JPH0483752A - Mixture of sinterable substance - Google Patents

Mixture of sinterable substance

Info

Publication number
JPH0483752A
JPH0483752A JP2194229A JP19422990A JPH0483752A JP H0483752 A JPH0483752 A JP H0483752A JP 2194229 A JP2194229 A JP 2194229A JP 19422990 A JP19422990 A JP 19422990A JP H0483752 A JPH0483752 A JP H0483752A
Authority
JP
Japan
Prior art keywords
water
sinterable
parts
weight
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194229A
Other languages
Japanese (ja)
Inventor
Etsuo Maki
牧 悦生
Junji Takeda
淳二 武田
Fusao Iso
磯 房雄
Koichi Takayama
幸一 高山
Kenji Takemura
竹村 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2194229A priority Critical patent/JPH0483752A/en
Publication of JPH0483752A publication Critical patent/JPH0483752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily form a green material having complicate form and to prevent the deformation of a green material after taking out of a mold by compounding a sinterable substance with a specific polysaccharide and a water- soluble polymer at specific ratios. CONSTITUTION:The objective composition is produced by compounding 100 pts.wt. of a sinterable substance with 1.0-15.0 pts.wt. of a polysaccharide gelatinizable by cooling after dissolving in hot water and 1.0-15.0 pts.wt. of a water-soluble polymer gelatinizable by heating. The sinterable substance is metals, alloys or ceramics. Any kind of polysaccharide, e.g. carrageenan, alginic acid salt and galactomannan, can be used in the present composition. The water-soluble polymer is a substance soluble in water at about <=30 deg.C and gelatinizable at a temperature higher than a specific level. Examples of the water-soluble polymer are cellulose ethers such as methylcellulose and hydroxymethylcellulose.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は射出成形法による焼結性物質の成形に好適な焼
結性物質の混合物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a mixture of sinterable materials suitable for forming sinterable materials by injection molding.

[従来の技術] 複雑な形状を有する金属またはセラミックス等の焼結性
物質成形体は広く射出成形法によって成形されている。
[Prior Art] Molded bodies of sinterable materials such as metals or ceramics having complex shapes are widely molded by injection molding.

とりわけ、大量に製造されているエレクトロニクスの部
品、自動車部品等のエンジニャリングの部品を製造する
際有効な手段であり、乾式プレス法、スリップキャスト
法等とともして重要な役割を果たしている。
In particular, it is an effective means for manufacturing engineering parts such as electronics parts and automobile parts, which are manufactured in large quantities, and plays an important role along with dry pressing methods, slip casting methods, etc.

射出成形法によって金属またはセラミックスの成形体を
得るには、金属粉末またはセラミックス粉末を熱可塑性
樹脂バインダーと混合・混練したのちグリーン体を作成
し、加熱によりバインダー成分を分解・除去させる脱脂
を行ない、所定の温度で焼結させる方法が一般的に行な
われている。
To obtain a metal or ceramic molded body by injection molding, a green body is created by mixing and kneading metal powder or ceramic powder with a thermoplastic resin binder, and degreasing is performed to decompose and remove the binder component by heating. A commonly used method is to sinter at a predetermined temperature.

このような方法で複雑な形状を有するグリーン体が脱脂
・焼結されるが、焼結性物質混合物の特性として、どん
な厚みのグリーン体であっても欠陥なく射出成形性する
ことができ、かつ脱脂の際に短時間でバインダー成分が
除去されると共に成形体にフクレ、クラック、割れ等の
有害な変形が発生しないということなどが必要である。
In this method, a green body with a complex shape is degreased and sintered, but due to the characteristics of the sinterable material mixture, the green body can be injection molded without defects, regardless of its thickness, and It is necessary that the binder component be removed in a short time during degreasing, and that harmful deformations such as blisters, cracks, and cracks do not occur in the molded product.

現在、焼結性物質の射出成形用バインダーとして各種ワ
ックス、アモルファスポリプロピレン、アクリル系レジ
ン、スチレン系レジン等が使用されている。しかしこれ
らのバインダーを除去する脱脂工程は、グリーン体の肉
厚が15mm以上になると長時間を要するようになり、
しかも脱脂中の成形体内部にクラック、割れが発生し外
観上及び性能上良品を得ることは困難であった。
Currently, various waxes, amorphous polypropylene, acrylic resins, styrene resins, and the like are used as binders for injection molding of sinterable substances. However, the degreasing process to remove these binders takes a long time when the thickness of the green body becomes 15 mm or more.
Moreover, cracks and cracks occur inside the molded product during degreasing, making it difficult to obtain a product with good appearance and performance.

