JPS6163590A - Installation for production of single cyrstal of compound semiconductor - Google Patents

Installation for production of single cyrstal of compound semiconductor

Info

Publication number
JPS6163590A
JPS6163590A JP18559784A JP18559784A JPS6163590A JP S6163590 A JPS6163590 A JP S6163590A JP 18559784 A JP18559784 A JP 18559784A JP 18559784 A JP18559784 A JP 18559784A JP S6163590 A JPS6163590 A JP S6163590A
Authority
JP
Japan
Prior art keywords
aluminum nitride
crucible
polytype
compound semiconductor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18559784A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18559784A priority Critical patent/JPS6163590A/en
Priority to EP85306325A priority patent/EP0177194A3/en
Publication of JPS6163590A publication Critical patent/JPS6163590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:The insulating part is made of a polytype AlN or a sintered AlN coated with polytype AlN and the part of increased heat insulation properties is used to enable the production of single crystals of large size and high quality. CONSTITUTION:The single cystal production unit is composed of a high-pressure vessel 1, crucible 2, crucible supporters 3, 4, 5, a heater surrounding coaxially the crucible 2, and a cylindrical insulator 12 arranged outside the heater 6. the insulator 12 is made of a polytype aluminum nitride or aluminum nitride coasted with polytype aluminum nitride and formed by following procedures. Namely, aluminum nitride, yttrium oxide and silicon dioxide are mixed, the mixture is formed using paraffin, the, the paraffin is removed and the formed product is heated at about 2,000 deg.C for 2 hours in a nitrogen atmosphere to give the objective insulation part of polytype aluminum nitride consisting of Al-Si-O-N compounds.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はLEC法により化合物半導体単結晶を製造する
場合に用いられる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus used for manufacturing compound semiconductor single crystals by the LEC method.

[発明の技術的背景とその問題点] 従来から、GaAs、GaP、lnP等の融点での分解
圧が高い化合物半導体単結晶の製造方法としてLE’C
法が知られている。
[Technical background of the invention and its problems] LE'C has been conventionally used as a method for manufacturing compound semiconductor single crystals such as GaAs, GaP, and InP, which have a high decomposition pressure at their melting point.
The law is known.

この方法を第1図を用いて説明すると、まず結晶原料と
封止剤、例えばB203を入れたるつば2を、高圧容器
1内に配設されているるつぼ受け台3.4.5に装着す
る。
To explain this method using FIG. 1, first, a crucible 2 containing a crystal raw material and a sealant such as B203 is mounted on a crucible holder 3.4.5 disposed in a high-pressure container 1. .

次にるつぼ2を同軸的に取り囲む発熱体6によってるつ
ぼ2内の結晶原料と封止剤とを加熱溶融する。
Next, the crystal raw material and sealant in the crucible 2 are heated and melted by a heating element 6 coaxially surrounding the crucible 2.

このとき結晶原料融液7と封止剤融液8とは密度差によ
って2層状態となり、密度の大きい結晶原料融液7(融
液の密度はGa ASで約5.7り/cffl、InP
で約5.0(1/C11’、GaPで約4゜4り/【i
)は、密度の小さい封止剤融液8(R液密度はB2O3
で約1.59/c+/)で被覆されることによって結晶
原料融液7の分解蒸発が抑えられ、また高圧容器1内を
不活性ガスで加圧することにより結晶原料融液7の気化
が抑えられる。
At this time, the crystal raw material melt 7 and the sealant melt 8 are in a two-layer state due to the density difference, and the crystal raw material melt 7 has a large density (the density of the melt is about 5.7 ref/cffl for Ga AS, InP
about 5.0 (1/C11', GaP about 4°4ri/[i
) is a low-density sealant melt 8 (R liquid density is B2O3
1.59/c+/), the decomposition and evaporation of the crystal raw material melt 7 is suppressed, and by pressurizing the inside of the high-pressure container 1 with an inert gas, the vaporization of the crystal raw material melt 7 is suppressed. It will be done.

この状態で結晶引き上げ軸9の先端に取付けた種結晶1
0を封止剤融液8を通過させて結晶原料融液7に接触さ
せ、この後、この引き上げ軸9を回転させながら引き上
げて単結晶11を得る。
In this state, the seed crystal 1 attached to the tip of the crystal pulling shaft 9
0 is passed through the sealant melt 8 and brought into contact with the crystal raw material melt 7, and then pulled up while rotating the pulling shaft 9 to obtain the single crystal 11.

