JPH0450176A - Method for defatting ceramic molding - Google Patents

Method for defatting ceramic molding

Info

Publication number
JPH0450176A
JPH0450176A JP2159064A JP15906490A JPH0450176A JP H0450176 A JPH0450176 A JP H0450176A JP 2159064 A JP2159064 A JP 2159064A JP 15906490 A JP15906490 A JP 15906490A JP H0450176 A JPH0450176 A JP H0450176A
Authority
JP
Japan
Prior art keywords
embedding
ceramic
molded body
degreasing
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2159064A
Other languages
Japanese (ja)
Other versions
JP2784837B2 (en
Inventor
Tetsuji Yogo
哲爾 余語
Kiyoshige Ochiai
落合 清成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2159064A priority Critical patent/JP2784837B2/en
Publication of JPH0450176A publication Critical patent/JPH0450176A/en
Application granted granted Critical
Publication of JP2784837B2 publication Critical patent/JP2784837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To reduce the deformation of a molding in a defatting process and efficiently perform the embedding and taking-out works of the molded product by employing hollow particles as an embedding material when the molded product is embedded in the embedding material to defat the molding. CONSTITUTION:A ceramic molding containing at least molding ceramic particles and an organic binder is embedded in a embedding material comprising a embedding ceramic and subsequently heated to defat the molding. In the defatting method, hollow ceramic particles not reacting with the embedding ceramic particles in the defatting process, such as alumina aluminasilica-balloon or shirus balloon are employed as the embedding ceramic particles. Because of its small bulk density and good flow ability, the embedding material minimizes the deformation of the molding during the defatting process and efficiently performs an embedding and taking-out works.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック成形体の脱脂方法に関し、特に射
出セラミック成形体の脱脂方法に関する。本発明は、タ
ービンロータ等のセラミック製品の製造に利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for degreasing a ceramic molded body, and particularly to a method for degreasing an injection ceramic molded body. INDUSTRIAL APPLICATION This invention is utilized for the manufacture of ceramic products, such as a turbine rotor.

〔従来の技術〕[Conventional technology]

セラミック材料は、近年、自動車部品、耐熱材料、電子
材料、機械工具等、その用途が急激に広がりつつあり、
それに伴い、製品形状も複雑化している。そのため、セ
ラミック材料を複雑な形状の成形体に精度良く、効率的
に成形する方法として、射出成形法が採用されている。
In recent years, the applications of ceramic materials have been rapidly expanding, including automobile parts, heat-resistant materials, electronic materials, and mechanical tools.
Along with this, product shapes are also becoming more complex. For this reason, injection molding has been adopted as a method for efficiently and accurately molding ceramic materials into complex-shaped molded bodies.

しかし、この射出成形法では、容量比で約50%(重量
比で約30%)近くに当たる有機質系結合剤、可塑剤、
滑剤等を添加し、成形するため、脱脂工程が必要となる
However, in this injection molding method, organic binders, plasticizers, which account for approximately 50% by volume (approximately 30% by weight),
A degreasing process is required to add a lubricant and the like for molding.

この脱脂は、通常、急激な有機質系結合剤等の熱分解を
抑制するため長時間(例えば、肉厚10mm程度で約1
週間程度)の加熱が行われ、また非酸化物のセラミック
材料を用いる場合は、酸化を抑制するため窒素又はアル
ゴン等の非酸化雰囲気中で行われる。
This degreasing is usually carried out for a long time (for example, for a wall thickness of about 10 mm, about 1
If a non-oxide ceramic material is used, the heating is performed in a non-oxidizing atmosphere such as nitrogen or argon to suppress oxidation.

更に、均一に加熱するため、又は脱脂途中において自重
による垂れを防止するために、セラミック成形体をアル
ミナ粉末からなる埋込材中に埋め込んで、脱脂する方法
も知られている(特開昭57−100973号公報等)
Furthermore, in order to heat uniformly or to prevent sagging due to its own weight during degreasing, a method is known in which a ceramic molded body is embedded in an embedding material made of alumina powder and degreased (Japanese Unexamined Patent Application Publication No. 1983-1991). -100973 publication, etc.)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記前者の方法では表層部と内部との間に大きな温度差
が生じ、表層部が急速に脱脂されて、表層部にキレを生
じる。
In the former method, a large temperature difference occurs between the surface layer and the inside, and the surface layer is rapidly degreased, causing cracks in the surface layer.

