JPH01247504A - Method for degreasing green compact - Google Patents

Method for degreasing green compact

Info

Publication number
JPH01247504A
JPH01247504A JP63074818A JP7481888A JPH01247504A JP H01247504 A JPH01247504 A JP H01247504A JP 63074818 A JP63074818 A JP 63074818A JP 7481888 A JP7481888 A JP 7481888A JP H01247504 A JPH01247504 A JP H01247504A
Authority
JP
Japan
Prior art keywords
degreasing
powder
green
binder
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63074818A
Other languages
Japanese (ja)
Inventor
Morikazu Yamada
盛一 山田
Tadao Katahira
片平 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63074818A priority Critical patent/JPH01247504A/en
Publication of JPH01247504A publication Critical patent/JPH01247504A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the adsorption of gas generated by the decomposition of an org. binder on a green compact and to uniformly remove the org. binder by embedding the green compact in activated carbon powder and degreasing the compact by heating. CONSTITUTION:A mixture consisting of 5-15wt.% binder based on a thermoplastic polymer and the balance metal power, alloy powder, ceramic powder, etc., is kneaded, pulverized and injection-molded or extrusion-molded. The resulting green compact is embedded in activated carbon powder and degreased by heating in an atmosphere of gaseous Ar, etc. Since gas generated by the decomposition of the binder is adsorbed on the activated carbon powder and the compact is held in the powder, the compact can be degreased without deforming even when it has a complex shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属またはセラミックスの焼結体を得るための
グリーン体を射出成形または押出成形を利用して製造す
る方法に関し、特にグリーン体の焼結前の脱脂方法に関
するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a green body using injection molding or extrusion molding to obtain a sintered body of metal or ceramics, and particularly relates to a method for manufacturing a green body by using injection molding or extrusion molding. This invention relates to a method of degreasing before binding.

〔従来の技術〕[Conventional technology]

一般に、金属またはセラミックスの焼結体を製造する工
程においては、焼結前のグリーン成形体は、粉末を圧縮
成形することにより圧粉体として得られている。これは
9通常上下方向からパンチで加圧するという方法である
ことから、得られる成形体の形状としては2円柱1円筒
のような比較的単純なものに限られ、よシ複雑な形状の
製品を得るには、焼結上がシの製品に切削、研削等の後
加工を施す必要がある。
Generally, in the process of manufacturing a sintered body of metal or ceramics, a green compact before sintering is obtained as a green compact by compression molding powder. Since this method usually involves applying pressure with a punch from above and below, the shape of the molded product obtained is limited to relatively simple shapes such as 2 cylinders and 1 cylinder, and it is not possible to produce products with more complex shapes. To obtain this, it is necessary to perform post-processing such as cutting and grinding on the sintered product.

一方で、いわゆるエンジニアリングセラミックス等を中
心とした窯業製品の分野では、原料粉末KIO〜20重
量%の有機バインダーを加え、混合、混練した後、射出
成形または押出成形することによシ複雑形状のグリーン
成形体を得、脱脂。
On the other hand, in the field of ceramic products centered on so-called engineering ceramics, green powders with complex shapes are produced by adding raw powder KIO to 20% by weight of an organic binder, mixing and kneading, and then injection molding or extrusion molding. Obtain a molded body and degrease it.

焼結工程を経て焼結製品とすることが工業的に行なわれ
始め、注目されつつある。
The production of sintered products through a sintering process has begun to be carried out industrially and is attracting attention.

また、近年アトマイズ法に代表されるように。In addition, as typified by the atomization method in recent years.

金属粉末の型造技術の発展には著しbものかあシ。Significant progress has been made in the development of metal powder molding technology.

前述のような製造方法を金属にも適用することが試みら
れている。
Attempts have been made to apply the manufacturing method described above to metals as well.

射出成形法、押出成形法は、従来プラスチック材料の成
形に適用されてきた方法であるが、複雑形状のものを精
度良く大量に生産できるため、金属セラミックスの焼結
体で従来の技術では不可能であった形状のものを、低コ
ストで市場に提供することができる可能性を有している
Injection molding and extrusion molding are methods that have traditionally been applied to mold plastic materials, but because they can produce complex shapes in large quantities with high precision, they can be used to produce metal-ceramic sintered bodies that are impossible with conventional techniques. It has the potential to be able to offer products with the same shape to the market at low cost.