このようにLEC法は比較的簡単な装置で単結晶を製造
できる利点があるが、高温高圧下での結晶成長であり、
熱の対流による放熱や温度分布の不均一等が原因して結
晶欠陥が大きいという欠点があった。
As described above, the LEC method has the advantage of being able to produce single crystals with relatively simple equipment, but the crystal growth is performed under high temperature and high pressure.
It has the disadvantage of large crystal defects due to heat dissipation due to heat convection and uneven temperature distribution.

このため、るつぼ内の温度分布の適正維持や発熱体の加
熱効率の確保を目的として、発熱体の外側や上下に熱a
蔽用の保温部材12が配設されることが行われている。
For this reason, in order to maintain an appropriate temperature distribution within the crucible and ensure the heating efficiency of the heating element, heat is generated outside and above and below the heating element.
A heat retaining member 12 for shielding is provided.

この保温部材12や前記るつぼ受け台3.4.5には、
通常形状加工が容易で軽量である炭素製品が用いられて
いる。
This heat insulating member 12 and the crucible holder 3.4.5 include
Carbon products are usually used because they are easy to shape and lightweight.

しかし炭素製品は雰囲気ガスやB203中の微聞の酸素
、水蒸気あるいは吸着により炭素製品自身に含まれてい
た酸素や水蒸気によって容易に酸化劣化してしまうため
、炭素製品の耐久性が低下するのは勿論のこと、酸化反
応物が高圧ガス対流により攪拌されてるつぼ内へ飛び込
んで結晶Fjl’4が汚染されるという問題が生じてい
た。
However, carbon products are easily oxidized and deteriorated by atmospheric gases, traces of oxygen and water vapor in B203, or oxygen and water vapor contained in the carbon product itself due to adsorption, so the durability of carbon products decreases. Of course, there was a problem in that the oxidation reactants flew into the crucible being stirred by the high-pressure gas convection and contaminated the crystal Fjl'4.

本発明者らはこのような問題を解消するため研究を進め
たところ、保温部材の材質として窒化アルミニウム焼結
体が最適であることを見出し先に出願した。この窒化ア
ルミニウム焼結体からなる保温部材は酸化劣化が少なく
、酸化生成物による結晶原料融液の汚染が減少して結晶
の品質が向上するが、最近の単結晶を大きくするための
装置の大型化の要求に伴なって、より保温力の大きい保
温部材が求められてきている。
The inventors of the present invention conducted research to solve these problems, and found that aluminum nitride sintered bodies were the most suitable material for the heat-retaining member, and filed an application for the same. This heat-retaining member made of sintered aluminum nitride has little oxidative deterioration, reduces contamination of the crystal raw material melt by oxidation products, and improves crystal quality. With the increasing demand for heat-retaining materials, there is a need for heat-retaining members with greater heat-retaining ability.

[発明の目的] 本発明はこのような点に対処してなされたもの    
□で、保温力の大きい保温部材を利用して、より大型の
高品質の単結晶を製造することができる化合物半導体単
結晶の製造装置を提供することを目的とする。
[Object of the invention] The present invention has been made to address these points.
□An object of the present invention is to provide an apparatus for manufacturing a compound semiconductor single crystal that can manufacture a larger, high-quality single crystal by using a heat-retaining member with a large heat-retaining ability.

C発明の概要] すなわち本発明の化合物半導体結晶の製造装置は、高圧
容器と、該高圧容器内に配設されたるつぼおよびるつぼ
受け台と、該るつぼおよびるつぼ受け台を取り囲む発熱
体と、該発熱体の外側に配設された保温部材と、前記る
つぼ上に昇降自在に配置された結晶引上げ装置とから主
に構成される化合物半導体単結晶の製造装置において、
前記保温部材をポリタイプの窒化アルミニウムまたはポ
リタイプの窒化アルミニウムで被覆された窒化アルミニ
ウム焼結体で構成してなることを特徴としている。
C. Summary of the Invention] That is, the compound semiconductor crystal manufacturing apparatus of the present invention comprises a high-pressure container, a crucible and a crucible holder arranged in the high-pressure container, a heating element surrounding the crucible and the crucible holder, and a heating element surrounding the crucible and the crucible holder. In a compound semiconductor single crystal manufacturing apparatus mainly comprising a heat insulating member disposed outside a heating element and a crystal pulling device disposed on the crucible so as to be movable up and down,
The heat insulating member is characterized in that it is constituted by polytype aluminum nitride or an aluminum nitride sintered body coated with polytype aluminum nitride.