前記後者の成形体を埋込材中に埋め込んで脱脂する場合
、成形体の薄肉部の変形(垂れ)は、埋込材の粉末によ
り下方から支承されるので、その変形は防止されるが、
十分とはいえない。即ち、例えば、第1図〜第3図に示
すように、薄肉部の翼部21を有するロータ形状(T/
C,G/T等)の成形体2では、結合剤が軟化する温度
域で埋込材3の重さにより薄肉部21が変形することが
多い。これは、(1)埋込材自体の重さが相当あること
、(2)脱脂中、炉の振動、及び埋込材3に成形体2よ
り滲み出した結合剤の表面張力により埋込材3が移動し
て嵩が減り、充填嵩密度が大きくなること、のためであ
る。
When the latter molded body is embedded in an embedding material and degreased, the deformation (sagging) of the thin walled part of the molded body is supported from below by the powder of the embedding material, so deformation is prevented;
Not enough. That is, for example, as shown in FIGS. 1 to 3, a rotor shape (T/
In the molded body 2 (C, G/T, etc.), the thin portion 21 often deforms due to the weight of the embedding material 3 in the temperature range where the binder softens. This is because (1) the weight of the embedding material itself is considerable, and (2) the embedding material is affected by the vibration of the furnace during degreasing and the surface tension of the binder seeped from the molded body 2 onto the embedding material 3. This is because 3 moves, the volume decreases, and the filling bulk density increases.

本発明は、前記観点に鑑ろてなされたものであり、脱脂
性能を維持しつつ、脱脂後のセラミック成形体の変形、
亀裂、カケを防止でき、成形体の埋込み作業、取り出し
作業に優れる脱脂方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned points of view, and is capable of deforming a ceramic molded body after degreasing while maintaining degreasing performance.
The purpose of the present invention is to provide a degreasing method that can prevent cracks and chipping and is excellent in embedding and removing molded objects.

〔課題を解決するための手段〕[Means to solve the problem]

本第1発明の脱脂方法において使用する埋込用セラミッ
ク粒子は、前記成形体用セラミック粒子と脱脂中におい
て反応せず、且つ中空体であることを特徴とする。
The ceramic particles for embedding used in the degreasing method of the first invention are characterized in that they do not react with the ceramic particles for molded bodies during degreasing and are hollow.

この成形体の成形方法は後で脱脂を必要とするものであ
れば良く、特に限定されないが、射出成形体が好ましい
。この射出成形体では、通常、多くの有機質系結合剤を
必要とし、且つ複雑形状で薄肉部をもつ成形体だからで
ある。
The molding method for this molded body is not particularly limited as long as it requires degreasing afterwards, but injection molded bodies are preferred. This is because this injection molded product usually requires a large amount of organic binder and has a complex shape and thin wall portions.

前記埋込用セラミック粒子は、中空体であればよい。即
ち、非中空のものと比べて密度が小さく、外形が球状等
の流動性に優れたものである。この粒子の粒度分布は特
に問わないが、分級してその分布をシャープにするより
は、むしろある程度幅のある分布が好ましい。これは、
成形体中の結合剤が滲み出す時、充填剤粒子間隔が狭い
程、脱脂途中での粒子の移動が少なく充填嵩密度が増大
しないため好ましいからである。この分布は、第2発明
に示すように10〜400μm、特に50〜200μm
が好ましい。これは、取り扱いが容易で、滲み出し効率
が良好のためである。これが10μm未満では作業中に
粉塵として飛散し易く400μmを越えると成形体表面
に粒子の痕跡が残る。
The ceramic particles for embedding may be hollow bodies. That is, it has a lower density than a solid material, has a spherical outer shape, and has excellent fluidity. Although the particle size distribution of the particles is not particularly limited, it is preferable to have a somewhat wide distribution rather than to sharpen the distribution by classification. this is,
This is because when the binder in the molded article oozes out, the narrower the gap between the filler particles, the less movement of the particles during degreasing, which prevents the filling bulk density from increasing. This distribution is 10 to 400 μm, especially 50 to 200 μm, as shown in the second invention.
is preferred. This is because it is easy to handle and has good leaching efficiency. If the particle size is less than 10 μm, it will easily scatter as dust during work, and if it exceeds 400 μm, traces of particles will remain on the surface of the molded product.

