JPH08283094A - Production of single crystal and device therefor - Google Patents
Production of single crystal and device thereforInfo
- Publication number
- JPH08283094A JPH08283094A JP8792995A JP8792995A JPH08283094A JP H08283094 A JPH08283094 A JP H08283094A JP 8792995 A JP8792995 A JP 8792995A JP 8792995 A JP8792995 A JP 8792995A JP H08283094 A JPH08283094 A JP H08283094A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- heat sink
- crystal
- growth
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体単結晶の作製方法
およびその装置に係り、特に、結晶欠陥の少ない大形の
高品質の半導体単結晶を再現性良く作製する方法および
それに用いる単結晶の作製装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor single crystal and an apparatus therefor, and more particularly to a method for producing a large-sized high quality semiconductor single crystal with few crystal defects with good reproducibility and a single crystal used therefor. The present invention relates to a manufacturing device.
【0002】[0002]
【従来の技術】PbTeやGaSe、GaAs等の化合
物半導体は、Siに比べ機械的強度が小さいために、結
晶成長中に熱的、機械的応力の影響を受け易く、欠陥の
少ない高品質の単結晶を作製することは極めて難しい。
この問題を解決する結晶成長方法として、温度勾配を小
さくして結晶成長界面での熱応力を小さくし、かつ結晶
が容器壁面に触れないように成長させて、単結晶が成長
中に受ける機械的応力を抑制する方法が提案されている
(例えば、特公昭57−54480号公報)。しかしな
がら、この方法は結晶核生成を制御する治具あるいは種
子結晶のどちらも使用していないために、小さな結晶核
が多数生成されてしまい、一つの単結晶のみが大きく成
長する確率が非常に小さいという問題があった。2. Description of the Related Art Since compound semiconductors such as PbTe, GaSe, and GaAs have a lower mechanical strength than Si, they are easily affected by thermal and mechanical stress during crystal growth, and have a high quality single crystal with few defects. It is extremely difficult to make crystals.
As a crystal growth method that solves this problem, the thermal stress at the crystal growth interface is reduced by decreasing the temperature gradient, and the crystal is grown so that it does not touch the wall surface of the container. A method for suppressing stress has been proposed (for example, Japanese Patent Publication No. 57-54480). However, since this method does not use a jig for controlling crystal nucleation or a seed crystal, a large number of small crystal nuclei are generated and the probability that only one single crystal grows is very small. There was a problem.
【0003】[0003]
【発明が解決しようとする課題】上述したごとく、従来
の単結晶成長方法において、結晶核生成を制御する治具
あるいは種子結晶のどちらも使用していないために、一
つの単結晶を大きく成長させる確率が非常に小さく、多
結晶が形成され易いという問題があった。As described above, in the conventional single crystal growth method, since neither a jig for controlling the crystal nucleus generation nor a seed crystal is used, one single crystal is grown large. There is a problem that the probability is very small and a polycrystal is easily formed.
【0004】本発明の目的は、上記従来技術における単
結晶化の収率が小さいという問題点を解消するものであ
って、大形で高品質の半導体単結晶を再現性良く高歩留
まりで作製する方法およびそれに用いる単結晶の作製装
置を提供することにある。An object of the present invention is to solve the problem that the yield of single crystallization is small in the prior art described above, and to manufacture a large-sized and high-quality semiconductor single crystal with high reproducibility and high yield. It is to provide a method and an apparatus for producing a single crystal used for the method.