そして、このようなプロセスによって焼結製品を製造す
る上での最大の技術的な間、@点は、前述のように粉末
に多量の有機バインダーを加えであることから、これを
如何にして除去するかということとなる。バインダーの
除去、即ち脱脂は、加熱によって有機バインダーを分解
、揮散させるのが、最も一般的である。加熱によって脱
脂を行なう場合、グリーン成形体から揮散した分解ガス
が再び、成形体の表面に吸着しなhようすばやく取シ除
く必要があり、そのため成形体の周囲には常にキャリヤ
ーガスか流されているのが通常である。
The biggest technical challenge in producing sintered products using this process is the addition of a large amount of organic binder to the powder as mentioned above, so how can this be removed? The question is whether to do so. The most common method for binder removal, ie, degreasing, is to decompose and volatilize the organic binder by heating. When degreasing is carried out by heating, it is necessary to quickly remove the decomposed gas that has volatilized from the green molded object so that it does not adsorb to the surface of the molded object again, so a carrier gas is always flowed around the molded object. There is usually one.

グリーン成形体から揮散した分解ガスが再び成形体表面
に吸着する割合は、成形体周囲の分解ガス濃度の高tx
場合程大きくなるため9分解ガス濃度が極力低くなるよ
うにキャリヤーガス流量は設定される。よって成形体の
処理数量の増加にともない、キャリヤーガス流量は増大
し、かつ成形体の配置の仕方も複雑となる。つまシ成形
体間のどの場所でも充分に分解ガス濃度が低くなる様に
キャリヤーガスを流通させる必要があるからである。
The rate at which the decomposed gas volatilized from the green molded body is adsorbed onto the surface of the molded body again depends on the concentration of decomposed gas around the molded body (tx).
The carrier gas flow rate is set so that the decomposed gas concentration is as low as possible. Therefore, as the number of molded bodies processed increases, the flow rate of the carrier gas increases and the arrangement of the molded bodies also becomes complicated. This is because it is necessary to circulate the carrier gas in such a way that the decomposed gas concentration is sufficiently low at any location between the selvedge molded bodies.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら実質上全く均一な状況にて処理する事は困
難であシ、この結果、脱脂処理された成形体間で、脱脂
率のばらつきが大きくなシ、かつ。
However, it is difficult to perform the treatment under substantially uniform conditions, and as a result, the degreasing rate varies greatly among the degreased molded bodies.

一つの成形体にあっては部分的に1分解ガスの吸着によ
る炭素の堆積が生じ、その後工程の焼結によって、そシ
1割れ等の変形、不良の原因となシ歩留)良く、製品を
製造することが難しくなってhる。
In one compact, carbon deposits occur partially due to adsorption of decomposition gas, and the subsequent sintering process can cause deformation such as cracks and defects (yield rate) and product quality. It has become difficult to manufacture.

そこで1本発明の技術的課題は、かかる問題点に鑑み、
脱脂工程での有機バインダーの分解ガスのグリーン成形
体への吸着をなくシ、グリーン成形体から均一に有機バ
インダーを除去するグリーン成形体の脱脂方法を提供す
ることである。
Therefore, one technical problem of the present invention is to solve the following problems:
It is an object of the present invention to provide a method for degreasing a green molded body, which eliminates the adsorption of the decomposed gas of the organic binder to the green molded body in the degreasing process and uniformly removes the organic binder from the green molded body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、熱可塑性ポリマーを主成分とするバイ
ンダー:5〜15重量係重量部が尋嘩溌金属粉末又は合
金粉末又はセラミ ックス粉末とを混合した混合物を混練・粉砕し射出成形
または押出成形してグリーン成形体を生成した後、該グ
リーン成形体全加熱脱脂するグリーン成形体の脱脂方法
工程において、活性炭素粉末中に前記グリーン成形体を
埋込み、加熱脱脂を行なうことを特徴とするグリーン体
の脱脂方法が得られる。
According to the present invention, a mixture in which 5 to 15 parts by weight of a binder mainly composed of a thermoplastic polymer is mixed with a metal powder, an alloy powder, or a ceramic powder is kneaded and pulverized, and then injection molded or extruded. After producing a green molded body, in the degreasing method step for a green molded body, the green molded body is completely heated and degreased, the green body is embedded in activated carbon powder, and heat degreased. A degreasing method is obtained.