このような問題点を解決するために、バインダーとして
揮散し易い水を用いることが試みられている。例えば、
特開昭61−94702号、特開昭61−101447
号及びUSP−4113480号には、本質的に各種金
属粉末またはセラミックス粉末に、加熱によりゲル化す
る成分と水を添加した組成物を用いる方法が開示されて
いる。
In order to solve these problems, attempts have been made to use water, which is easily volatilized, as a binder. for example,
JP-A-61-94702, JP-A-61-101447
No. 1, US Pat. No. 4,113,480 discloses a method using a composition consisting essentially of various metal powders or ceramic powders, to which are added a component that gels on heating and water.

しかしこれらの方法では金型を摂氏60度以上に加熱す
る必要があること、また加熱された金型からグリーン体
を取り出した際、温度が低下するとグリーン体が変形す
る危険性がある。
However, in these methods, it is necessary to heat the mold to 60 degrees Celsius or more, and when the green body is taken out from the heated mold, there is a risk that the green body will deform if the temperature drops.

また、USP−4734237号には各種セラミックス
粉末及び金属粉末に摂氏0〜22度においてゲル化する
成分及び水を添加した組成物を用いる方法が提案されて
いる。
Further, USP-4734237 proposes a method using a composition in which various ceramic powders and metal powders are added with water and a component that gels at a temperature of 0 to 22 degrees Celsius.

しかしながら、成形温度である摂氏80度以上の温度で
は水が揮散し易く金属粉末またはセラミックス粉末の濃
度を一定に保つことが困難であることに加え、成形時の
射出スピードが速い場合成形機ノズルから射出された組
成物が周囲に飛散するという問題点があった。
However, at temperatures above 80 degrees Celsius, which is the molding temperature, water easily evaporates and it is difficult to maintain a constant concentration of metal powder or ceramic powder. There was a problem that the injected composition was scattered around.

[発明が解決しようとする課題] 本発明はこれらの問題を解決し、複雑な形状を有するグ
リーン体を容易に成形することができ且つグリーン体を
金型から取り出した後も変形のない焼結性物質混合物を
提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention solves these problems and provides a sintering method that allows a green body having a complicated shape to be easily molded and that does not deform even after the green body is taken out of the mold. The purpose is to provide a mixture of sexual substances.

[課題を解決するための手段及び作用]本発明に従えば
、これらの課題は、 (A)焼結性物質  100重量部に対して、(B)加
熱溶解後冷却によりゲル化可能な多糖類       
1.0〜150重量部、(C)加熱によりゲル化可能な
水溶性高分子1.0〜15.0重量部、 によって解決することができる。以下、本発明を具体的
に説明する。
[Means and effects for solving the problems] According to the present invention, these problems are solved by adding (B) a polysaccharide that can be gelled by heating and dissolving and then cooling to (A) 100 parts by weight of a sinterable substance.
(C) 1.0 to 15.0 parts by weight of a water-soluble polymer that can be gelled by heating. The present invention will be explained in detail below.

本発明における焼結性物質混合物は本質的に下記の焼結
性物質、加熱溶解後冷却によりゲル化可能な多糖類、ゲ
ル化可能な水溶性高分子よりなる。
The sinterable substance mixture in the present invention essentially consists of the following sinterable substance, a polysaccharide that can be gelled by heating and melting and cooling, and a gelatable water-soluble polymer.

(A)焼結性物質 本発明において使用される焼結性物質の融点、分解温度
または昇華温度は、通常摂氏600度以上であり、10
00度以上が好ましく、特に1400度以上が好適であ
る。融点、分解温度または昇華温度が600度未満の金
属またはセラミックスを焼結性物質として使用すると脱
脂時に有害な変形やフクレを生じる。
(A) Sinterable substance The melting point, decomposition temperature or sublimation temperature of the sinterable substance used in the present invention is usually 600 degrees Celsius or higher, and 10
The temperature is preferably 00 degrees or more, and particularly preferably 1400 degrees or more. If a metal or ceramic with a melting point, decomposition temperature or sublimation temperature of less than 600 degrees is used as a sinterable material, harmful deformation or blistering will occur during degreasing.

