JPS6163591A - Installation for production of single crystal of compound semiconductor - Google Patents

Installation for production of single crystal of compound semiconductor

Info

Publication number
JPS6163591A
JPS6163591A JP18559984A JP18559984A JPS6163591A JP S6163591 A JPS6163591 A JP S6163591A JP 18559984 A JP18559984 A JP 18559984A JP 18559984 A JP18559984 A JP 18559984A JP S6163591 A JPS6163591 A JP S6163591A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
aluminum nitride
compound semiconductor
supports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18559984A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Kiyoshi Nakamura
清 中村
Takatoshi Nakanishi
中西 隆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18559984A priority Critical patent/JPS6163591A/en
Publication of JPS6163591A publication Critical patent/JPS6163591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To attaim improved quality of single crystals and increased yield of the product by forming crucible support or insulation part made of a carbon product coated with AIN whereby the temperature distribution is appropriately maintained in the crucible without contamination of the melt for single crystal. CONSTITUTION:The single crystal production unit is composed of a high-pressure vessel 1, a crucible 2, the crucible supports 3, 4, 5, a heater 6 coaxially surrounding the crucible 2 and insulation parts of a cylinder and two plates 12, 13 outside, above and beneath the heater 6. The crucible supports 3, 4, 5 and/or insulation parts of a cylinder and plates 12, 13 are made of carbon coated with aluminum nitride on their surfaces. The objective crucible supports and insulation parts are produced by forming them from graphite, placing them a tightly sealed vessel replaced with a carrier gas such as nitrogen, then introducing aluminum chloride and ammonia gases and heating them at about 1000 deg.C for 5 hours to form aluminum nitride coating films.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はLEC法により化合物半導体単結晶を製造する
場合に用いられる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus used for manufacturing compound semiconductor single crystals by the LEC method.

〔発明の技術的背景とその問題点] 従来から、QaAs、GaP、InP等ノ融点での分解
圧が高い化合物半導体単結晶の製造方法としてLEC法
が知られている。
[Technical Background of the Invention and Problems Therewith] The LEC method has been known as a method for producing compound semiconductor single crystals that have a high decomposition pressure at their melting points, such as QaAs, GaP, and InP.

この方法を図面を用いて説明すると、まず結晶原料と封
止剤、例えば8203を入れたるつぼ2を、高圧容器1
内に配設されているるつぼ受け台3.4.5に装着する
To explain this method using drawings, first, a crucible 2 containing a crystal raw material and a sealant such as 8203 is placed in a high-pressure container 1.
The crucible holder 3.4.5 is placed inside the crucible holder 3.4.5.

次にるつぼ2を同軸的に取り囲む発熱体6によってるつ
ぼ2内の結晶原料と封止剤とを加熱溶融する。
Next, the crystal raw material and sealant in the crucible 2 are heated and melted by a heating element 6 coaxially surrounding the crucible 2.

このとき結晶原料融液7と封止剤融液8とは密度差によ
って2層状態となり、密度の大きい結晶原料融液7(融
液の密度は、例えばGa Asで約5.7Q /、11
’、InPで約5.O(] /aj、Ga Pで約4.
4g/cj)は、密度の小さい封止剤融液8(融液密度
はB203で約1.59/cj)で被覆されることによ
って結晶原料融液7の分解蒸発が抑えられ、また高圧容
器1内を不活性ガスで加圧することにより結晶原料融液
7の気化が抑えられる。
At this time, the crystal raw material melt 7 and the sealant melt 8 are in a two-layer state due to the density difference, and the crystal raw material melt 7 has a large density (the density of the melt is about 5.7Q/, 11 for GaAs, for example).
', InP about 5. O(] /aj, Ga P about 4.
4g/cj), the decomposition and evaporation of the crystal raw material melt 7 is suppressed by being coated with the sealant melt 8 having a small density (melt density is approximately 1.59/cj for B203), and the high-pressure container By pressurizing the inside of crystal material 1 with an inert gas, vaporization of crystal raw material melt 7 can be suppressed.

この状態で結晶引き上げ軸9の先端に取付けた種結晶1
0を封止剤融液8を通過させて結晶原料融液7に接触さ
け、この後、この引き上げ軸9を回転させながら引き上
げて単結晶11を得る。
In this state, the seed crystal 1 attached to the tip of the crystal pulling shaft 9
0 is passed through the sealant melt 8 to avoid contact with the crystal raw material melt 7, and then pulled up while rotating the pulling shaft 9 to obtain the single crystal 11.