即ち1本発明者らは、グリーン成形体をキャリヤーガス
中で加熱脱脂した場合、ブラウン体表面が不均一に変色
し、この変色が1分解ガスの吸着により生じた炭素層に
も大きく起因し、このままの状態で、焼結すると炭素層
の付着した部分が他の部分よシ焼結が進む様子が見られ
、全体とじて収縮が不均一に進むことによシ、そ92割
れ等の変形が生ずることを見い出した。このためグリー
ン成形体から揮散した分解ガスがグリーン成形体表面に
付着することを防止するため分解ガスをすみやかに吸収
させる方法について検討した。この結果、活性炭素中で
加熱脱脂することによシ、ブラウン体表面の変色が少な
くなシ、後工程の焼結によっても、試料全体が均一に収
縮し、そり1割れ等の変形がなくなることを見出し1本
発明をなすに致うたものである。活性炭素の量は特に限
定しないが、バインダーの分解ガスを吸収するのに充分
量であればよくバインダー量10011に対して10 
〜105m2の比表面積が得られるように充てんすれば
よル好ましい。またグリーン成形体から揮発した分解ガ
スの全てが吸着されることはなく。
Namely, the present inventors found that when a green molded body was heated and degreased in a carrier gas, the surface of the brown body discolored unevenly, and this discoloration was largely due to the carbon layer generated by adsorption of decomposition gas. When sintering in this state, it can be seen that the part to which the carbon layer is attached progresses to sintering more than other parts, and as the shrinkage progresses unevenly as a whole, deformation such as cracking occurs. I discovered that this occurs. Therefore, in order to prevent the decomposed gas volatilized from the green molded body from adhering to the surface of the green molded body, we investigated a method for quickly absorbing the decomposed gas. As a result, by heating and degreasing in activated carbon, there is little discoloration on the surface of the brown body, and even in the post-process sintering, the entire sample shrinks uniformly, eliminating deformation such as warping and cracking. This invention is based on the following headings. The amount of activated carbon is not particularly limited, but may be 10 to 11 of the binder amount as long as it is sufficient to absorb the decomposition gas of the binder.
It is preferable to fill the container so that a specific surface area of 105 m2 is obtained. In addition, not all of the decomposition gas that volatilized from the green molded body is adsorbed.

一部は活性炭を通して発散するので、これを取シ除かな
ければ、炉内の分解ガス濃度が高くなる。
Some of it will emit through the activated carbon, so if it is not removed, the concentration of cracked gas in the furnace will increase.

よってこれを取υ除くため、キャリヤーガスを流すこと
が好ましい。キャリヤーガスの流量は脱脂速度にも依存
するが、比較的少量でよく、内容積120tの炉の場合
5 t / mi n以下でよい。
Therefore, in order to remove this, it is preferable to flow a carrier gas. Although the flow rate of the carrier gas depends on the degreasing rate, it may be relatively small, and may be 5 t/min or less in the case of a furnace with an internal volume of 120 t.

また本発明の脱脂方法によると分解ガスの吸着と成形体
の保持が同時に行なえるため、複雑形状の成形体につい
ても変形させることなく脱脂を行なうことができる。
Further, according to the degreasing method of the present invention, adsorption of decomposed gas and holding of the molded body can be performed at the same time, so that even complex-shaped molded bodies can be degreased without deforming them.

〔実施例〕〔Example〕

以下に本発明の実施例を挙げ詳細に説明する。 Examples of the present invention will be given below and explained in detail.