【0005】[0005]
【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、密閉容器内における気相成長法により単結
晶を作製する方法において、密閉容器内の結晶成長部に
設置されたヒートシンクの先端部の周囲と、該密閉容器
の内壁との間にギャップを形成し、ヒートシンクの先端
面上、もしくはヒートシンクに保持された種子結晶上
に、結晶の原料蒸気を堆積させ、成長する単結晶が容器
壁面に触れない状態を保持して単結晶の成長を行うもの
である。そして、上記請求項1の単結晶の成長を行う装
置として、本発明は請求項2に記載のように、密閉容器
内における気相成長法により単結晶を作製する装置にお
いて、上記密閉容器内の結晶成長部に設置されたヒート
シンクと、該ヒートシンク先端部周囲と密閉容器内壁と
の間にギャップを設けた構造とするものである。また、
本発明は請求項3に記載のように、請求項2において、
密閉容器内の単結晶を成長させるヒートシンクの先端面
に窪みを設けた構造とするものである。また、本発明は
請求項4に記載のように、請求項2において、ヒートシ
ンクの先端部に、単結晶を成長させる種子結晶を設けた
構造とするものである。また、本発明は請求項5に記載
のように、請求項2において、ヒートシンクを単結晶を
成長させる種子結晶により作製した構造とするものであ
る。In order to achieve the above-mentioned object of the present invention, the present invention has a constitution as set forth in the claims. That is, according to the present invention, as described in claim 1, in a method for producing a single crystal by a vapor phase growth method in a closed container, around a tip of a heat sink installed in a crystal growth part in the closed container, A state in which a gap is formed between the closed container and the inner wall of the heat sink, and the raw material vapor of the crystal is deposited on the tip surface of the heat sink or on the seed crystal held by the heat sink so that the growing single crystal does not touch the wall surface of the container. Is held to grow a single crystal. Then, as an apparatus for growing a single crystal according to claim 1, the present invention is, as described in claim 2, an apparatus for producing a single crystal by a vapor phase growth method in a closed container, wherein: The heat sink is installed in the crystal growth portion, and a gap is provided between the periphery of the heat sink tip and the inner wall of the closed container. Also,
According to the present invention, as described in claim 3, in claim 2,
The heat sink for growing the single crystal in the hermetic container has a dent on the tip surface. Further, as described in claim 4, the present invention has the structure according to claim 2, wherein a seed crystal for growing a single crystal is provided at the tip of the heat sink. Further, according to a fifth aspect of the present invention, in the second aspect, the heat sink has a structure made of a seed crystal for growing a single crystal.
【0006】[0006]
【作用】本発明は請求項1に記載のように、密閉容器内
の気相成長法による単結晶作製法において、ヒートシン
クに結晶核生成部もしくは種子結晶保持部を備え、かつ
ヒートシンクと容器内壁との間にギャップを設けている
ので、結晶成長に伴って発生する結晶化熱は、ヒートシ
ンクによって運び去られるので、成長中の結晶の温度上
昇を抑制することができ、組成分布が均一で、かつ結晶
が容器壁面から機械的な応力を受けることなく、低転位
密度で高品位の化合物半導体等の単結晶を歩留まりよく
作製することができる。また、本発明は請求項2に記載
のように、請求項1に記載の気相成長法により単結晶を
作製する方法を実施する装置として、密閉容器内の結晶
成長部に設置されたヒートシンク先端部周囲と密閉容器
内壁との間にギャップを形成し、ヒートシンクの結晶核
生成部もしくは種子結晶保持部から成長する単結晶が容
器の内壁と接触しない構造としているので、容器との機
械的接触による応力の発生を抑止することができ、低転
位密度の半導体の単結晶が得られる。また、本発明は請
求項3に記載のように、請求項2ににおいて、単結晶を
成長させるヒートシンクの先端面に窪みを形成してお
り、この窪み部の温度が、他の部分よりも温度が低くな
り結晶核が生成しやすくなるようにしているので、単結
晶成長の確率が高くなり、再現性よく半導体の単結晶を
作製することができる。また、本発明は請求項4に記載
のように、請求項2において、ヒートシンクの先端部
に、単結晶を成長させる種子結晶を設けた構造としてい
るので、単結晶成長の確率が高くなり、再現性よく半導
体の単結晶を作製することができる。また、本発明は請
求項5に記載のように、請求項2において、ヒートシン
クを単結晶を成長させる種子結晶により構成しているの
で、効率的に単結晶を成長させることができ、しかも単
結晶成長の確率が高くなり、再現性よく半導体の単結晶
を作製することができる。According to the present invention, as described in claim 1, in a method for producing a single crystal by a vapor phase growth method in a closed container, a heat sink is provided with a crystal nucleation part or a seed crystal holding part, and a heat sink and an inner wall of the container are provided. Since a gap is provided between the two, the heat of crystallization generated along with the crystal growth is carried away by the heat sink, so that the temperature rise of the crystal during growth can be suppressed, the composition distribution is uniform, and A single crystal such as a high-quality compound semiconductor with a low dislocation density can be produced with a high yield without the crystal being subjected to mechanical stress from the wall surface of the container. Further, as described in claim 2, the present invention is an apparatus for carrying out the method for producing a single crystal by the vapor phase growth method according to claim 1, which is a heat sink tip installed in a crystal growth part in a closed container. A gap is formed between the surrounding area and the inner wall of the closed container, so that the single crystal growing from the crystal nucleation part of the heat sink or the seed crystal holding part does not come into contact with the inner wall of the container. Generation of stress can be suppressed, and a semiconductor single crystal with a low dislocation density can be obtained. Further, according to the present invention, as in claim 3, in claim 2, the heat sink for growing the single crystal is formed with a depression on the front end surface thereof, and the temperature of the depression is higher than that of the other portions. Is low and the crystal nuclei are easily generated, the probability of single crystal growth is high, and a semiconductor single crystal can be produced with good reproducibility. Further, according to the present invention, as described in claim 4, since the seed crystal for growing the single crystal is provided at the tip of the heat sink in the second aspect, the probability of the single crystal growth increases and the reproduction is improved. A single crystal of a semiconductor can be manufactured with good properties. Further, according to the present invention, as in claim 5, in claim 2, the heat sink is constituted by a seed crystal for growing a single crystal, so that the single crystal can be efficiently grown, and further, the single crystal can be grown. The growth probability is increased, and a semiconductor single crystal can be manufactured with good reproducibility.