また、平均粒径は0.1〜500ミクロンである。この
平均粒径は焼結性物質の種類によって異なるが、金属の
場合では通常1〜500ミクロンであり、1〜300ミ
クロンが望ましく、とりわけ1〜200ミクロンが最適
である。平均粒径が1ミクロン未満の金属を用いると、
混線が困難である。
Moreover, the average particle size is 0.1 to 500 microns. This average particle size varies depending on the type of sinterable substance, but in the case of metals it is usually 1 to 500 microns, preferably 1 to 300 microns, most preferably 1 to 200 microns. When using metals with an average particle size of less than 1 micron,
Crosstalk is difficult.

一方、500ミクロンを越えた金属を使用すると、焼結
によって得られる成形物の機械的特性が低下する。また
セラミックスの場合では、一般に01〜200ミクロン
であり、O1〜150ミクロンが好ましく、特に0.1
〜100ミクロンが好適である。平均粒径が0.1ミク
ロン未満のセラミックスを使用すると、混合物を製造す
る際にセラミックスの均−状の分散が困難である。
On the other hand, if a metal with a diameter exceeding 500 microns is used, the mechanical properties of the molded product obtained by sintering will deteriorate. In the case of ceramics, it is generally 01 to 200 microns, preferably 01 to 150 microns, particularly 0.1
~100 microns is preferred. When ceramics with an average particle size of less than 0.1 micron are used, it is difficult to uniformly disperse the ceramics when preparing the mixture.

方、200ミクロンを越えたセラミックスを用いると、
混合物の成形物を焼結する際に保形性が悪くなると共に
、焼結後の密度が低下し、焼結体の機械的強度が低下す
る。
On the other hand, if ceramics with a diameter exceeding 200 microns are used,
When a molded product of the mixture is sintered, shape retention deteriorates, the density after sintering decreases, and the mechanical strength of the sintered body decreases.

本発明において焼結性物質として用いられる金属の代表
例としては、アルミニウム、鉄、銅、チタン、モリブデ
ン、ジルコニウム、コバルト、ニッケルおよびクロムの
ごとき金属ならびにこれらの金属を主成分(少なくとも
50重量%)とする合金が挙げられる。
Typical examples of metals used as sinterable materials in the present invention include metals such as aluminum, iron, copper, titanium, molybdenum, zirconium, cobalt, nickel, and chromium, and metals based on these metals (at least 50% by weight). Examples include alloys such as

これらの金属及び合金の粉末は軸受台金、快削鋼、耐熱
材、耐摩耗材などとして広く使われているものであり、
通常粉末冶金材料と言われているものである。
Powders of these metals and alloys are widely used as bearing base metals, free-cutting steel, heat-resistant materials, wear-resistant materials, etc.
It is commonly referred to as a powder metallurgy material.

また、セラミックスの代表例としては、アルミナ、炭化
珪素、窒化珪素、ジルコニア、コージライト、タングス
テンカーバイド、フェライト、窒化アルミニウム等の材
料が挙げられる。
Further, typical examples of ceramics include materials such as alumina, silicon carbide, silicon nitride, zirconia, cordierite, tungsten carbide, ferrite, and aluminum nitride.

なお、この焼結物質には焼結助剤として、ホウ素、ベリ
リウム、炭素、酸化イツトリウム、酸化セリウム、酸化
マグネシウム、酸化リチウムなどを適宜少量(一般には
、100重量部のセラミ・ンクスに対して多くとも20
重量部)添加させても良い。
In addition, this sintered material contains an appropriate amount of boron, beryllium, carbon, yttrium oxide, cerium oxide, magnesium oxide, lithium oxide, etc. as a sintering aid (in general, a large amount is added per 100 parts by weight of ceramic oxide). Tomo 20
parts by weight) may be added.

(B)加熱溶解後冷却によりゲル化可能な多糖類また、
本発明において用いられる加熱溶解後冷却によりゲル化
可能な多糖類は公知の加熱溶解後冷却によりゲル化可能
な多糖類であれば特に制限はなく、温水に溶解後冷却す
ればゲル化するものは、本発明に使用することができる
。一般には、藻類および植物から抽出された多糖類で、
カラギーナン、アルギン酸塩、ガラクトマンナンなどが
含まれ、「寒天ハンドブックJ (林金雄、岡崎彰夫著
、光琳社出版、昭和45年)及び化学大辞典にその詳細
が記載されている。
(B) A polysaccharide that can be gelled by heating and dissolving and then cooling;
The polysaccharide used in the present invention that can be gelled by heating and dissolving and then cooling is not particularly limited as long as it is a known polysaccharide that can be gelled by heating and dissolving and then cooling. , can be used in the present invention. Generally a polysaccharide extracted from algae and plants.
It includes carrageenan, alginate, galactomannan, etc., and its details are described in ``Agar Handbook J'' (written by Kaneo Hayashi and Akio Okazaki, published by Korinsha, 1972) and the Chemical Encyclopedia.