Fe 50 wt% −Co 50 wt96なる組成
の合金をアルゴンガス雰囲気中で高周波加熱により溶製
し。
An alloy having a composition of Fe 50 wt% - Co 50 wt96 was melted by high frequency heating in an argon gas atmosphere.

水アトマイズ法によシ平均粒径10μmの粉末を作製し
た。その酸素濃度を分析したところ約5.200ppm
であった。
A powder with an average particle size of 10 μm was produced by a water atomization method. When the oxygen concentration was analyzed, it was approximately 5.200 ppm.
Met.

次にその扮末全第1表に示す組成によシ混合。Next, the mixture was mixed according to the composition shown in Table 1.

混練、粉砕し射出成形用の原料を得た。The raw material for injection molding was obtained by kneading and pulverizing.

以下余白 第  1  表 次に、この原料を用い温度190℃、ダージ圧力100
に9/crn2の条件で外径50m+で厚みが、1■。
Below is the margin: Table 1 Next, using this raw material, the temperature was 190℃ and the dirge pressure was 100℃.
Under the condition of 9/crn2, the outer diameter is 50m+ and the thickness is 1■.

2m、5ms+、10+mのグリーン成形体を射出成形
によシ作製した。
Green molded bodies of 2m, 5ms+, and 10+m were produced by injection molding.

これらの成形体を9粒度が350メツシユアンダー、比
表面積1000 m 2/、li’の活性炭素1Sgr
中に埋込ミ、アルゴンガスを2 t/ min流した雰
囲気とし室温から毎時10℃の昇温速度で600℃まで
昇温加熱し、600℃で2時間保持した後、室温まで冷
却した。次に真空炉中に投入し、室温から毎時200℃
の昇温速度で1200′Cまで昇温加熱し10時間保持
した後急冷した。
These molded bodies were made of activated carbon 1Sgr with a grain size of 350 mesh under and a specific surface area of 1000 m2/, li'.
After embedding in the chamber, an atmosphere was created in which argon gas was flowed at 2 t/min, and the temperature was raised from room temperature to 600°C at a temperature increase rate of 10°C per hour. After being held at 600°C for 2 hours, it was cooled to room temperature. Next, it is placed in a vacuum furnace and heated from room temperature to 200℃ per hour.
The temperature was increased to 1200'C at a temperature increase rate of 1,200'C, held for 10 hours, and then rapidly cooled.

比較のためグリーン成形体をアルミナ板上に置き・アル
ゴンガスk 10 L / min流し同一条件で加熱
脱脂及び焼結を行なった。このときの焼結体形状及び焼
結密度を第2表に示す。
For comparison, a green molded body was placed on an alumina plate, argon gas k 10 L/min was flowed, and heat degreasing and sintering were performed under the same conditions. Table 2 shows the shape of the sintered body and the sintered density at this time.

以下余白 焼結体形状としては、そシの割合で比較しである。試料
の厚みに対して第1図のように最高値の割合を百分率で
表わしである。
Below, the shapes of the blank sintered bodies are compared in terms of proportions. As shown in Figure 1, the ratio of the maximum value to the thickness of the sample is expressed as a percentage.

第2表の結果から厚みの薄いもの程そシが大きくなって
いることがわかる。しかし1本発明の方法によるとそシ
の割合が従来のキャリヤーガス中加熱脱脂に比べl/1
0になっていることがわかシ。
From the results in Table 2, it can be seen that the thinner the thickness, the greater the distortion. However, according to the method of the present invention, the degreasing ratio is 1/1 compared to the conventional heating degreasing in a carrier gas.
You can see that it is 0.

