JPH04124203A - Binder for powder metallurgy and method for degreasing green compact - Google Patents

Binder for powder metallurgy and method for degreasing green compact

Info

Publication number
JPH04124203A
JPH04124203A JP2244085A JP24408590A JPH04124203A JP H04124203 A JPH04124203 A JP H04124203A JP 2244085 A JP2244085 A JP 2244085A JP 24408590 A JP24408590 A JP 24408590A JP H04124203 A JPH04124203 A JP H04124203A
Authority
JP
Japan
Prior art keywords
binder
degreasing
temperature
green compact
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244085A
Other languages
Japanese (ja)
Inventor
Tadao Katahira
片平 忠夫
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2244085A priority Critical patent/JPH04124203A/en
Publication of JPH04124203A publication Critical patent/JPH04124203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate degrease of a powder green compact and to easily manufacture a powder metallurgical product of complicate shape by using the specific organic macromolecular binder at the time of manufacturing the sintered product by the powder metallurgical method by using a metal or a ceramic powder as the raw material. CONSTITUTION:The binder is composed of a first organic macromolecule of at least one kind of polyethylene and ethylene-vinyl acetate copolymer so as to contain >=20wt.% of the green compact of binder and further, a second organic macromolecule except the first organic macromolecule is contained in the above binder and is the macro molecule of <=250 deg.C ceiling temp. The binder is mingled and kneaded with the metal or ceramic powder and the mingled material obtd. is formed to the green compact by injection compacting or extruding compacting, etc. After that, the compact is heated at <=280 deg.C heating temp. and the binder is thermal-decomposed and evaporated to manufacture the degreased body with the binder remained in the green compact. After that, this degreased body is sintered to make the sintered product.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属又はセラミックスの粉末と有機高分子を主
成分とするバインダとからなる射出成形体又は押出成形
体を脱脂、焼結して粉末冶金成形体を得る製造方法に関
し、特にバインダに含まれる成分を加熱による脱脂工程
で熱分解、揮散させることによる粉末冶金成形体の製造
方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention produces powder by degreasing and sintering an injection molded or extrusion molded product consisting of metal or ceramic powder and a binder whose main component is an organic polymer. The present invention relates to a manufacturing method for obtaining a metallurgical compact, and particularly to a method for manufacturing a powder metallurgical compact by thermally decomposing and volatilizing components contained in a binder in a degreasing process by heating.

[従来の技術] 金属またはセラミックスの粉末を原料として焼結製品を
得る工程において、焼結に供する成形体は原料粉末を圧
縮成形して製造するのが従来の一般的な方法である。こ
の方法で得られる成形体の形状は金型に充填した原料粉
末を上下方向よりパンチで加圧するという方法によって
いるため2円柱のような比較的単純なものに限定され、
より複雑な形状の製品を得るには焼結上がりの製品に研
削、研磨を施す必要がある。そしてこのことか焼結製品
のコスト低下、用途拡大を妨げる一因となっていた。
[Prior Art] In the process of obtaining a sintered product using metal or ceramic powder as a raw material, the conventional general method is to manufacture a molded body to be subjected to sintering by compression molding the raw material powder. The shape of the molded product obtained by this method is limited to a relatively simple shape such as two cylinders because the raw material powder filled in the mold is pressurized from above and below with a punch.
To obtain products with more complex shapes, it is necessary to grind and polish the sintered products. This has been one of the factors that has hindered the cost reduction and expansion of applications for sintered products.

この問題の解決策として、原料粉末に有機高分子を主成
分とするバインダを加えることによって熱可塑性、ひい
ては流動性を付与し、射出成形。
As a solution to this problem, we added a binder mainly composed of organic polymers to the raw material powder to give it thermoplasticity and fluidity, and then injection molded it.

押出成形により所要の形状とした後、脱胞、焼結を施し
て、製品を得る方法が実用化されつつある。
A method of obtaining a product by forming a desired shape by extrusion molding, followed by defoaming and sintering is becoming practical.

この方法は複雑な形状の成形体を高い寸法精度で、多量
に製造できるという特長がある。反面。
This method has the advantage of being able to produce molded bodies of complex shapes in large quantities with high dimensional accuracy. On the other hand.