本発明の焼結性物質混合物において、前記焼結性物質1
00重量部に対する加熱溶解後冷却によりゲル化可能な
多糖類の混合割合は1.0〜15.0重量部であり、1
.0〜1O90重量部が好ましく、特に1.0〜8.0
重量部が好適である。加熱溶解後冷却によりゲル化可能
な多糖類の混合割合が1.0重量部未満では成形体の強
度が弱く、金型からの離型時成形体にクラックや欠けが
発生する。一方、15重量部を越えると流動性が低下す
るばかりでなく、脱脂、焼結時にクラックが発生したり
、焼結体の密度が低下する。
In the sinterable material mixture of the present invention, the sinterable material 1
The mixing ratio of the polysaccharide that can be gelled by heating and dissolving and cooling to 00 parts by weight is 1.0 to 15.0 parts by weight, and 1.0 to 15.0 parts by weight.
.. 0 to 1090 parts by weight is preferable, especially 1.0 to 8.0 parts by weight.
Parts by weight are preferred. If the mixing ratio of the polysaccharide that can be gelled by cooling after heating and melting is less than 1.0 parts by weight, the strength of the molded product will be weak, and cracks or chips will occur in the molded product when it is released from the mold. On the other hand, if it exceeds 15 parts by weight, not only the fluidity decreases, but also cracks occur during degreasing and sintering, and the density of the sintered body decreases.

(C)加熱によりゲル化可能な水溶性高分子加熱により
ゲル化する水溶性高分子とは約摂氏30度以下の水では
水溶性物質であるが、ある温度を越えると物質のゲル化
が起こるものを言い、具体的にはセルロースエーテル系
のものが知られており、メチルセルロース、ヒドロキシ
メチルセルロール、ヒドロキシプロピルメチルセルロー
ス、ヒドロキシプロピルセルロース、ヒドロキシエチル
セルロース等が挙げられる。これらの熱ゲル化可能な水
溶性高分子の分子量は2000〜200万であり、20
00〜150万が望ましく、2000〜lOO万が好適
である。分子量が2000未満の場合高温での水の保水
性が乏しく、一方200万を越える分子量のものは脱脂
時に分解が困難になるため好ましくない。
(C) Water-soluble polymers that can be gelled by heating Water-soluble polymers that can be gelled by heating are water-soluble substances in water below about 30 degrees Celsius, but when a certain temperature is exceeded, the substance gels. Specifically, cellulose ethers are known, such as methylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, and hydroxyethylcellulose. The molecular weight of these thermogelatable water-soluble polymers is 2,000 to 2,000,000.
000,000 to 1,500,000 is desirable, and 2,000 to 100,000 is suitable. If the molecular weight is less than 2,000, the water retention capacity at high temperatures is poor, while if the molecular weight exceeds 2,000,000, it will be difficult to decompose during degreasing, which is not preferred.

また、前記焼結性物質100重量部に対する加熱により
ゲル化する水溶性高分子の混合割合は0.5〜15重量
部であり、0.5〜10.0重量部が望ましく、とりわ
け0,5〜8.0重量部が好適である。水溶性高分子の
混合割合が0.5重量部未満では射出成形時の混合物の
ノズルからの飛散を防止することが困難であり、また水
溶性高分子の混合割合が15.0重量部を越えると流動
性が低下するのみならず、成形体にウェルドマーク、表
面に微小クラックが発生する。
Further, the mixing ratio of the water-soluble polymer that gels by heating with respect to 100 parts by weight of the sinterable material is 0.5 to 15 parts by weight, preferably 0.5 to 10.0 parts by weight, and especially 0.5 to 15 parts by weight. ~8.0 parts by weight is preferred. If the mixing ratio of the water-soluble polymer is less than 0.5 parts by weight, it is difficult to prevent the mixture from scattering from the nozzle during injection molding, and if the mixing ratio of the water-soluble polymer exceeds 15.0 parts by weight. This not only reduces fluidity but also causes weld marks on the molded product and microcracks on the surface.

本発明の焼結性物質混合物は、原則として上記の焼結性
物質、加熱溶解後冷却によりゲル化可能な多糖類及び加
熱によりゲル化可能な水溶性高分子物質からなり、これ
を充分に均一に混合した形の混合物として取扱うことが
できる。
The sinterable substance mixture of the present invention basically consists of the above-mentioned sinterable substance, a polysaccharide that can be gelled by heating and melting and then cooling, and a water-soluble polymer substance that can be gelled by heating, and is sufficiently homogeneous. It can be treated as a mixture of mixed forms.