本発明の方法によって変形が非常に小さい焼結体が得ら
れることがわかる。
It can be seen that a sintered body with very small deformation can be obtained by the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

上記に説明したとおり本発明によれば、活性炭素中にて
加熱脱脂することによシ変形が非常に小さい焼結体を得
ることが出来る。
As explained above, according to the present invention, a sintered body with very small deformation can be obtained by heating and degreasing in activated carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼結体のそシの割合を表わすのに用いた寸法
の測定位置及び算出式である。 第1図 焼結体の形状(そりの割合)
FIG. 1 shows measurement positions and calculation formulas for dimensions used to express the proportion of sintered bodies. Figure 1 Shape of sintered body (warpage ratio)

Claims (1)

【特許請求の範囲】 1)熱可塑性ポリマーを主成分とするバインダー:5〜
15重量%と残部が 金属粉末又は合金粉末又はセラミックス粉末とを混合し
た混合物を混練・粉砕し射出成形または押出成形してグ
リーン成形体を生成した後,該グリーン成形体を加熱脱
脂するグリーン成形体の脱脂方法工程において活性炭素
粉末中に前記グリーン成形体を埋込み加熱脱脂を行なう
ことを特徴とするグリーン体の脱脂方法。
[Claims] 1) Binder whose main component is a thermoplastic polymer: 5-
A green molded body is produced by kneading and pulverizing a mixture of 15% by weight and the balance being metal powder, alloy powder, or ceramic powder, injection molding or extrusion molding to produce a green molded body, and then heating and degreasing the green molded body. A method for degreasing a green body, characterized in that in the degreasing method step, the green body is embedded in activated carbon powder and degreased by heating.
JP63074818A 1988-03-30 1988-03-30 Method for degreasing green compact Pending JPH01247504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074818A JPH01247504A (en) 1988-03-30 1988-03-30 Method for degreasing green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074818A JPH01247504A (en) 1988-03-30 1988-03-30 Method for degreasing green compact

Publications (1)

Publication Number Publication Date
JPH01247504A true JPH01247504A (en) 1989-10-03

Family

ID=13558275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074818A Pending JPH01247504A (en) 1988-03-30 1988-03-30 Method for degreasing green compact

Country Status (1)

Country Link
JP (1) JPH01247504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174373A (en) * 1989-11-30 1991-07-29 Tokai Carbon Co Ltd Production of whisker preform
JPH04141507A (en) * 1990-10-01 1992-05-15 Iwate Pref Gov Method for removing binder from green body and material and constitution for green body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172677A (en) * 1984-09-13 1986-04-14 トヨタ自動車株式会社 Dewaxing material for ceramic injection molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172677A (en) * 1984-09-13 1986-04-14 トヨタ自動車株式会社 Dewaxing material for ceramic injection molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174373A (en) * 1989-11-30 1991-07-29 Tokai Carbon Co Ltd Production of whisker preform
JPH04141507A (en) * 1990-10-01 1992-05-15 Iwate Pref Gov Method for removing binder from green body and material and constitution for green body

Similar Documents

Publication Publication Date Title
TW461838B (en) Net shape hastelloy X made by metal injection molding using an aqueous binder
KR100725209B1 (en) Powder injection molding method for forming article comprising titanium and titanium coating method
JPH03503882A (en) Fire-resistant porous material, products obtained from this material and method of manufacturing this product
JP2834341B2 (en) Method for producing sintered calcium carbonate and sintered calcium carbonate
JPH01247504A (en) Method for degreasing green compact
CN109396444B (en) Method for processing leftover bits and pieces of sintered samarium cobalt permanent magnet
KR101635792B1 (en) The preparing method of aluminum/silicon carbide metal matrix composites and the aluminum/silicon carbide metal matrix composites thereby
JPH04329801A (en) Production of sintered parts
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
RU2582166C1 (en) Method of making sintered bars from heavy alloys based on tungsten
JPH01194914A (en) Metallic filter and manufacture thereof
JPH0364402A (en) Method for controlling carbon content of metallic injection molding
JPH0770610A (en) Method for sintering injection-molded product
JPH01294806A (en) Production of degreased body and jig for degreasing
JPH01208404A (en) Method for working powder
JPS60230957A (en) Manufacture of permanent magnet
JPH05195009A (en) Production of kneaded body for powder molding
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2000144204A (en) Production of sintered soft ferrite material
JPH05148506A (en) Binder removal method for injection molded body using porous metal plate
JPH02107704A (en) Manufacture of injection molding powder sintered body
JPH06212202A (en) Production of high-density sintered body of high melting metal
JPH03207801A (en) Method for removing binder from injected green compact of powder
JPH06207202A (en) Production of molded article