【0007】[0007]
【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。 〈実施例1〉図1(a)は、本実施例において用いた単
結晶作製装置の密閉容器の断面構造の一例を示す模式図
で、図1(b)は、密閉容器内の温度分布を示すグラフ
である。図において、石英製容器1の中に、石英製のヒ
ートシンク2を挿入し、石英製容器1の容器端面1aに
押し付ける。ヒートシンク2の先端部は細くなってお
り、石英製容器1の内壁面との間にギャップ3が形成さ
れる。そして、ヒートシンク2の先端面の中央部には結
晶核生成用窪み4が形成されている。次に、あらかじめ
合成したPb0.8Sn0.2Te多結晶原料5を石英製容器
1内に挿入し、圧力が1×10~5Torr(mmHg)以下とな
るように真空排気を行いつつ、石英製容器1の容器端面
1bを溶着することにより、ヒートシンク2とPb0.8
Sn0.2Te多結晶原料5とを石英製容器1内に真空封
入する。このようにして作製した単結晶作製用の石英製
容器1を電気炉に装着し、図1(b)に示す温度分布と
なるよう加熱する。本実施例においては、多結晶原料5
部を約880℃に加熱し、ヒートシンク2部が825℃
となるように制御して、多結晶原料部とヒートシンク部
との間に約55℃の温度差が形成されるようにした。多
結晶原料部でPbTe分子、SnTe分子が蒸気となっ
て昇華し、この原料蒸気は、上記の温度差によって生じ
る平衡蒸気圧の違いによって低温のヒートシンク部に輸
送され、ヒートシンク2の結晶核生成用窪み4のある面
に堆積し、単結晶の成長が進行する。ここで、単結晶成
長に伴って発生する結晶化熱はヒートシンク2によって
運び去られるので、成長中の単結晶の温度上昇は抑制さ
れる。Pb0.8Sn0.2Teの液相線温度は約905℃で
あるので、880℃程度の加熱では多結晶原料5が溶融
されることはない。本実施例による方法は、多結晶原料
が熱分解を受けずに蒸発し、低温部へ輸送されて単結晶
が成長し、化学的な変化を伴わないので、物理的蒸気輸
送法と言われている。図2および図3は、単結晶成長過
程を示す模式図であり、図2は単結晶成長初期の段階で
あり、図3は単結晶成長の終期段階を示す。ヒートシン
ク2に輸送されてきた原料蒸気は、ヒートシンク2の先
端部やギャップ3部の終端部に付着し、結晶成長が始ま
る(図2)。ヒートシンク2の先端面には、小さな結晶
核生成用窪み4が形成されているので、この窪み4の中
に、一つの結晶核6が形成され、それが次第に成長して
大きな単結晶7となる(図3)。ヒートシンク2の先端
面の結晶核生成用窪み4から単結晶の成長が始まるの
は、石英製容器1内の温度勾配によりヒートシンク2の
窪み4部の温度が先端面の温度より低いことから結晶核
が生成され易いからである。そして、ヒートシンク2の
先端面以外のところへ輸送されてきた原料蒸気は、ギャ
ップ3部へ侵入し、その終端でトラップされ堆積物8と
なるので、単結晶はヒートシンク2の先端面を底面とし
て柱状に成長し、石英製容器1の内壁面に接触すること
はない。そのために、単結晶が容器壁面から機械的応力
を受けることなく、低転位密度の高品質の単結晶を成長
させることができる。図1(b)に示す温度分布の下
で、約5日間かけて、長さが20mm程度の単結晶を作
製することができた。 得られた単結晶は、組成分布の
均一性に優れ(Pb/Sn比の変動で1%以下)、転位
密度も平均10cm~2程度と低いものであった。この値
は、従来の特公昭57−54480号公報に記載されて
いるいる方法により作製された単結晶とほぼ同等ないし
はそれ以下の低い値である。Embodiments of the present invention will be described below in more detail with reference to the drawings. Example 1 FIG. 1 (a) is a schematic view showing an example of the cross-sectional structure of the closed container of the single crystal production apparatus used in this example, and FIG. 1 (b) shows the temperature distribution in the closed container. It is a graph shown. In the figure, a quartz heat sink 2 is inserted into a quartz container 1 and pressed against the container end surface 1 a of the quartz container 1. The tip of the heat sink 2 is thin, and a gap 3 is formed between the heat sink 2 and the inner wall surface of the quartz container 1. A crystal nucleus generating recess 4 is formed in the center of the tip surface of the heat sink 2. Next, the previously synthesized Pb 0.8 Sn 0.2 Te polycrystalline raw material 5 was inserted into the quartz container 1, and the quartz container was evacuated so that the pressure was 1 × 10 to 5 Torr (mmHg) or less. By welding the container end surface 1b of No. 1 to the heat sink 2 and Pb 0.8
The Sn 0.2 Te polycrystalline raw material 5 and the quartz container 1 are vacuum-sealed. The quartz container 1 for producing a single crystal thus produced is mounted in an electric furnace and heated so that the temperature distribution shown in FIG. In this example, polycrystalline raw material 5
Part is heated to about 880 ℃, 2 parts of heat sink is 825 ℃