この方法では原料粉末に十分な流動性を付与するため、
バインダを体積比で40%以上と多量に加える必要があ
ることから、焼結する前に脱脂を施す場合が多く、この
脱脂工程がコスト増もさることながら、技術的にも種々
問題を包含している。
In this method, sufficient fluidity is imparted to the raw material powder.
Since it is necessary to add a large amount of binder (more than 40% by volume), degreasing is often performed before sintering, and this degreasing process not only increases costs but also involves various technical problems. ing.

即ち、この技術的な問題の一つとして脱胞後の成形体即
ち脱脂体の脆弱性に起因する取扱性の低さがある。この
脱脂体の脆弱さは前述の成形法では原料粉末に加わる圧
力が従来の圧縮成形法に比較して格段に低いため、粉末
粒子同士の結合強度か小さくなっていることによると考
えられる。
That is, one of the technical problems is that the molded product after defoaming, that is, the degreased product, is fragile and has poor handling properties. This brittleness of the degreased body is thought to be due to the fact that in the above-mentioned molding method, the pressure applied to the raw material powder is much lower than in the conventional compression molding method, so the bonding strength between the powder particles is reduced.

[発明が解決しようとする課題] しかしながら、前述した従来の技術1例えば。[Problem to be solved by the invention] However, for example, the conventional technique 1 mentioned above.

前者の場合、金型に充填した原料粉末を上下方向からパ
ンチで加圧する方法のため、複雑な形状の成形体を得る
ことが困難であった。また、後者の場合は、原料粉末に
十分な流動性を付与する必要上バインダを体積比で40
%以上と多量に加えるため、焼結工程の前工程として脱
脂工程を施す必要があり、工程がコスト高の原因となる
ばかりか。
In the former case, it was difficult to obtain a molded body with a complicated shape because the raw material powder filled in the mold was pressurized from above and below with a punch. In the latter case, the volume ratio of the binder is 40% because it is necessary to impart sufficient fluidity to the raw material powder.
% or more, it is necessary to perform a degreasing process as a pre-process of the sintering process, which not only causes high costs.

この脱脂工程によって、成形体が脆弱し、成形体の取扱
い上問題があり1歩留りが悪化する場合があった。
This degreasing step may cause the molded product to become brittle, resulting in problems in handling the molded product and resulting in a deterioration in yield.

そこで1本発明の第1の技術的課題は、複雑な形状の焼
結体を安価に且つ容易に製造することができる粉末冶金
におけバインダを提供することにある。
Accordingly, a first technical object of the present invention is to provide a binder for powder metallurgy that allows the production of sintered bodies of complex shapes at low cost and easily.

また1本発明の第2の技術課題は、前記組成物を用いて
射出成形、押出成形等により作製した成形体を、加熱温
度280度C以下で加熱し、バインダを熱分解、揮発さ
せるとともに、バインダの一部を成形体に残留させるこ
とによって1強度を確保し、取扱いの容易な脱脂体を製
造する成形体の脱脂方法を提供することにある。
A second technical problem of the present invention is to heat a molded article produced by injection molding, extrusion molding, etc. using the composition at a heating temperature of 280 degrees C or less to thermally decompose and volatilize the binder, and It is an object of the present invention to provide a method for degreasing a molded body, which ensures one strength by leaving a part of the binder in the molded body, and produces a degreased body that is easy to handle.

[課題を解決するための手段] 本発明によれば、第1の有機高分子およびこれと異なる
第2の有機高分子からなり、前記第1の有機高分子は、
ポリエチレン、及びエチレン−酢酸ビニル共重合体のう
ち少なくとも一種からなり。
[Means for Solving the Problems] According to the present invention, the first organic polymer comprises a first organic polymer and a second organic polymer different from the first organic polymer, and the first organic polymer comprises:
Consists of at least one of polyethylene and ethylene-vinyl acetate copolymer.

前記バインダ中に全重量の20%以上含まれることを特
徴とする粉末冶金におけるバインダが得られる。
A binder for powder metallurgy is obtained, which is characterized in that the binder contains 20% or more of the total weight of the binder.

本発明によれば、前記バインダにおいて、前記第2の有
機高分子は天井温度が250度以下の高分子化合物より
なることを特徴とする粉末冶金におけるバインダが得ら
れる。
According to the present invention, there is obtained a binder for powder metallurgy, wherein in the binder, the second organic polymer is made of a polymer compound having a ceiling temperature of 250 degrees or less.