また、充填嵩密度は小さい程自重による垂れ防止の点か
ら好ましいが、あまり小さくなるとこの中空体の強度が
低下するので好ましくない。従って、両者のバランスか
らいって、第2発明に示すように0.3〜0.6、特に
0.4〜0.5程度が好ましい。
Further, the smaller the filling bulk density is, the more preferable it is from the viewpoint of preventing sagging due to its own weight, but if it is too small, the strength of the hollow body will decrease, which is not preferable. Therefore, in terms of the balance between the two, as shown in the second invention, it is preferably about 0.3 to 0.6, particularly about 0.4 to 0.5.

〔作用〕[Effect]

一般に使用されているアルミナ目砂(充填嵩密度的1)
、窒化珪素粉末(充填嵩密度的1)を使用した場合に比
較し、中空体の嵩密度が小さいので、これを成形体の周
りに充填する場合の充填嵩密度は0.3〜0.6程度と
小さくなる。従って、この中空体を埋込材として用いる
と、脱脂中、その重さにより成形体の垂れ、特に薄肉部
の垂れが無くなるか、又は少なくなる。
Commonly used alumina sand (filling bulk density: 1)
Compared to the case where silicon nitride powder (filling bulk density: 1) is used, the bulk density of the hollow body is smaller, so when filling this around the molded body, the filling bulk density is 0.3 to 0.6. The degree becomes smaller. Therefore, when this hollow body is used as an embedding material, the weight of the molded body eliminates or reduces the sag of the molded body, especially the sag of the thin wall portion, during degreasing.

また、中空体は、球状等であり流動性も良いので、成形
体を埋め込む作業、取り出す作業においても作業効率が
向上する。
Furthermore, since the hollow body is spherical and has good fluidity, the work efficiency is improved in the work of embedding and taking out the molded body.

また、ラジアル型ロータ等の複雑で且つ薄肉部のあるよ
うな成形体を脱脂する場合、脱脂後の生強度が弱い。従
って、従来のアルミナ目砂を用いた場合、その充填嵩密
度が大きく流動性も少ないので、取り出し時無理に引き
出すと翼のカケが発生していた。しかし、本発明のよう
に、中空体を使用した場合、嵩密度が小さく流動性も良
いので、同様の作業を行っても翼部等の強度の弱い部分
のカケは発生しないか、又は大変少ない。
Furthermore, when degreasing a complex molded body with thin walled parts, such as a radial rotor, the green strength after degreasing is low. Therefore, when conventional alumina grain sand is used, its packed bulk density is high and its fluidity is low, so if it is forcibly pulled out during removal, the blades will break. However, when a hollow body is used as in the present invention, the bulk density is small and the fluidity is good, so even if the same work is performed, there will be no or very few chips in weak parts such as wing parts. .

更に、本発明においては、所定のセラミック材料からな
る埋込材を用いるので、均一にセラミック成形体を加熱
でき、脱脂性能も優れる。
Furthermore, in the present invention, since an embedding material made of a predetermined ceramic material is used, the ceramic molded body can be uniformly heated and the degreasing performance is also excellent.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

まず、平均粒径1μmの窒化珪素粉末100重量部(以
下、単に部という。)に対し、焼結助剤としてアルミナ
(平均粒径的1μm)5部、イツトリア(平均粒径的1
μm)5部を添加し、焼結用窒化珪素混合物を調製した
。この混合物に有機質系結合剤として、エチレン−酢酸
ビニル共重合樹脂5部、マイクロクリスタリンワックス
15部、可塑剤としてジエチルフタレート4部を加えて
加熱混練し、射出成形用セラミック原料を調製した。
First, 100 parts by weight (hereinafter simply referred to as parts) of silicon nitride powder with an average particle size of 1 μm, 5 parts of alumina (1 μm in average particle size) as a sintering agent, and 1 part by weight of ittria (1 μm in average particle size).
μm) was added to prepare a silicon nitride mixture for sintering. To this mixture were added 5 parts of ethylene-vinyl acetate copolymer resin as an organic binder, 15 parts of microcrystalline wax, and 4 parts of diethyl phthalate as a plasticizer, and the mixture was heated and kneaded to prepare a ceramic raw material for injection molding.

そして、所定の金型を用いて、前記セラミック原料を射
出成形して第1図中に示す形状のラジアル型タービンロ
ータ成形体2を100個成形した。尚、この成形体にお
いて、焼成後の翼部の最大直径は50mm、焼成後の最
薄内部の肉厚は約1mmである。
Then, using a predetermined mold, the ceramic raw material was injection molded to form 100 radial turbine rotor molded bodies 2 having the shape shown in FIG. In this molded body, the maximum diameter of the wing portion after firing is 50 mm, and the thickness of the thinnest inner part after firing is about 1 mm.