The temperature difference is controlled so that a temperature difference of about 55 ° C. is formed between the polycrystalline raw material portion and the heat sink portion. In the polycrystalline raw material part, PbTe molecules and SnTe molecules are sublimated into vapors, and the raw material vapors are transported to the low temperature heat sink portion due to the difference in equilibrium vapor pressure caused by the above temperature difference, and used for generating crystal nuclei of the heat sink 2. It is deposited on the surface having the depression 4, and the growth of the single crystal proceeds. Here, the heat of crystallization generated with the growth of the single crystal is carried away by the heat sink 2, so that the temperature rise of the single crystal during growth is suppressed. Since the liquidus temperature of Pb 0.8 Sn 0.2 Te is about 905 ° C., the polycrystalline raw material 5 is not melted by heating at about 880 ° C. The method according to the present example is called a physical vapor transport method because the polycrystalline raw material is evaporated without thermal decomposition, is transported to a low temperature part to grow a single crystal, and is not accompanied by a chemical change. There is. 2 and 3 are schematic diagrams showing a single crystal growth process, FIG. 2 shows an initial stage of single crystal growth, and FIG. 3 shows a final stage of single crystal growth. The raw material vapor transported to the heat sink 2 adheres to the tip of the heat sink 2 and the end of the gap 3 to start crystal growth (FIG. 2). Since a small crystal nucleus forming recess 4 is formed on the tip surface of the heat sink 2, one crystal nucleus 6 is formed in the recess 4 and gradually grows into a large single crystal 7. (Figure 3). The growth of a single crystal starts from the crystal nucleus generation recess 4 on the tip surface of the heat sink 2 because the temperature of the recess 4 of the heat sink 2 is lower than the temperature of the tip surface due to the temperature gradient in the quartz container 1. Is easily generated. Then, the raw material vapor transported to a place other than the tip surface of the heat sink 2 enters the gap 3 and is trapped at the end of the gap to become a deposit 8. Therefore, the single crystal has a columnar shape with the tip surface of the heat sink 2 as the bottom surface. , And does not contact the inner wall surface of the quartz container 1. Therefore, a high quality single crystal with a low dislocation density can be grown without the single crystal receiving mechanical stress from the wall surface of the container. Under the temperature distribution shown in FIG. 1B, a single crystal having a length of about 20 mm could be produced over about 5 days. The obtained single crystal was excellent in uniformity of composition distribution (1% or less due to fluctuation of Pb / Sn ratio) and had a low dislocation density of about 10 cm to 2 on average. This value is almost equal to or lower than that of the single crystal produced by the method described in Japanese Patent Publication No. 57-54480.