本発明によれは、金属又はセラミック粉末と前記したい
ずれかのバインダとを混合・混練し、射出成形押出成形
等によって成形し、得られた成形体を280℃以下の温
度で加熱して成形体中のバインダを熱分解・揮散させる
ことを特徴とする成形体の脱脂方法が得られる。
According to the present invention, metal or ceramic powder and any of the binders described above are mixed and kneaded, molded by injection molding, extrusion molding, etc., and the molded product obtained is heated at a temperature of 280° C. or lower to form a molded product. A method for degreasing a molded body is obtained, which is characterized by thermally decomposing and volatilizing the binder inside.

[作 用コ 本発明においては、バインダとして、ポリエチレン、エ
チレン−酢酸ビニル共重合体のうち少なくとも一方から
なる第1の有機高分子が、バインダの成形体の205重
量比以上の含有を成すようにし、さらに前記バインダに
含まれる第1の有機高分子以外の第2の有機高分子を天
井温度が250度以下の高分子化合物よりなるようにし
たバインダを金属またはセラミックの粉末と混合。
[Function] In the present invention, the first organic polymer consisting of at least one of polyethylene and ethylene-vinyl acetate copolymer is contained as a binder in a weight ratio of 205 or more in the binder molded body. Further, a binder in which a second organic polymer other than the first organic polymer contained in the binder is made of a polymer compound having a ceiling temperature of 250 degrees or less is mixed with metal or ceramic powder.

混練して得た混和物を射出成形、押出成形等の方法で成
形体に製造し、その後、加熱温度280℃以下で加熱し
、バインダを熱分解、揮発させて成形体にバインダを残
留させた状態の脱脂体が製造される。この脱脂体はその
後焼結され、焼結製品となる。
The mixture obtained by kneading was produced into a molded body by a method such as injection molding or extrusion molding, and then heated at a heating temperature of 280°C or less to thermally decompose and volatilize the binder, leaving the binder in the molded body. A degreased body is produced. This degreased body is then sintered to produce a sintered product.

[実施例コ 以下1本発明の実施例を添付図面に基づいて説明する。[Example code] An embodiment of the present invention will be described below with reference to the accompanying drawings.

一般に有機高分子化合物の熱分解特性はその化学的構造
によって相違し1分解反応速度は同一温度でも異なる。
Generally, the thermal decomposition characteristics of organic polymer compounds differ depending on their chemical structure, and the rate of one decomposition reaction varies even at the same temperature.

第1図はを機高分子化合物の熱分解特性の一例を示す図
である。この図はポリメタクリル酸ブチルとエチレン−
酢酸ビニル共重合体の熱重量分析を行なった結果を示し
、1はポリメタクリル酸ブチル、2はエチレン−酢酸ビ
ニル共重合体のいわゆるTG左カーブ示したものである
FIG. 1 is a diagram showing an example of thermal decomposition characteristics of a polymer compound. This figure shows polybutyl methacrylate and ethylene.
The results of thermogravimetric analysis of vinyl acetate copolymers are shown; 1 shows the so-called TG left curve of polybutyl methacrylate and 2 shows the ethylene-vinyl acetate copolymer.

この測定条件は大気雰囲気で、昇温速度は50”C/H
rである。図から明らかなように両者の間にはかなりの
差異があり、このような高分子を適当な比率で混合した
ものをバインダとして使用し。
The measurement conditions were atmospheric, and the temperature increase rate was 50"C/H.
It is r. As is clear from the figure, there is a considerable difference between the two, and a mixture of these polymers in an appropriate ratio is used as a binder.

脱脂条件を適切に設定すれば、脱脂体のバインダ残量を
制御し得ることが判明した。
It has been found that the amount of binder remaining in the degreased body can be controlled by appropriately setting the degreasing conditions.

ちなみに第1図の1と2で曲線の形状に差が認められる
が、高分子化合物を熱分解特性という観点から見ると、
おおよそ解重合型とランダム分解型に分類でき、ポリメ
タクリル酸ブチルは前者に。
By the way, there is a difference in the shape of the curves between 1 and 2 in Figure 1, but when looking at polymer compounds from the perspective of thermal decomposition characteristics,
It can be roughly classified into depolymerization type and random decomposition type, and polybutyl methacrylate falls into the former category.

