脂体中に含まれる残留有機バ
インダの分解ガスが大量に発生し、それに伴って反り変
形も増大する。したがって、本発明は薄型形状部品を大
量に脱脂、焼結する場合に特に有効である。
In particular, in a thin-shaped part, the difference in the sintering shrinkage ratio between the surface in contact with the sintering jig and the surface in contact with the sintering atmosphere tends to appear as warpage deformation. In addition, when a large amount of the molded body is degreased and sintered, a large amount of a decomposition gas of the residual organic binder contained in the degreased body is generated, and the warpage is increased accordingly. Therefore, the present invention is particularly effective when a large number of thin-shaped components are degreased and sintered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における成形体を焼結して得ら
れる焼結体の断面図である。
FIG. 1 is a sectional view of a sintered body obtained by sintering a molded body according to an embodiment of the present invention.

【図2】従来例における成形体を焼結して得られる焼結
体の断面図である。
FIG. 2 is a cross-sectional view of a conventional sintered body obtained by sintering a molded body.

【符号の説明】[Explanation of symbols]

1 焼結体の厚さ 1 Thickness of sintered body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 康太郎 埼玉県所沢市大字下富字武野840番地 シ チズン時計株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kotaro Ishiyama 840 Takeno, Shimotomi, Tokorozawa-shi, Saitama Prefecture Citizen Watch Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結用粉末と有機バインダ成分である少
なくとも一種類の熱可塑性樹脂を混練して粉末射出成形
用組成物を作製し、これを成形して射出成形体とし、前
記射出成形体を脱脂して脱脂体を得、前記脱脂体を焼結
して焼結体を作製することによる粉末射出成形方法にお
ける粉末射出成形用組成物であって、前記有機バインダ
の各成分は、前記焼結用粉末の焼結収縮開始温度以下で
熱分解が終了する樹脂であることを特徴とする粉末射出
成形用組成物。
1. A powder injection molding composition is prepared by kneading a sintering powder and at least one kind of thermoplastic resin as an organic binder component, and molding this to form an injection molded body. Degreased to obtain a degreased body, and sintering the degreased body to produce a sintered body, the composition for powder injection molding in the powder injection molding method, wherein each component of the organic binder, A composition for powder injection molding, which is a resin whose thermal decomposition ends at a temperature equal to or lower than a sintering shrinkage initiation temperature of a binder powder.
【請求項2】 焼結用粉末と有機バインダの各成分とし
て前記焼結用粉末の焼結収縮開始温度以下で熱分解が終
了する樹脂を混練して粉末射出成形用組成物を作製し、
これを成形して射出成形体とし、前記射出成形体の脱脂
工程において前記有機バインダの各成分を前記焼結用粉
末の焼結収縮開始温度以下で除去して脱脂体を得、前記
脱脂体を焼結することを特徴とする粉末射出成形品の製
造方法。
2. A composition for powder injection molding is prepared by kneading a resin which is thermally decomposed at a temperature equal to or lower than a sintering shrinkage onset temperature of the sintering powder as each component of the sintering powder and the organic binder,
This is molded into an injection molded body, and in the degreasing step of the injection molded body, each component of the organic binder is removed at or below the sintering shrinkage start temperature of the sintering powder to obtain a degreased body. A method for producing a powder injection molded article, characterized by sintering.
JP29531897A 1997-10-28 1997-10-28 Composition for powder injection molding and production of powder injection molded goods Pending JPH11131103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29531897A JPH11131103A (en) 1997-10-28 1997-10-28 Composition for powder injection molding and production of powder injection molded goods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29531897A JPH11131103A (en) 1997-10-28 1997-10-28 Composition for powder injection molding and production of powder injection molded goods

Publications (1)

Publication Number Publication Date
JPH11131103A true JPH11131103A (en) 1999-05-18

Family

ID=17819068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29531897A Pending JPH11131103A (en) 1997-10-28 1997-10-28 Composition for powder injection molding and production of powder injection molded goods

Country Status (1)

Country Link
JP (1) JPH11131103A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045632B2 (en) 2011-11-30 2015-06-02 Seiko Epson Corporation Method for producing composition for injection molding comprising cryogenic grinding of resin components, and composition for injection molding
US9249292B2 (en) 2011-11-30 2016-02-02 Seiko Epson Corporation Composition for injection molding, sintered compact, and method for producing sintered compact
US9309383B2 (en) 2011-11-30 2016-04-12 Seiko Epson Corporation Composition for injection molding, sintered compact, and method for producing sintered compact
CN115138844A (en) * 2022-07-18 2022-10-04 江苏精研科技股份有限公司 Method for preparing ultrahigh-strength wear-resistant steel complex part by adopting powder metallurgy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045632B2 (en) 2011-11-30 2015-06-02 Seiko Epson Corporation Method for producing composition for injection molding comprising cryogenic grinding of resin components, and composition for injection molding
US9249292B2 (en) 2011-11-30 2016-02-02 Seiko Epson Corporation Composition for injection molding, sintered compact, and method for producing sintered compact
US9309383B2 (en) 2011-11-30 2016-04-12 Seiko Epson Corporation Composition for injection molding, sintered compact, and method for producing sintered compact
CN115138844A (en) * 2022-07-18 2022-10-04 江苏精研科技股份有限公司 Method for preparing ultrahigh-strength wear-resistant steel complex part by adopting powder metallurgy

Similar Documents

Publication Publication Date Title
EP0311407B1 (en) Process for fabricating parts for particulate material
EP1300209A2 (en) Process of metal injection molding multiple dissimilar materials to form composite parts
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
JPH03232937A (en) Manufacture of metallic body by injection molding
US6761852B2 (en) Forming complex-shaped aluminum components
JP2001271101A (en) Method for producing sintered body and sintered body
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPH04329801A (en) Production of sintered parts
EP0409646B1 (en) Compound for an injection molding
JP2004525264A (en) Manufacture of structural members by metal injection molding
EP0523651A2 (en) Method for making high strength injection molded ferrous material
KR20210049700A (en) Binder composition for manufacturing sintered body and debinding method for the same
JPH0770610A (en) Method for sintering injection-molded product
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
KR970002093B1 (en) Method of sintering object
JPH05148504A (en) Production of injection molding product by using liquid soluble in organic solvent
CN117377544A (en) Metal powder injection molding system for manufacturing metal frame base product and manufacturing method of metal frame base product using same
JPH0741368A (en) Power-kneaded material for molding and kneading method therefor
JPH06305821A (en) Production of ceramic powder injection molded member
JPH0825178B2 (en) Method of manufacturing injection molded body
JPH0345567A (en) Production of sintered granular material
JPH0823042B2 (en) Metal injection molding method
JPH11335704A (en) Production of metal powder sintered body and core for insert forming