【0008】〈実施例2〉図4は、本実施例で例示する
単結晶の作製容器の構造を示す模式図である。本実施例
においては、石英よりも熱伝導率の良い窒化ホウ素製ヒ
ートシンク9を用い、該ヒートシンク9の先端部に、
結晶核生成用窪み部を設ける代わりに、Pb0.8Sn0.2
Teの格子定数に近い格子定数を有するBaF2の種子
結晶10を設けた構造としている。本実施例において
は、BaF2単結晶の方位を継承した単結晶を成長させ
ることができ、単結晶の成長方位を任意の方向に制御す
ることが可能である。<Embodiment 2> FIG. 4 is a schematic view showing the structure of a single crystal production container exemplified in this embodiment. In this embodiment, a boron nitride heat sink 9 having a thermal conductivity higher than that of quartz is used, and the tip of the heat sink 9 is
Instead of providing a recess for crystal nucleation, Pb 0.8 Sn 0.2
The structure is provided with a BaF 2 seed crystal 10 having a lattice constant close to that of Te. In this embodiment, a single crystal that inherits the orientation of the BaF 2 single crystal can be grown, and the growth orientation of the single crystal can be controlled in any direction.
【0009】〈実施例3〉図5は、本実施例で例示する
単結晶の作製容器の構造を示す模式図である。本実施例
においては、石英製容器1の一端の内壁面に、突起11
が形成されており、一様な太さのヒートシンク(BaF
2種子結晶)12を使用してもギャップ3が形成される
ように工夫している。なお、本実施例においてはBaF
2種子結晶12を長尺とし、この種子結晶にヒートシン
クの役割を兼ね備えている点に特徴がある。Example 3 FIG. 5 is a schematic view showing the structure of a single crystal production container exemplified in this example. In this embodiment, the protrusion 11 is formed on the inner wall surface of one end of the quartz container 1.
Is formed, and a heat sink (BaF) of uniform thickness is formed.
Even if (2 seed crystals) 12 is used, the gap 3 is formed. In the present embodiment, BaF
2 The seed crystal 12 is long, and this seed crystal also serves as a heat sink.
【0010】〈実施例4〉図6(a)は、本実施例で例
示する単結晶の作製容器の構造を示す模式図であり、図
6(b)は、石英製容器1内の温度分布を示すグラフで
ある。本実施例においては、ヨウ素を輸送媒体とする化
学的気相成長法により単結晶を作製する場合を示す。原
料部には、原料Ga13と原料Se14と、さらに輸送
媒体であるヨウ素15を真空封入した。図6(b)に示
すように、原料部の温度を870℃とし、ヒートシンク
2の部分を840℃に加熱し、両者の間に30℃の温度
差を設けた。Seの蒸気圧は高いので、原料部でSeは
ガス状となって蒸発し、ヒートシンク部へ輸送される。
一方、Gaはヨウ素(I2)と反応して、GaIあるい
はGaI3の気体となり、ヒートシンク部へ輸送され、
そこでSe蒸気と反応してGaSeの固体を生成し、G
aSeがヒートシンク先端面上に堆積する。この反応・
堆積過程の繰り返しによってGaSeの大きな単結晶へ
と成長する。<Embodiment 4> FIG. 6A is a schematic view showing the structure of a single crystal production container exemplified in this embodiment, and FIG. 6B is a temperature distribution in the quartz container 1. It is a graph which shows. In this example, a single crystal is manufactured by a chemical vapor deposition method using iodine as a transport medium. A raw material Ga13, a raw material Se14, and iodine 15, which is a transport medium, were vacuum-sealed in the raw material portion. As shown in FIG. 6B, the temperature of the raw material part was set to 870 ° C., the part of the heat sink 2 was heated to 840 ° C., and a temperature difference of 30 ° C. was provided between them. Since the vapor pressure of Se is high, Se becomes gaseous in the raw material portion and evaporates, and is transported to the heat sink portion.
On the other hand, Ga reacts with iodine (I 2 ) to become GaI or GaI 3 gas, which is transported to the heat sink,
There, it reacts with Se vapor to produce a GaSe solid,
aSe is deposited on the tip surface of the heat sink. This reaction
By repeating the deposition process, a large single crystal of GaSe is grown.