エチレン−酢酸ビニル共重合体は後者に属することによ
る。即ち前者は定量的にモノマーを生成するのに対し、
後者はランダムな主鎖の切断の他の側鎖の脱離など温度
によって種々の反応を生起するためと考えられる。
Ethylene-vinyl acetate copolymer belongs to the latter category. That is, whereas the former produces monomer quantitatively,
The latter is thought to be due to various reactions occurring depending on the temperature, such as random scission of the main chain and detachment of other side chains.

また一般に有機高分子の熱的特性を考慮する上で1重要
となる因子の一つに天井温度がある。これは高分子化合
物がラジカル開裂する場合、生成したラジカルが再結合
するという反応が並行して起こるが、ある−窓以上の温
度ではラジカル開裂の反応速度が再結合の反応速度より
も大となり。
In general, one of the important factors when considering the thermal properties of organic polymers is the ceiling temperature. This is because when a polymer compound undergoes radical cleavage, a reaction occurs in parallel in which the generated radicals recombine, but at temperatures above a certain window, the reaction rate of radical cleavage becomes greater than the reaction rate of recombination.

全体として分解反応が優先するという温度である。This is the temperature at which the decomposition reaction takes priority as a whole.

第1図に示した例について言えば、ポリメタクリル酸ブ
チルでは約200℃、エチレン−酢酸ビニル共重合体で
は約350℃である。
For the example shown in FIG. 1, the temperature is about 200 DEG C. for polybutyl methacrylate and about 350 DEG C. for ethylene-vinyl acetate copolymer.

従って、このような観点に立脚して、金属またはセラミ
ック成形に使用されるノくインダ成分を選択する。
Therefore, based on this point of view, the binder component used for metal or ceramic molding is selected.

また、成形体からバインダーを加熱して熱分解・揮散さ
せるための脱脂温度について言及すると。
Also, let's talk about the degreasing temperature for heating the binder from the molded body to thermally decompose and volatilize it.

前記の理由からバインダに含まれる成分によって適宜設
定する必要があるが、なるべく低温で行なうことか、バ
インダ残量を精度良く制御する上で望ましい。
For the above-mentioned reasons, it is necessary to set the temperature appropriately depending on the components contained in the binder, but it is preferable to carry out the process at as low a temperature as possible, or to precisely control the remaining amount of the binder.

一方、バインダ成分について注目すると、エチレン−酢
酸ビニル共重合体はいわゆるホットメルト接着剤として
多用され、溶融粘度も低いことから金属やセラミックス
の原料粉末を射出成形、押出成形するためには非常に有
用な高分子化合物である。そして熱分解特性に注目して
もこの高分子は比較的高い熱分解温度を育している。
On the other hand, focusing on binder components, ethylene-vinyl acetate copolymer is often used as a so-called hot melt adhesive, and its low melt viscosity makes it extremely useful for injection molding and extrusion molding of raw material powders for metals and ceramics. It is a high molecular compound. Looking at the thermal decomposition properties, this polymer has a relatively high thermal decomposition temperature.

同様にポリエチレンも類似した性質を有している。また
この二種以外の高分子成分は二種の成分が残留する温度
で1分解揮散するのが望ましいので1ある程度以下の天
井温度を有する必要があるが、過度に低いと混線、成形
工程で分解してしまうことから、その天井温度は250
℃以下とするのが望ましい。具体的にはアクリル系ポリ
マーポリスチレンなどが1本発明の目的に適う類似の性
質を有している。
Similarly, polyethylene has similar properties. In addition, it is desirable for polymer components other than these two to decompose and volatilize once at the temperature at which the two components remain, so it is necessary to have a ceiling temperature below 1, but if it is too low, it will cause crosstalk and decompose during the molding process. Because of this, the ceiling temperature is 250℃.
It is desirable to keep it below ℃. Specifically, acrylic polymers such as polystyrene have similar properties suitable for the purpose of the present invention.

以上に説明したことから金属又はセラミック焼結体のバ
インダの成分としてはポリエチレン、エチレン−酢酸ビ
ニル共重合体の一方もしくは両方を含み、同時に天井温
度が250℃以下のものを含むようにすることが望まし
い。また、ポリエチレン、エチレン−酢酸ビニル共重合
体の一方もしくは両方を合わせた含有量は20重量%以
上、脱脂温度を280℃以上としなければならないが。
From the above explanation, the binder component of the metal or ceramic sintered body should contain one or both of polyethylene and ethylene-vinyl acetate copolymer, and at the same time contain a material with a ceiling temperature of 250°C or less. desirable. Further, the combined content of one or both of polyethylene and ethylene-vinyl acetate copolymer must be at least 20% by weight, and the degreasing temperature must be at least 280°C.