使用に際しては、これに適量の水を混合して適度の流動
性を与え、射出成形用原料として使用する。
When used, an appropriate amount of water is mixed with this to give it appropriate fluidity, and the mixture is used as a raw material for injection molding.

更に水の混合割合は、前記焼結性物質100重量部に対
して5.0〜50.0重量部であり、5.0〜45.0
重量部が好ましく、特に5.0〜40.0重量部が好適
である。
Further, the mixing ratio of water is 5.0 to 50.0 parts by weight, and 5.0 to 45.0 parts by weight based on 100 parts by weight of the sinterable material.
Parts by weight are preferred, particularly preferably 5.0 to 40.0 parts by weight.

水の混合割合が5.0重量部未満では流動性が低下する
のみならず、焼結性物質の均一分散が困難となる。一方
、50.0重量部を越えると成形体の強度が弱く、金型
からの離型時変形したり、欠けやクラックが発生する。
If the mixing ratio of water is less than 5.0 parts by weight, not only will the fluidity decrease, but also it will be difficult to uniformly disperse the sinterable material. On the other hand, if the amount exceeds 50.0 parts by weight, the strength of the molded product will be low, resulting in deformation, chipping, and cracking when released from the mold.

本発明の焼結性物質混合物は混合・混線され、射出成形
用原料となるが、混合・混線時にポリアクリル酸塩、ア
ルギン酸塩、ポリカルボン酸型界面活性剤等の分散剤や
ポリビニルアルコール、ポリエチレングリコール、ポリ
ブロビレングリコール、グリセリン及びソルビタン酸エ
ステル等の可塑剤を添加することができる。この際、分
散剤、可塑剤等の加工助剤の添加量は焼結性物質100
重量部に対して多くとも30重量部であり、特に20重
量部以下が好ましい。
The sinterable substance mixture of the present invention is mixed and mixed to become a raw material for injection molding, but during mixing and mixing, dispersants such as polyacrylates, alginates, polycarboxylic acid type surfactants, polyvinyl alcohol, polyethylene Plasticizers such as glycols, polybrobylene glycols, glycerin and sorbitan esters can be added. At this time, the amount of processing aids such as dispersants and plasticizers added is 100% of the sinterable material.
It is preferably at most 30 parts by weight, particularly preferably 20 parts by weight or less.

本発明の焼結性物質混合物を使用するにあたっては、以
上の焼結性物質、加熱溶解後冷却によりゲル化可能な多
糖類、加熱によりゲル化可能な水溶性高分子の混合物に
水を前記の混合割合の範囲内において均一に混合すれば
良い。
When using the sinterable material mixture of the present invention, water is added to the mixture of the above sinterable material, a polysaccharide that can be gelled by heating and melting and cooling, and a water-soluble polymer that can be gelled by heating. They may be mixed uniformly within the mixing ratio range.

混合物を製造するにあたり、全混合成分を同時に混合し
てもよく、また混合成分の一部をあらかじめ混合し、得
られる混合物に残りの混合成分を混合しても良い、混合
方法としては熱可塑性樹脂の分野において一般に使用さ
れているヘンシェルミキサー、スーパーミキサーのごと
き混合機を用いてトライブレンドさせても製造すること
ができるし、トライブレンドさせた混合物を数日間放置
した後、バンバリーミキサ−、ニーダ−、ロールミル及
びスクリュウ式押出機のごとき混合機を使用して剪断力
をかけ、混練させることによって均一状の混合物を得る
ことができる。この場合、般には混練させた後、ペレッ
ト状物に成形し、後記の射出成形に供される。
In producing the mixture, all of the mixed components may be mixed at the same time, or some of the mixed components may be mixed in advance and the remaining mixed components may be mixed into the resulting mixture. It can also be produced by tri-blending using a mixer such as a Henschel mixer or a super mixer, which are commonly used in the field, or by leaving the tri-blending mixture for several days and then using a Banbury mixer or kneader. A homogeneous mixture can be obtained by applying shear force and kneading using a mixer such as a roll mill or a screw extruder. In this case, the mixture is generally kneaded and then formed into pellets, which are then subjected to injection molding as described later.