実施例1として、第1図に示すように、この成形体20
個は、脱脂用匣鉢1中に充填された埋込材3中に埋め込
み、その後、匣鉢1に振動を与え充填嵩密度を高めてお
く。この場合の充填嵩密度を表に示す。尚、この埋込材
としては、アルミナ−’y リカバルーン(昭和電工(
株)製「ショーバルーンSG」、充填嵩密度0.45、
粒径10〜350μm)を用いた。実施例2の埋込材と
しては、分級して粒度を8゛0〜100μmとしたアル
ミナ−シリカバルーンを用いた。実施例3の埋込材とし
ては、粒度分布80〜150μmのシラスバルーン(新
三興商事■製、「サンキライト」)を用いた。
As Example 1, as shown in FIG.
The pieces are embedded in the embedding material 3 filled in the degreasing sagger 1, and then the sagger 1 is vibrated to increase the filling bulk density. The filling bulk density in this case is shown in the table. In addition, as this embedding material, alumina-'y Rica balloon (Showa Denko (Showa Denko)
"Show Balloon SG" manufactured by Co., Ltd., filling bulk density 0.45,
(particle size 10 to 350 μm) was used. As the embedding material in Example 2, alumina-silica balloons were used which were classified to have a particle size of 8.0 to 100 μm. As the embedding material in Example 3, Shirasu balloons (manufactured by Shinsanko Shoji ■, "Sankilight") having a particle size distribution of 80 to 150 μm were used.

次いで、前記各成形体を熱風循環式の電気炉中100℃
から500℃まで5℃/時間で窒素雰囲気下で加熱し脱
脂した。この各脱脂体について、キレの発生、変形(翼
の垂れ)、取り出し時のカケを観察し、その結果を表に
示した。
Next, each of the molded bodies was placed in a hot air circulating electric furnace at 100°C.
to 500°C at a rate of 5°C/hour under a nitrogen atmosphere to degrease. For each of these degreased bodies, occurrence of cracking, deformation (drooping of wings), and chipping when taken out were observed, and the results are shown in the table.

尚、「キレの発生無し」とは、脱脂体表面の拡大鏡検査
及び脱脂体内部の超音波検査において、いずれの検査に
もキレが発見されなかった場合をいう。「キレの発生有
り」とは、前記いずれかでキレが発見された場合をいう
。「変形の有無」については翼形状の外観検査によった
It should be noted that "no cracking" refers to a case where no cracking was found in both the magnifying glass inspection of the surface of the degreased body and the ultrasonic inspection of the inside of the degreased body. "A break occurs" refers to a case where a break is found in any of the above cases. The presence or absence of deformation was determined by a visual inspection of the blade shape.

尚、比較例1として、他の20個は、埋込材としてのア
ルミナ粉末(粒径100〜200μm1充填嵩密度1.
03)中に埋めて同様に脱脂した。更に、比較例2とし
て、他の20個は埋込材を用いずに同条件下で脱脂した
As Comparative Example 1, the other 20 pieces were made of alumina powder as an embedding material (particle size: 100 to 200 μm, filling bulk density: 1.
03) It was buried inside and degreased in the same way. Furthermore, as Comparative Example 2, the other 20 pieces were degreased under the same conditions without using any embedding material.

この結果によれば、埋込材として、所定の粒度分布のあ
るアルミナ−シリカバルーン(実m例1)又ハシラスバ
ルーン(実施例3)を用いた場合は、キレの発生も変形
もカケもなく、高品質な脱脂体が得られた。また、アル
ミナ−シリカバルーンは脱脂後においても破損すること
なく、強度に優れていることを示しているが、シラスバ
ルーンはその一部が破損し、やや強度が低い。また、分
級した粒度分布をもつ実施例2でも、はぼ良好な結果を
示したが、実施例1と比べて、脱脂前後で埋込用粒子の
嵩密度に変化があった。
According to the results, when alumina-silica balloons (Example 1) or Hashiras balloons (Example 3) with a predetermined particle size distribution are used as the embedding material, there is no possibility of cracking, deformation, or chipping. A high-quality degreased body was obtained. In addition, the alumina-silica balloon did not break even after degreasing, indicating that it has excellent strength, but the shirasu balloon was partially broken and its strength was somewhat low. Further, Example 2, which had a classified particle size distribution, also showed very good results, but compared to Example 1, there was a change in the bulk density of the embedding particles before and after degreasing.