このようにL E’C法は比較的簡単な装置で単結晶を
製造できる利点があるが、高温高圧下での結晶成長であ
り、熱の対流による放熱や温度分布の不均一等が原因し
て結晶欠陥が大きいという欠点があった。
In this way, the L E'C method has the advantage of being able to produce single crystals using relatively simple equipment, but the crystal growth is performed under high temperature and pressure, which causes problems such as heat dissipation due to heat convection and uneven temperature distribution. However, it had the disadvantage of having large crystal defects.

このため、るつぼ内の高度分布の適正維持や発熱体の加
熱効率の確保を目的として、発熱体の外側や上下に熱遮
蔽用の保温部材12.13が配設されることが行われて
いる。この保温部材12.13や前記るつぼ受け台3.
4.5としては、通常形状加工が容易で軽量である炭素
製品が用いられている。
For this reason, in order to maintain appropriate altitude distribution within the crucible and ensure heating efficiency of the heating element, heat shielding members 12 and 13 are placed outside and above and below the heating element. . This heat insulating member 12.13 and the crucible holder 3.
4.5, carbon products are usually used because they are easy to shape and lightweight.

しかし炭素製品は雰囲気ガスやB203中の微量のV素
、水蒸気あるいは吸着により炭素製品自身に含まれてい
た酸素や水蒸気によって容易に酸化劣化してしまうため
、炭素製品の耐久性が低下するのは勿論のこと、酸化反
応物が高圧ガス対流により攪拌されてるつぼ内へ飛び込
んで結晶原料が汚染されるという問題が生じていた。
However, carbon products are easily oxidized and deteriorated by atmospheric gas, trace amounts of V elements in B203, water vapor, or oxygen and water vapor contained in the carbon product itself due to adsorption, so the durability of carbon products decreases. Needless to say, there was a problem in that the oxidation reactants flew into the crucible being stirred by the high-pressure gas convection, contaminating the crystal raw material.

[発明の目的1 本発明はこのような問題を解消するためなされたもので
、結晶原料融液を汚染することなくるつぼ内の温度分布
を適正に維持し、従って単結晶の高品質化と歩留りの向
上を図ることができる化合物半導体単結晶の製造装置を
提供することを目的とする。
[Objective of the Invention 1] The present invention has been made to solve such problems, and it is possible to maintain an appropriate temperature distribution in the crucible without contaminating the crystal raw material melt, thereby improving the quality and yield of single crystals. An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus that can improve the performance.

[発明の概要] すなわち本発明の化合物半導体単結晶の製造装置は、高
圧容器と、該高圧容器内に配設されたるつぼおよびるつ
ぼ受け台と、該るつぼおよびるつぼ受け台を取り囲む発
熱体と、該発熱体の外側および上下に配設された保温部
材と、前記るつぼ上に昇降自在に配置された結晶引上げ
装置とから主に構成される化合物半導体単結晶の製造装
置において、前記るつぼ受け台および/または保温部材
を、窒化アルミニウムで表面被覆した炭素製品で構成し
たことを特徴としている。
[Summary of the Invention] That is, the compound semiconductor single crystal manufacturing apparatus of the present invention includes a high-pressure container, a crucible and a crucible holder arranged in the high-pressure container, a heating element surrounding the crucible and the crucible holder, In a compound semiconductor single crystal manufacturing apparatus mainly comprising a heat insulating member disposed outside and above and below the heating element, and a crystal pulling device disposed on the crucible so as to be able to rise and fall, the crucible holder and It is characterized in that the heat insulating member is made of a carbon product whose surface is coated with aluminum nitride.

本発明において、窒化アルミニウムの表面被覆方法とし
ては化学蒸着法が好ましい。化学蒸着法による窒化アル
ミニウムの炭素部材への被覆は常法、例えば次のような
方法により行なわれる。
In the present invention, a chemical vapor deposition method is preferred as a method for coating the surface of aluminum nitride. Coating a carbon member with aluminum nitride by chemical vapor deposition is carried out by a conventional method, for example, the following method.