このようにして得られる焼結性物質混合物は合成樹脂の
分野において通常実施されている射出成形法によって各
種形状を有する成形体に賦形される。なお成形温度は加
熱溶解後冷却によりゲル化可能な多糖類の水に対する溶
解温度以上であるが、水の沸騰温度である摂氏100度
以下の温度範囲で実施する必要がある。これらのことか
ら射出成形は混合物の温度が摂氏80〜100度の温度
範囲で実施すれば良い。また金型温度は10〜40℃の
範囲で実施すれば良い。得られる成形体の厚さは一般に
は0.5〜200mmである。この成形体の厚さが20
0mmを越えるならば、成形体の表面にフクレが発生し
たり、クラックが発生し易くなる。
The sinterable substance mixture thus obtained is shaped into molded bodies having various shapes by injection molding, which is commonly practiced in the field of synthetic resins. The molding temperature is higher than the dissolution temperature in water of the polysaccharide that can be gelled by cooling after heating and dissolving, but it is necessary to carry out the molding in a temperature range of 100 degrees Celsius or lower, which is the boiling temperature of water. For these reasons, injection molding may be carried out at a temperature of the mixture in the range of 80 to 100 degrees Celsius. Moreover, the mold temperature may be in the range of 10 to 40°C. The thickness of the molded body obtained is generally 0.5 to 200 mm. The thickness of this molded body is 20
If it exceeds 0 mm, blisters or cracks are likely to occur on the surface of the molded product.

得られた成形体は温度を上昇させ、本質的に加熱溶解後
冷却によりゲル化可能な多糖類、水溶性高分子がなくな
るまで脱脂を実施する。この際、脱脂の最高温度は通常
摂氏200度以上である。
The temperature of the obtained molded product is increased, and the molded product is essentially degreased until the polysaccharide and water-soluble polymer that can be gelled by heating and dissolving and cooling are completely eliminated. At this time, the maximum temperature for degreasing is usually 200 degrees Celsius or higher.

このようにして脱脂された成形体は焼結される。焼結性
物質が酸化物系では、その種類によって異なるが、摂氏
500〜1700度の温度範囲で焼結される。一方1、
非酸化物系では、不活性ガスの雰囲気中で摂氏1500
〜2500度の温度範囲で、やはりその種類によって定
ぬれた温度で焼結される。
The molded body thus degreased is sintered. When the sinterable material is an oxide, it is sintered at a temperature in the range of 500 to 1,700 degrees Celsius, although it varies depending on the type. On the other hand 1,
For non-oxide systems, the temperature is 1500 degrees Celsius in an inert gas atmosphere.
It is sintered at a temperature ranging from ~2500 degrees Celsius, again depending on the type.

[実施例及び比較例] 以下、実施例によって本発明を更に詳しく説明する。[Examples and comparative examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、実施例及び比較例において、溶融粘度は高化式フ
ローテスターを使用して、摂氏90度及び荷重30Kg
の条件で測定した。
In addition, in the examples and comparative examples, the melt viscosity was measured using a Koka type flow tester at 90 degrees Celsius and a load of 30 kg.
Measured under the following conditions.

脱脂は電子炉(内容積2000cc)を使用して摂氏4
00度まで昇温させた。また焼結は上記と同じ電子炉を
用い、大気圧下で90度/時間で1000度または16
00度まで昇温させた。
Degreasing is done using an electronic furnace (inner volume 2000cc) at 4 degrees Celsius.
The temperature was raised to 00 degrees. In addition, sintering was performed at 1000 degrees or 16 degrees at 90 degrees/hour under atmospheric pressure using the same electronic furnace as above.
The temperature was raised to 00 degrees.

実施例及び比較例において使用した焼結性物質、加熱溶
解後冷却によりゲル化可能な多糖類、加熱によりゲル化
可能な水溶性高分子の種類及び物性を下記に示す。
The types and physical properties of the sinterable substances, polysaccharides that can be gelled by heating and melting and cooling, and water-soluble polymers that can be gelled by heating, used in Examples and Comparative Examples are shown below.

[(A)焼結性物質] 焼結性物質として平均粒径が0.4ミクロンであるアル
ミナおよび平均粒径が1.5ミクロンであるフェライト
を使用した。
[(A) Sinterable substance] Alumina with an average particle size of 0.4 microns and ferrite with an average particle size of 1.5 microns were used as sinterable substances.

〔(B)加熱溶解後冷却によりゲル化可能な多糖類〕[(B) Polysaccharide that can be gelled by cooling after heating and dissolving]

加熱溶解後冷却によりゲル化可能な多糖類として紅藻類
から抽出されたガラクトマンナンを使用した。
Galactomannan extracted from red algae was used as a polysaccharide that can be gelled by heating and dissolving and then cooling.