【0011】[0011]
【発明の効果】以上説明したように、本発明の単結晶の
作製方法によれば、各種の半導体単結晶を容器壁面と接
することなく、再現性良く成長させることができ、組成
分布の均一性が良く、転位密度の低い良質の化合物半導
体等の単結晶を高歩留まりで作製することができる。し
たがって、PbTeやPb0.8Sn0.2Te、GaSe、
GaAs、CdTe等の軟質の半導体結晶で転位が生じ
易い化合物半導体等の低転位密度の結晶育成に極めて有
効である。As described above, according to the method for producing a single crystal of the present invention, various semiconductor single crystals can be grown with good reproducibility without contact with the wall surface of the container, and the composition distribution can be made uniform. And a single crystal such as a good quality compound semiconductor having a low dislocation density can be manufactured with a high yield. Therefore, PbTe, Pb 0.8 Sn 0.2 Te, GaSe,
It is extremely effective for growing a crystal having a low dislocation density such as a compound semiconductor in which dislocation is likely to occur in a soft semiconductor crystal such as GaAs or CdTe.
【図1】本発明の実施例1で例示した(a)単結晶作製
容器の構造を示す模式図および(b)容器内温度分布を
示すグラフ。FIG. 1 is a schematic view showing a structure of a single crystal production container (a) illustrated in Example 1 of the present invention and a graph showing a temperature distribution in the container (b).
【図2】本発明の実施例1で例示した単結晶成長の初期
段階を示す模式図。FIG. 2 is a schematic diagram showing an initial stage of single crystal growth exemplified in Example 1 of the present invention.
【図3】本発明の実施例1で例示した単結晶成長の終期
段階を示す模式図。FIG. 3 is a schematic diagram showing a final stage of single crystal growth exemplified in Example 1 of the present invention.
【図4】本発明の実施例2で例示した単結晶作製容器の
構造を示す模式図。FIG. 4 is a schematic diagram showing the structure of a single crystal production container exemplified in Example 2 of the present invention.
【図5】本発明の実施例3で例示した単結晶作製容器の
構造を示す模式図。FIG. 5 is a schematic diagram showing the structure of the single crystal production container illustrated in Example 3 of the present invention.
【図6】本発明の実施例4で例示した(a)単結晶作製
容器の構造を示す模式図および(b)容器内温度分布を
示すグラフ。6A and 6B are a schematic view showing a structure of a single crystal production container (a) and a graph showing a temperature distribution in the container (b) illustrated in Example 4 of the present invention.
1…石英製容器 1a…容器端面 1b…容器端面 2…ヒートシンク 3…ギャップ 4…結晶核生成用窪み 5…Pb0.8Sn0.2Te多結晶原料 5a…多結晶原料残滓 6…結晶核 7…単結晶 8…堆積物 9…窒化ホウ素製ヒートシンク 10…BaF2の種子結晶 11…突起 12…BaF2の種子結晶(ヒートシンク) 13…原料Ga 14…原料Se 15…ヨウ素DESCRIPTION OF SYMBOLS 1 ... Quartz container 1a ... Container end surface 1b ... Container end surface 2 ... Heat sink 3 ... Gap 4 ... Cavity for crystal nucleation 5 ... Pb 0.8 Sn 0.2 Te polycrystalline raw material 5a ... Polycrystalline raw material residue 6 ... Crystal nucleus 7 ... Single crystal 8 ... Deposit 9 ... Boron nitride heat sink 10 ... BaF 2 seed crystal 11 ... Protrusion 12 ... BaF 2 seed crystal (heat sink) 13 ... Raw material Ga 14 ... Raw material Se 15 ... Iodine
Claims (5)
結晶を作製する方法において、密閉容器内の結晶成長部
に設置されたヒートシンクの先端部の周囲と、該密閉容
器の内壁との間にギャップを形成し、ヒートシンクの先
端面上、もしくはヒートシンクに保持された種子結晶上
に、結晶の原料蒸気を堆積させ、成長する単結晶が容器
壁面に触れない状態を保持して単結晶の成長を行うこと
を特徴とする単結晶の作製方法。1. A method for producing a single crystal by a vapor phase growth method in a closed container, wherein a single crystal is formed between a tip of a heat sink installed at a crystal growth part in the closed container and an inner wall of the closed container. A gap is formed, and the source vapor of the crystal is deposited on the tip surface of the heat sink or on the seed crystal held by the heat sink, and the growing single crystal is kept in contact with the wall surface of the container to grow the single crystal. A method for manufacturing a single crystal, which is characterized by performing.