以上より、埋込材の粒度はある程度の分布を示すのが良
く、例えば10〜400μmは優れた結果を示す。また
、充填嵩密度は0.4〜0.5程度であれば、大変優れ
た結果を示す。
From the above, it is preferable that the particle size of the embedding material shows a certain degree of distribution, and for example, a particle size of 10 to 400 μm shows excellent results. Moreover, when the filling bulk density is about 0.4 to 0.5, very excellent results are shown.

一方、埋込材としてアルミナ粒子を用いた場合では、変
形、カケが生じた。更に、埋込材を用いない場合では、
キレの発生が多く脱脂性能に優れず、しかも変形の発生
も大きかった。
On the other hand, when alumina particles were used as the embedding material, deformation and chipping occurred. Furthermore, when no embedding material is used,
The degreasing performance was not excellent due to frequent occurrence of sharpness, and the occurrence of deformation was also large.

尚、本発明においては、前記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。即ち、中空体として
は、前記以外の材質からなるものでもよいし、有機質系
結合剤も前記以外の種類、添加量等とすることもできる
。また、他に有機質系可塑剤、滑剤、その他の各種添加
剤等を用いることもできる。更に、脱脂条件(脱脂温度
、脱脂速度、雰囲気の種類等)は使用材料等により種々
選択される。
It should be noted that the present invention is not limited to those shown in the above-mentioned specific embodiments, and may be modified in various ways within the scope of the present invention depending on the purpose and use. That is, the hollow body may be made of a material other than those mentioned above, and the organic binder may also be of a type, amount added, etc. other than those mentioned above. In addition, organic plasticizers, lubricants, and other various additives can also be used. Furthermore, various degreasing conditions (degreasing temperature, degreasing rate, type of atmosphere, etc.) are selected depending on the materials used and the like.

〔発明の効果〕〔Effect of the invention〕

本発明の脱脂方法においては、前記作用に示すように、
埋込材として充填嵩密度の小さな流動性の良い中空体を
用いるので、脱脂中に埋込材の重さにより成形体が変形
することも少なく (若しくは無<)、シかも取り出し
時のカケもなく、成形体の埋込作業、取出作業において
も作業効率が向上し、更に均一に成形体を加熱できるの
で、脱脂性能も優れる。
In the degreasing method of the present invention, as shown in the above action,
Since a hollow body with good fluidity and a low filling bulk density is used as the embedding material, there is little (or no) deformation of the molded object due to the weight of the embedding material during degreasing, and there is also no chance of chipping when taking it out. In addition, the work efficiency is improved in the work of embedding and removing the molded body, and the molded body can be heated more uniformly, resulting in excellent degreasing performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例において成形体を埋込材中に埋め込んだ
状態を示す説明図、第2図は成形体に埋込材の重さが掛
かる状態を示す説明図、第3図は脱脂後の成形体におい
て翼部が垂れた状態を示す説明図である。 1;脱脂用匣鉢、2;タービンロータ成形体、21;薄
肉部、3;埋込材。 特許出願人  日本特殊陶業株式会社 代 理 人  弁理士 小島清路
Figure 1 is an explanatory diagram showing the state in which the molded body is embedded in the embedding material in the example, Figure 2 is an explanatory diagram showing the state in which the weight of the embedding material is applied to the molded body, and Figure 3 is after degreasing. FIG. 2 is an explanatory diagram showing a state in which the wing portions of the molded article are hanging down. 1; Degreasing sagger, 2; Turbine rotor molded body, 21; Thin wall portion, 3; Embedded material. Patent applicant: NGK Spark Plug Co., Ltd. Representative: Kiyoji Kojima, patent attorney