その理由については以下、具体的に実施例に於いて説明
する。
The reason for this will be specifically explained below in Examples.

平均粒径0,4μ厘のNi、Zn−フェライトの仮焼粉
に対し、平均分子量:約21万の高密度ポリエチレン、
酢酸ビニル含量が14%であって平均分子量:約12万
のエチレン−酢酸ビニル共重合体、平均分子量:約14
万のポリメタクリル酸ブチル、平均分子量:約14万の
ポリスチレン。
High-density polyethylene with an average molecular weight of about 210,000,
Ethylene-vinyl acetate copolymer with vinyl acetate content of 14% and average molecular weight: approximately 120,000, average molecular weight: approximately 14
10,000 polybutyl methacrylate, average molecular weight: about 140,000 polystyrene.

フタル酸ジブチルを第1表に示す比率に従って夫々秤量
し、加圧ニーダ−で150℃で30分間混練した。この
混線物を回転刃を装備した押出成形機により、径:約4
m■、長さ:約5 mnのベレットとした。このベレッ
トを射出機により、6C1+mX30 am X 5 
mmなる形状の成形体とし、内容積:約200gの加熱
脱脂炉に装入し、脱脂を行なった。
Dibutyl phthalate was weighed according to the ratios shown in Table 1, and kneaded in a pressure kneader at 150°C for 30 minutes. This mixed material is processed by an extrusion molding machine equipped with a rotating blade, with a diameter of approximately 4 mm.
It was made into a pellet with a length of about 5 mm. This pellet was injected into 6C1+mX30 am X 5 by an injection machine.
A molded body having a shape of mm was placed in a heating degreasing furnace having an internal volume of approximately 200 g, and degreased.

雰囲気は大気流とし、流量は5.Q/winとした。The atmosphere is atmospheric flow, and the flow rate is 5. Q/Win.

またこの時の昇温パターンは第2図に示した。これは室
温から脱脂温度までを40℃/Hrで昇温し。
The temperature increase pattern at this time is shown in FIG. This is done by raising the temperature from room temperature to the degreasing temperature at a rate of 40°C/Hr.

脱脂温度を240℃、260℃、280℃。Degreasing temperature is 240℃, 260℃, 280℃.

300℃、320としたことを示している。It shows that the temperature was 300°C and 320°C.

これらの脱脂条件で脱脂した時の脱脂率と時間との関係
を組成1.2.3の原料の成形体について第3〜7図に
示したもので図中1組成1をO1組成2を△1組成3を
で表わした。
The relationship between the degreasing rate and time when degreasing under these degreasing conditions is shown in Figures 3 to 7 for molded bodies of raw materials of composition 1.2.3. 1 composition 3 is expressed as.

尚、脱脂率は成形体の重量変化より求めたものである。Incidentally, the degreasing rate was determined from the change in weight of the molded article.

これらの図から明らかなように、保持時間が10時間を
超えると、バインダ残量は一定値に近づき、その数値は
保持温度が高くなる程小さくなる。第1表は、他のバイ
ンダ組成を組合せた成形体の組成率を示したものでこの
組成比率の成形体を加熱して12時間保持した時のバイ
ンダ残量を第2表に示した。
As is clear from these figures, when the holding time exceeds 10 hours, the remaining amount of binder approaches a constant value, and this value becomes smaller as the holding temperature becomes higher. Table 1 shows the composition ratios of molded bodies combining other binder compositions, and Table 2 shows the amount of binder remaining when molded bodies with these composition ratios were heated and held for 12 hours.

そして これら脱脂後成形体の曲げ強度の測定を行ない
、また、これらについて各10個づつ1゜200℃で2
時間焼成し1発生した割れ、ふくれなどの不良数を調べ
た。その結果を同様に第2表に示した。第8図、第9図
は第2表中の曲げ強度。
Then, the bending strength of these degreased molded products was measured, and 10 pieces each were tested at 1° and 200°C for 2
The number of defects such as cracks and blisters that occurred after firing for several hours was investigated. The results are also shown in Table 2. Figures 8 and 9 show the bending strength in Table 2.