結晶を作製する装置において、上記密閉容器内の結晶成
長部に設置されたヒートシンクと、該ヒートシンク先端
部周囲と密閉容器内壁との間にギャップを設けたことを
特徴とする単結晶の作製装置。2. An apparatus for producing a single crystal by a vapor phase growth method in a closed container, comprising: a heat sink installed in a crystal growth part in the closed container; and a heat sink around the tip of the heat sink and an inner wall of the closed container. An apparatus for producing a single crystal having a gap.
ートシンクの先端面に窪みを形成したことを特徴とする
単結晶の作製装置。3. The apparatus for producing a single crystal according to claim 2, wherein the heat sink for growing the single crystal has a recess formed in the front end surface thereof.
に、単結晶を成長させる種子結晶を設けたことを特徴と
する単結晶の作製装置。4. The apparatus for producing a single crystal according to claim 2, wherein a seed crystal for growing the single crystal is provided at the tip of the heat sink.
を成長させる種子結晶により構成したことを特徴とする
単結晶の作製装置。5. The apparatus for producing a single crystal according to claim 2, wherein the heat sink is composed of a seed crystal for growing the single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8792995A JPH08283094A (en) | 1995-04-13 | 1995-04-13 | Production of single crystal and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8792995A JPH08283094A (en) | 1995-04-13 | 1995-04-13 | Production of single crystal and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08283094A true JPH08283094A (en) | 1996-10-29 |
Family
ID=13928613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8792995A Pending JPH08283094A (en) | 1995-04-13 | 1995-04-13 | Production of single crystal and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08283094A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100344802C (en) * | 2005-07-28 | 2007-10-24 | 上海大学 | Process for preparing lead sulfur family compound semiconductor single crystal |
CN108166063A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学 | A kind of selenizing Cd monocrystal method of vapor-phase growing of top seed crystal heat conduction |
-
1995
- 1995-04-13 JP JP8792995A patent/JPH08283094A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100344802C (en) * | 2005-07-28 | 2007-10-24 | 上海大学 | Process for preparing lead sulfur family compound semiconductor single crystal |
CN108166063A (en) * | 2017-12-26 | 2018-06-15 | 哈尔滨工业大学 | A kind of selenizing Cd monocrystal method of vapor-phase growing of top seed crystal heat conduction |
CN108166063B (en) * | 2017-12-26 | 2019-07-16 | 哈尔滨工业大学 | A kind of selenizing Cd monocrystal method of vapor-phase growing that top seed crystal is thermally conductive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3876628B2 (en) | Method for producing silicon carbide single crystal and silicon carbide single crystal | |
JPH06316499A (en) | Production of sic single crystal | |
JPH11116398A (en) | Production of silicon carbide single crystal | |
US7371281B2 (en) | Silicon carbide single crystal and method and apparatus for producing the same | |
JPS5948792B2 (en) | Silicon carbide crystal growth method | |
JP2003104798A (en) | Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal | |
JPH1045499A (en) | Production of silicon carbide single crystal and seed crystal used therefor | |
JPH10324599A (en) | Production of silicon carbide single crystal | |
JPH08283094A (en) | Production of single crystal and device therefor | |
JPH06219898A (en) | Production of n-type silicon carbide single crystal | |
JP3657036B2 (en) | Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate | |
JPH10139589A (en) | Production of single crystal | |
JP3717562B2 (en) | Single crystal manufacturing method | |
JPS6212697A (en) | Production of silicon carbide single crystal film | |
JPH04182386A (en) | Substrate susceptor for epitaxial growth | |
JPH0455155B2 (en) | ||
JPS62186527A (en) | Deposited film forming method | |
JPH1160391A (en) | Production of silicon carbide single crystal | |
JPH10297997A (en) | Formation of silicon carbide singe crystal | |
JP2002308698A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP4907009B2 (en) | Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body | |
JPS62183108A (en) | Formation of deposit film | |
JPS62214167A (en) | Production of thin piezo-electric film | |
JP2000026199A (en) | Production of silicon carbide single crystal and silicon carbide single crystal produced therewith | |
JP3008455B2 (en) | Method for manufacturing crystalline silicon film |