〔(C)加熱によりゲル化する水溶性高分子]加熱によ
りゲル化する水溶性高分子として分子量6000である
ヒドロキシプロピルメチルセルロース(以下rHPMC
Jという。)及び分子量1万であるメチルセルロース(
以下rMCJという。)を用いた。
[(C) Water-soluble polymer that gels when heated] Hydroxypropyl methylcellulose (hereinafter referred to as rHPMC), which has a molecular weight of 6000, is a water-soluble polymer that gels when heated.
It's called J. ) and methylcellulose with a molecular weight of 10,000 (
Hereinafter referred to as rMCJ. ) was used.

[(D)可塑剤] 可塑剤として分子量3000であるポリエチレングリコ
ールを使用した。
[(D) Plasticizer] Polyethylene glycol having a molecular weight of 3000 was used as a plasticizer.

(実施例1〜4、比較例1〜5) 第1表に種類及びその混合割合が示されている焼結性物
質、加熱溶解後冷却によりゲル化可能な多糖類、加熱に
よりゲル化可能な水溶性高分子、可塑剤、及び水をあら
かじめヘンシェルミキサを使ってそれぞれ2分間トライ
ブレンドを行なった。得られた各混合物を15時間放置
した後、ベント付2軸押出機(径35mm)を用いて摂
氏50度の温度において混練しながらペレットを製造し
た。それぞれのペレットを射出成形機(型締圧100ト
ン)を使用し、金型温度摂氏20度で、円柱(径25m
m、長さ150mmグリーン成形体)を作成した。得ら
れた各円柱を脱脂炉を使って前記の条件で脱脂を行なっ
た。このようにして得られた各脱脂物を前記の条件で焼
結して(焼結温度を第2表に示す、)各焼結物を製造し
た。このようにして得られた各グリーン体、脱脂後の成
形体及び焼結体の外観ならびにグリーン体の脱脂速度及
び焼結性物質混合物の粘度を第2表に示す。
(Examples 1 to 4, Comparative Examples 1 to 5) Sinterable substances whose types and mixing ratios are shown in Table 1, polysaccharides that can be gelled by cooling after heating and melting, and polysaccharides that can be gelled by heating The water-soluble polymer, plasticizer, and water were each triblended for 2 minutes using a Henschel mixer. After each of the obtained mixtures was left to stand for 15 hours, pellets were produced while kneading at a temperature of 50 degrees Celsius using a vented twin-screw extruder (diameter 35 mm). Each pellet was molded into a cylinder (diameter 25 m) using an injection molding machine (mold clamping pressure 100 tons) at a mold temperature of 20 degrees Celsius.
A green molded body having a length of 150 mm and a length of 150 mm was prepared. Each of the obtained cylinders was degreased using a degreasing furnace under the above conditions. The degreased products thus obtained were sintered under the conditions described above (sintering temperatures are shown in Table 2) to produce sintered products. Table 2 shows the appearance of each of the green bodies, molded bodies and sintered bodies after degreasing, the rate of degreasing of the green bodies, and the viscosity of the sinterable substance mixture thus obtained.

(以下余白) [発明の効果] 本発明の焼結性物質混合物は、グリーン体及び脱脂体の
特性ならびにそれらの製造方法を含めて下記のごとき効
果を発揮する。
(The following is a blank space) [Effects of the Invention] The sinterable substance mixture of the present invention exhibits the following effects including the characteristics of the green body and the degreased body and the method for producing them.

(1)成形時の流動性、保水性が良好なため複雑な形状
を有する成形物についても、賦形が容易である。
(1) Due to good fluidity and water retention during molding, it is easy to shape even molded products with complex shapes.

(2)金型温度が10〜40℃の範囲で成形できるため
、火傷の心配もなく取扱いが容易である。
(2) Since it can be molded at a mold temperature of 10 to 40°C, it is easy to handle without worrying about burns.

(3)80℃以上の温度においても混合物の粘度の低下
が大きくないため、射出成形時の流動安定性、成形性に
優れている。
(3) Since the viscosity of the mixture does not decrease significantly even at temperatures of 80°C or higher, it has excellent flow stability and moldability during injection molding.

(4)グリーン体の保型性に優れているため、金型から
製品を離型する際でも、また離型後放置の状態において
も成形体に変形、クラックおよび欠は等の発生がない。
(4) Since the green body has excellent shape retention, the molded body does not suffer from deformation, cracks, chips, etc., even when the product is released from the mold or when it is left standing after being released from the mold.