焼結体不良数を夫々バインダ残量についてプロットした
ものである。これによると曲げ強度はバインダ残j17
〜8wt%以下で急激に低下する。別途に調べた結果で
は曲げ強度10kg/c−以下では脱脂成形体は非常に
脆弱で搬送途次で破損したりすることが多く、取扱上問
題がある。従って成形体のバインダ残量は少くとも約5
vt%は必要である。
The number of defective sintered bodies is plotted with respect to the amount of binder remaining. According to this, the bending strength is J17 with binder remaining.
It decreases rapidly below ~8wt%. Separate research has shown that when the bending strength is less than 10 kg/c, the degreased molded product is extremely brittle and often breaks during transportation, posing problems in handling. Therefore, the amount of binder remaining in the molded body is at least about 5
vt% is necessary.

また焼成工程での不良発生数について見ると全熱不良の
発生しないバインダ残量の最大値は約8%である。
Regarding the number of defects occurring during the firing process, the maximum amount of binder remaining without causing total heat defects is about 8%.

これらの結果から本発明の目的に適うバインダのエチレ
ンまたはエチレン−酢酸ビニル共重合体の含量は20w
t%以上であり、脱脂温度は280℃以下であることが
分かる。
From these results, the content of ethylene or ethylene-vinyl acetate copolymer in the binder suitable for the purpose of the present invention is 20w.
t% or more, and the degreasing temperature is 280°C or less.

[発明の効果] 以上に述べたように本発明によれば、射出成形押出成形
によって複雑形状の焼結製品を作製することのできる粉
末冶金におけるバインダを提供することかできる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a binder for powder metallurgy that can produce sintered products with complex shapes by injection molding and extrusion molding.

また6本発明によれば、前記熱可塑性混和物を用いて成
形することにより取扱性1焼結性に優れた脱脂体を製造
する成形体の脱脂方法を提供することができる。
Further, according to the present invention, it is possible to provide a method for degreasing a molded body, which produces a degreased body having excellent handleability and sinterability by molding using the thermoplastic mixture.

更に1本発明によれば、前記脱脂体を焼結することによ
って、複雑形状の焼結製品を効率良く。
Furthermore, according to the present invention, by sintering the degreased body, a sintered product having a complicated shape can be efficiently produced.

安価に製造することができる焼結体を提供することがで
きる。
A sintered body that can be manufactured at low cost can be provided.

これらによって工業上非常に有益である。These properties are very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、有機高分子化合物(ポリメタクリル酸ブチル
とエチレン−酢酸ビニル共重合体)の熱分解特性を示し
た図、第2図は、脱脂工程における脱脂温度までの上昇
パターンを示した図1第3図乃至第7図は、第1表に示
した成形体の組成1.2.3における脱脂率と時間の関
係を示した図であって、第3図は、脱脂温度(保持温度
)240度の場合を示した図1第4図は1脱脂温度(保
持温度)260度の場合を示した図、第5図は、脱脂温
度(保持温度)280度の場合を示した図第6図は、脱
脂温度(保持温度)300度の場合を示した図、第7図
は、脱脂温度(保持温度)320度の場合を示した図、
第8図は、第2表の曲げ強度とバインダ残量との関係を
示した図、第9図は、第2表の焼結体の良数とバインダ
残量との関係を示した図である。 @間(?1) 莞3図 第4図 第5図 第6図 時間(1−1r、) 第7図 時間(Hr、) 莞9図 バインダー残j(WtZ) 手続補正書(自発) 平成3年2月フ3日
Figure 1 is a diagram showing the thermal decomposition characteristics of organic polymer compounds (polybutyl methacrylate and ethylene-vinyl acetate copolymer), and Figure 2 is a diagram showing the rise pattern to the degreasing temperature in the degreasing process. 1. Figures 3 to 7 are diagrams showing the relationship between the degreasing rate and time for compositions 1.2.3 of the molded bodies shown in Table 1. ) Figure 4 shows the case where the degreasing temperature (holding temperature) is 260 degrees, and Figure 5 shows the case where the degreasing temperature (holding temperature) is 280 degrees. Figure 6 shows the case where the degreasing temperature (holding temperature) is 300 degrees, Figure 7 shows the case where the degreasing temperature (holding temperature) is 320 degrees,
Figure 8 is a diagram showing the relationship between the bending strength and the remaining amount of binder in Table 2, and Figure 9 is a diagram showing the relationship between the number of good sintered bodies and the remaining amount of binder in Table 2. be. @ between (?1) Figure 3 Figure 4 Figure 5 Figure 6 Time (1-1r,) Figure 7 Time (Hr,) Figure 9 Binder remaining j (WtZ) Procedural amendment (voluntary) 1991 February 3rd