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも成形体用セラミック粒子及び有機質系
結合剤が配合されて成形されたセラミック成形体を、埋
込用セラミック粒子からなる埋込材中に埋め込んで、加
熱して脱脂するセラミック成形体の脱脂方法において、 前記埋込用セラミック粒子は、前記成形体用セラミック
粒子と脱脂中において反応せず、且つ中空体であること
を特徴とするセラミック成形体の脱脂方法。
(1) A ceramic molded body containing at least ceramic particles for a molded body and an organic binder is embedded in a embedding material made of ceramic particles for embedding, and heated to degrease the ceramic molded body. A method for degreasing a ceramic molded body, wherein the ceramic particles for embedding do not react with the ceramic particles for molded body during degreasing, and are hollow bodies.
(2)前記埋込用セラミック粒子の粒度分布は、10〜
400μmであり、且つその充填嵩密度が0.3〜0.
6である請求項1記載のセラミック成形体の脱脂方法。
(2) The particle size distribution of the ceramic particles for embedding is 10 to
400 μm, and its filling bulk density is 0.3 to 0.
6. The method for degreasing a ceramic molded body according to claim 1.
(3)前記セラミック成形体は射出成形体である請求項
1又は2記載のセラミック成形体の脱脂方法。
(3) The method for degreasing a ceramic molded body according to claim 1 or 2, wherein the ceramic molded body is an injection molded body.
JP2159064A 1990-06-18 1990-06-18 Degreasing method of ceramic molded body Expired - Lifetime JP2784837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159064A JP2784837B2 (en) 1990-06-18 1990-06-18 Degreasing method of ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159064A JP2784837B2 (en) 1990-06-18 1990-06-18 Degreasing method of ceramic molded body

Publications (2)

Publication Number Publication Date
JPH0450176A true JPH0450176A (en) 1992-02-19
JP2784837B2 JP2784837B2 (en) 1998-08-06

Family

ID=15685431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159064A Expired - Lifetime JP2784837B2 (en) 1990-06-18 1990-06-18 Degreasing method of ceramic molded body

Country Status (1)

Country Link
JP (1) JP2784837B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121074A (en) * 2000-10-13 2002-04-23 Asahi Glass Co Ltd Method of producing silicon nitride filter
CN115124355A (en) * 2022-07-21 2022-09-30 新乡市固元陶瓷科技有限公司 Method for burning large-size ceramic spheres in buried mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141462A (en) * 1983-01-28 1984-08-14 株式会社デンソー Manufacture of ceramic body
JPS6172677A (en) * 1984-09-13 1986-04-14 トヨタ自動車株式会社 Dewaxing material for ceramic injection molding
JPS62191474A (en) * 1985-12-30 1987-08-21 日本曹達株式会社 Method of dewaxing ceramic green formed body
JPH03218983A (en) * 1990-01-22 1991-09-26 Komatsu Ltd Degreasing method
JPH03252370A (en) * 1990-02-28 1991-11-11 Ngk Insulators Ltd Method for burning ceramic product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141462A (en) * 1983-01-28 1984-08-14 株式会社デンソー Manufacture of ceramic body
JPS6172677A (en) * 1984-09-13 1986-04-14 トヨタ自動車株式会社 Dewaxing material for ceramic injection molding
JPS62191474A (en) * 1985-12-30 1987-08-21 日本曹達株式会社 Method of dewaxing ceramic green formed body
JPH03218983A (en) * 1990-01-22 1991-09-26 Komatsu Ltd Degreasing method
JPH03252370A (en) * 1990-02-28 1991-11-11 Ngk Insulators Ltd Method for burning ceramic product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121074A (en) * 2000-10-13 2002-04-23 Asahi Glass Co Ltd Method of producing silicon nitride filter
CN115124355A (en) * 2022-07-21 2022-09-30 新乡市固元陶瓷科技有限公司 Method for burning large-size ceramic spheres in buried mode
CN115124355B (en) * 2022-07-21 2023-09-01 新乡市固元陶瓷科技有限公司 Method for burying and burning large-size ceramic spheres

Also Published As

Publication number Publication date
JP2784837B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
CA1251622A (en) Injection molding of ceramic tubine parts
JPH07164196A (en) Preparation of japanese horse-chestnut
JPS60195063A (en) Manufacture of ceramics
JPH0450176A (en) Method for defatting ceramic molding
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
JPH0627482B2 (en) Manufacturing method of radial type ceramic turbine rotor
JPS6410469B2 (en)
JP2772853B2 (en) Degreasing method of ceramic molded body
EP1577279B1 (en) Method for producing ceramic structure
JP2008133512A (en) Method for producing high density aluminum sintered material by metal powder injection molding process
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH0375510B2 (en)
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP3720106B2 (en) Manufacturing method of ceramic products
JPH057353B2 (en)
JP2004308004A (en) Method of producing aluminum sintered material
JPH04139071A (en) Production of ceramic sintered body
US20240139993A1 (en) Particle compositions and related methods and uses to form sintered silicon carbide bodies
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPH06287055A (en) Production of sintered article of ceramic
JPH05262557A (en) Production of ceramic sintered production
JPS63100074A (en) Method of burning ceramic injection formed article