(5)脱脂時の変形がなく、かつ脱脂時の昇温速度を速
くすることが可能であり、その結果脱脂時間を短縮する
ことができる。
(5) There is no deformation during degreasing, and it is possible to increase the temperature increase rate during degreasing, and as a result, the degreasing time can be shortened.

(6)脱脂時において脱脂が容易で、脱脂による変形を
大幅に小さくできる。
(6) Degreasing is easy during degreasing, and deformation due to degreasing can be significantly reduced.

本発明の焼結性物質混合物は以上のごとき効果を発揮す
るために、各種の形状に成形された焼結体は機械の部品
、電子機器の部品、家庭電器の部品、自動車の部品等の
分野に利用される。
In order for the sinterable substance mixture of the present invention to exhibit the above-mentioned effects, the sintered body formed into various shapes can be used in fields such as machine parts, electronic equipment parts, home appliance parts, and automobile parts. used for.

Claims (1)

【特許請求の範囲】[Claims]  焼結性物質100重量部に対して加熱溶解後冷却によ
りゲル化可能な多糖類1.0〜15.0重量部及び加熱
によりゲル化可能な水溶性高分子1.0〜15.0重量
部よりなる焼結性物質混合物。
1.0 to 15.0 parts by weight of a polysaccharide that can be gelled by heating and melting and cooling, and 1.0 to 15.0 parts by weight of a water-soluble polymer that can be gelled by heating, per 100 parts by weight of the sinterable substance. A sinterable material mixture consisting of:
JP2194229A 1990-07-23 1990-07-23 Mixture of sinterable substance Pending JPH0483752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194229A JPH0483752A (en) 1990-07-23 1990-07-23 Mixture of sinterable substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194229A JPH0483752A (en) 1990-07-23 1990-07-23 Mixture of sinterable substance

Publications (1)

Publication Number Publication Date
JPH0483752A true JPH0483752A (en) 1992-03-17

Family

ID=16321112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194229A Pending JPH0483752A (en) 1990-07-23 1990-07-23 Mixture of sinterable substance

Country Status (1)

Country Link
JP (1) JPH0483752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311504A (en) * 1991-04-10 1992-11-04 Kojima Press Co Ltd Method for pouring and molding powder
JP2003521580A (en) * 1999-07-15 2003-07-15 アライドシグナル インコーポレイテッド Continuous compounding of aqueous injection molding feedstock
US7473391B2 (en) 2001-03-13 2009-01-06 Ngk Insulators, Ltd. Methods for making molding material, molded body, and sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311504A (en) * 1991-04-10 1992-11-04 Kojima Press Co Ltd Method for pouring and molding powder
JP2003521580A (en) * 1999-07-15 2003-07-15 アライドシグナル インコーポレイテッド Continuous compounding of aqueous injection molding feedstock
US7473391B2 (en) 2001-03-13 2009-01-06 Ngk Insulators, Ltd. Methods for making molding material, molded body, and sintered body
US8038929B2 (en) 2001-03-13 2011-10-18 Ngk Insulators, Ltd. Method of making a molded body using a chopper blade and a planetary blade

Similar Documents

Publication Publication Date Title
EP0968067B1 (en) Process for shaping parts from ceramic and metal powders comprising a gel formation
JP3142828B2 (en) Binder system for powder injection molding
KR100588097B1 (en) Injection molding of structural zirconia-based materials by an aqueous process
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
CN115894041B (en) Preparation method of powder extrusion 3D printing forming reaction sintering silicon carbide ceramic
JP2002538300A (en) Metal / ceramic composite molding materials
JP2012512962A (en) Method for manufacturing cemented carbide products
JPH0483752A (en) Mixture of sinterable substance
JPH04329801A (en) Production of sintered parts
WO2002045889A2 (en) Improvement of flow characteristics of metal feedstock for injection molding
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPH04367578A (en) Porous sintered compact and its production
JPH02204355A (en) Production of sinterable mixture
CN113511898A (en) Preparation method of weldable silicon carbide ceramic barrel
JPH02107703A (en) Composition for injection molding
JPH0641601B2 (en) Molding composition
JPH0820803A (en) Production of sintered compact
JPH02290642A (en) Manufacture of ceramic core
JPH0647682B2 (en) Manufacturing method of sintered metal
JPH0244882B2 (en)
CN106631035A (en) Composite ceramic and preparation method thereof
JP2921041B2 (en) Method for producing sintered compact of Nb-Al intermetallic compound
JPH0483759A (en) Production of sintered composite boron nitride
JPS63166768A (en) Method of sintering formed body of sinterable substance-containing mixture
JPH0210790B2 (en)