Claims (3)

【特許請求の範囲】[Claims] 1.第1の有機高分子およびこれと異なる第2の有機高
分子からなり,前記第1の有機高分子は,ポリエチレン
,及びエチレン−酢酸ビニル共重合体のうち少なくとも
一種からなり,前記バインダ中に全重量の20%以上含
まれることを特徴とする粉末冶金におけるバインダ。
1. The first organic polymer is made of at least one of polyethylene and ethylene-vinyl acetate copolymer, and the first organic polymer is made of at least one of polyethylene and ethylene-vinyl acetate copolymer. A binder for powder metallurgy characterized by containing 20% or more by weight of a binder.
2.第1請求項記載の粉末冶金におけるバインダにおい
て,前記第2の有機高分子は天井温度が250度以下の
高分子化合物よりなることを特徴とする粉末冶金におけ
るバインダ。
2. The binder for powder metallurgy according to claim 1, wherein the second organic polymer is made of a polymer compound having a ceiling temperature of 250 degrees or less.
3.金属又はセラミック粉末と第1又は第2請求項記載
のバインダとを混合・混練し,射出成形押出成形等によ
って成形し,得られた成形体を280℃以下の温度で加
熱して成形体中のバインダを熱分解・揮散させることを
特徴とする成形体の脱脂方法。
3. The metal or ceramic powder and the binder according to the first or second claim are mixed and kneaded, molded by injection molding, extrusion molding, etc., and the resulting molded body is heated at a temperature of 280°C or less to remove the particles in the molded body. A method for degreasing a molded body, characterized by thermally decomposing and volatilizing the binder.
JP2244085A 1990-09-17 1990-09-17 Binder for powder metallurgy and method for degreasing green compact Pending JPH04124203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244085A JPH04124203A (en) 1990-09-17 1990-09-17 Binder for powder metallurgy and method for degreasing green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244085A JPH04124203A (en) 1990-09-17 1990-09-17 Binder for powder metallurgy and method for degreasing green compact

Publications (1)

Publication Number Publication Date
JPH04124203A true JPH04124203A (en) 1992-04-24

Family

ID=17113512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244085A Pending JPH04124203A (en) 1990-09-17 1990-09-17 Binder for powder metallurgy and method for degreasing green compact

Country Status (1)

Country Link
JP (1) JPH04124203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062221A (en) * 2010-09-16 2012-03-29 Tdk Corp Method for producing sintered compact
CN104559840A (en) * 2014-11-27 2015-04-29 东莞劲胜精密组件股份有限公司 Adhesive for powder injection forming and application method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062221A (en) * 2010-09-16 2012-03-29 Tdk Corp Method for producing sintered compact
CN104559840A (en) * 2014-11-27 2015-04-29 东莞劲胜精密组件股份有限公司 Adhesive for powder injection forming and application method thereof

Similar Documents

Publication Publication Date Title
JP2016523799A (en) Binder for injection molding composition
JPH03232937A (en) Manufacture of metallic body by injection molding
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
JPH05254919A (en) Molding material for production of inorganic sintered product
CN107935576A (en) Silicon nitride bonded silicon mullite composite silicon carbide ceramic material and preparation method thereof
JPH04124203A (en) Binder for powder metallurgy and method for degreasing green compact
JPH05194037A (en) Water extrusion of silicon nitride
JPS6129907B2 (en)
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPS6342682B2 (en)
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JPH02204355A (en) Production of sinterable mixture
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPS60180966A (en) Manufacture of high temperature stability high density ceramic formed body
JPH0641601B2 (en) Molding composition
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JP3362465B2 (en) Manufacturing method of sintered member
JPH02290642A (en) Manufacture of ceramic core
JPH06287055A (en) Production of sintered article of ceramic
JPH0820803A (en) Production of sintered compact
JPH0483752A (en) Mixture of sinterable substance
JP2001348602A (en) Composition as powder material for sintering and method for producing the sintered product
JPH08290975A (en) Ceramic composition, core material and production of ceramic product
JPH08120303A (en) Manufacture of binder for forming powder, composition for forming powder, and sintered member
JPH07277837A (en) Ceramic composition and production of ceramic product using the same