すなわち、アルミニウムのハロゲン化物とアンモニアガ
スキャリアガスの雰囲気内に所定の形状に成形加工した
炭素製品を買き900〜1200℃の高温で加熱すると
、表面に窒化アルミニウムの被覆された炭素製品が得ら
れる。なお、窒化アルミニウムの厚さは、博すざると効
果がなく、逆にあまり厚すぎると表面にクラックが入る
おそれが生じるので、1〜50μmの範囲とすることが
望ましい。
That is, by purchasing a carbon product that has been formed into a predetermined shape in an atmosphere of aluminum halide and ammonia gas carrier gas and heating it at a high temperature of 900 to 1200°C, a carbon product whose surface is coated with aluminum nitride can be obtained. . Note that the thickness of aluminum nitride is desirably in the range of 1 to 50 μm, since it will not be effective unless it is too thick, and on the other hand, if it is too thick, there is a risk of cracking on the surface.

なお、窒化アルミニウムの表面被覆方法としては、プラ
ズマ溶射法、物理蒸着法も適用可能である。
Note that plasma spraying and physical vapor deposition can also be applied as a method for coating the surface of aluminum nitride.

[発明の実施例] 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例 本発明装置は図面に示すように、高圧容器1と、この容
器内に配設されたるつぼ2およびるつぼ受け台3.4.
5と、このるつぼ2を同軸的に取り囲む発熱体6と、こ
の発熱体6の外周および上下に配設された筒状および板
状の保温部材12.13とから主に構成されている。こ
こでるつぼ受け台および保温部材は次の方法で製造した
Embodiment As shown in the drawings, the apparatus of the present invention includes a high-pressure vessel 1, a crucible 2 and a crucible holder 3, 4, 3, 4, 4, 4, and 4 disposed within the vessel.
5, a heating element 6 coaxially surrounding the crucible 2, and cylindrical and plate-shaped heat insulating members 12 and 13 disposed on the outer periphery of and above and below the heating element 6. Here, the crucible holder and the heat retaining member were manufactured by the following method.

黒鉛にて所定形状のるつぼ受け台および保温部材を製造
した後−1密閉容器内にこれらを置き、容器内を窒素ガ
ス等のキャリアガスで置換した後、塩化アルミニウムと
アンモニアガスとを導入し、次いで約り000℃×5時
間加熱して厚さ10μmの窒化アルミニウムの膜を形成
した。
After manufacturing a crucible holder and a heat insulating member of a predetermined shape from graphite, place them in a sealed container, replace the inside of the container with a carrier gas such as nitrogen gas, and then introduce aluminum chloride and ammonia gas, Next, heating was performed at approximately 000° C. for 5 hours to form an aluminum nitride film with a thickness of 10 μm.

このようにして得られたるつぼ受け台および保温部材を
使用して、従来方法によりGaAS単結晶を引き上げた
ところ、結晶原料融液の汚染は減少し、得られた単結晶
内のカーボンの不純物は約1/3以下であった。
When a GaAS single crystal was pulled by the conventional method using the crucible holder and heat insulating member obtained in this way, contamination of the crystal raw material melt was reduced, and carbon impurities in the obtained single crystal were reduced. It was about 1/3 or less.

また、発熱体の加熱効率が向上し、るつぼ内の温度分布
の均一化を図ることができて結晶欠陥の少ない安定した
単結晶の製造が可能となった。
Furthermore, the heating efficiency of the heating element has been improved, and the temperature distribution within the crucible can be made more uniform, making it possible to produce stable single crystals with few crystal defects.

なお、以上の実施例では、るつぼ受け台と保温部材の両
方を窒化アルミニウムで表面被覆した炭素製品としたが
、いずれか一方のみを窒化アルミニウムで表面被覆した
炭素製品としても有効である。
In the above embodiments, both the crucible holder and the heat insulating member are made of carbon products whose surfaces are coated with aluminum nitride, but it is also effective to make a carbon product whose surface of only either one is coated with aluminum nitride.

[発明の効果] 以上説明したように本発明装置によれば、るつぼ受け台
や保温部材の劣化が少なくなり、また結晶原料融液を汚
染することなく発熱体の加熱効率の向上やるつぼ内の温
度分布の均一化を図ることができるので、高品質の化合
物半導体単結晶を製造することができる。
[Effects of the Invention] As explained above, according to the apparatus of the present invention, the deterioration of the crucible holder and the heat insulating member is reduced, and the heating efficiency of the heating element is improved and the temperature inside the crucible is improved without contaminating the crystal raw material melt. Since the temperature distribution can be made uniform, a high quality compound semiconductor single crystal can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の一実施例を概略的に示す断面図であ
る。 1・・・・・・・・・・・・・・・高圧容器2・・・・
・・・・・・・・・・・るつぼ3.4.5・・・るつぼ
受け台
The drawing is a sectional view schematically showing an embodiment of the device of the present invention. 1・・・・・・・・・・・・・・・High pressure container 2・・・・
・・・・・・・・・・・・ Crucible 3.4.5... Crucible holder

Claims (2)

【特許請求の範囲】[Claims] (1)高圧容器と、該高圧容器内に配設されたるつぼお
よびるつぼ受け台と、該るつぼおよびるつぼ受け台を取
り囲む発熱体と、該発熱体の外側および上下に配設され
た保温部材と、前記るつぼ上に昇降自在に配置された結
晶引上げ装置とから主に構成される化合物半導体単結晶
の製造装置において、前記るつぼ受け台および/または
保温部材を、窒化アルミニウムで表面被覆した炭素製品
で構成したことを特徴とする化合物半導体単結晶の製造
装置。
(1) A high-pressure container, a crucible and a crucible holder arranged in the high-pressure container, a heating element surrounding the crucible and the crucible holder, and a heat-retaining member arranged outside and above and below the heating element. , in a compound semiconductor single crystal manufacturing apparatus mainly comprising a crystal pulling device disposed on the crucible so as to be freely raised and lowered, the crucible holder and/or the heat insulating member are made of a carbon product whose surface is coated with aluminum nitride. 1. A compound semiconductor single crystal manufacturing device characterized by comprising:
(2)窒化アルミニウムの表面被覆は、化学蒸着法によ
るものである特許請求の範囲第1項記載の化合物半導体
単結晶の製造装置。
(2) The compound semiconductor single crystal manufacturing apparatus according to claim 1, wherein the surface coating with aluminum nitride is performed by a chemical vapor deposition method.
JP18559984A 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor Pending JPS6163591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18559984A JPS6163591A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18559984A JPS6163591A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6163591A true JPS6163591A (en) 1986-04-01

Family

ID=16173616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18559984A Pending JPS6163591A (en) 1984-09-05 1984-09-05 Installation for production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6163591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242994A (en) * 1987-03-30 1988-10-07 Toshiba Corp Device for producing compound semiconductor single crystal
JPS63242995A (en) * 1987-03-30 1988-10-07 Toshiba Corp Device for producing compound semiconductor single crystal
WO2013084865A1 (en) * 2011-12-09 2013-06-13 Aramaki Masato Product delivery mechanism and product vending machine implementing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242994A (en) * 1987-03-30 1988-10-07 Toshiba Corp Device for producing compound semiconductor single crystal
JPS63242995A (en) * 1987-03-30 1988-10-07 Toshiba Corp Device for producing compound semiconductor single crystal
WO2013084865A1 (en) * 2011-12-09 2013-06-13 Aramaki Masato Product delivery mechanism and product vending machine implementing same

Similar Documents

Publication Publication Date Title
JP2520060B2 (en) Boron Nitride Crucible and Method for Manufacturing the Same
US3943218A (en) Method of manufacturing shaped hollow bodies
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JPS6365640B2 (en)
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JP2010030891A (en) Compound semiconductor crystal
JPS6163591A (en) Installation for production of single crystal of compound semiconductor
JPH11209198A (en) Synthesis of silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JPS60226492A (en) Single crystal producer for compound semiconductor
US4550014A (en) Method for production of free-standing polycrystalline boron phosphide film
JPS61215292A (en) Apparatus for producing compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JPS60255698A (en) Member for producing compound semiconductor and production thereof
JPH05238870A (en) Production of single crystal of compound semiconductor and device therefor
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPS5935878B2 (en) Semiconductor single crystal growth method
JPS6163590A (en) Installation for production of single cyrstal of compound semiconductor
JPS5826167B2 (en) Silicon carbide manufacturing method
JPH05339098A (en) Production of compound semiconductor single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH08283094A (en) Production of single crystal and device therefor
JPS63242994A (en) Device for producing compound semiconductor single crystal
JPH01298100A (en) Production of silicon carbide single crystal by liquid phase temperature difference method
JPH0297482A (en) Apparatus for producing semiconductor single crystal