本発明におけるポリタイプの窒化アルミニウムからなる
保温部材は、例えば次のようにして製造される。
The heat insulating member made of polytype aluminum nitride in the present invention is manufactured, for example, as follows.

すなわち、まず窒化アルミニウムに、0.1〜10更通
%の二酸化ケイ素と必要により酸化カルシウム、酸化イ
ツトリウム等の緻密化助剤を添加、混合し、さらにバイ
ンダを加えて筒状あるいは板状の所定形状に成形した後
脱脂し、窒素雰囲気等の不活性ガス中1700〜200
0’Cの高温で加熱する。このようにして焼結が完了す
ると全体がAβ−Si−0−N系化合物からなる保温部
材が1qられる。
That is, first, 0.1 to 10 percent silicon dioxide and, if necessary, densification aids such as calcium oxide and yttrium oxide are added and mixed to aluminum nitride, and then a binder is added to form a specified cylinder or plate shape. After molding into a shape, it is degreased and heated to a temperature of 1700 to 200 in an inert gas such as a nitrogen atmosphere.
Heat at a high temperature of 0'C. When the sintering is completed in this way, 1q of heat insulating members made entirely of Aβ-Si-0-N-based compounds are completed.

またポリタイプの窒化アルミニウムで7P!Nされた窒
化アルミニウムからなる保温材は、次のようにして製造
される。
Also, 7P with polytype aluminum nitride! A heat insulating material made of N-treated aluminum nitride is manufactured as follows.

すなわち、所定の保温材の形状に成形した窒化アルミニ
ウム成形体または焼結体の表面に、CVD法あるいはス
パッタリング法等により二酸化ケイ素の膜を形成し、窒
素雰囲気中で、成形体の場合は1700”C以上に加熱
して反応とともに焼成を行ない、焼結体の場合は150
0’C以上に加熱して反応させることにより、表面がA
Q−3i−0−N系化合物からなるポリタイプの窒化ア
ルミニウムで被覆された窒化アルミニウム焼結体からな
る保温部材が得られる。なお、この方法において形成さ
れるポリタイプの窒化アルミニウム居の厚さは二酸化ケ
イ素膜の厚さに依存することになる。
That is, a film of silicon dioxide is formed on the surface of an aluminum nitride molded body or sintered body molded into the shape of a predetermined heat insulating material by a CVD method or a sputtering method, and in the case of a molded body, a film of 1700" is formed in a nitrogen atmosphere. It is heated to a temperature of 150° C. or higher to react and sinter, and in the case of a sintered body,
By heating above 0'C to cause a reaction, the surface becomes A
A heat insulating member made of an aluminum nitride sintered body coated with polytype aluminum nitride made of a Q-3i-0-N-based compound is obtained. Note that the thickness of the polytype aluminum nitride layer formed by this method depends on the thickness of the silicon dioxide film.

なお、ポリタイプの窒化アルミニウムとしては、△e−
○−N系のものもあり、Al−Si−0−N系とほぼ同
様に適用できる。
In addition, as polytype aluminum nitride, △e-
There is also a -N type, which can be applied almost in the same way as the Al-Si-0-N type.

本発明においては、特に外周部分がポリタイプの窒化ア
ルミニウムで被覆された窒化アルミニウム焼結体からな
る円筒状保温部材が結晶原料融液への汚染のおそれがな
く、保温性にも優れるので特性の優れた半導体結晶を1
qることができる。
In the present invention, a cylindrical heat insulating member made of an aluminum nitride sintered body whose outer periphery is coated with polytype aluminum nitride has excellent characteristics because there is no risk of contamination of the crystal raw material melt and it has excellent heat retention properties. Excellent semiconductor crystal 1
I can do it.

[発明の実施例] 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例1 本発明装置は図面に示すように、高圧容器1と、この容
器内に配設されたるつぼ2およびるつぼ受け台3.4.
5と、このるつぼ2を同軸的に取り囲む発熱体6と、こ
の発熱体6の外周に配設された円筒状の保温部材12と
から主に構成されており、保温部材12は次のように製
造した。
Embodiment 1 As shown in the drawings, the apparatus of the present invention includes a high-pressure container 1, a crucible 2 and a crucible pedestal 3.
5, a heating element 6 coaxially surrounding the crucible 2, and a cylindrical heat insulating member 12 disposed around the outer periphery of the heating element 6. The heat insulating member 12 is constructed as follows. Manufactured.

粒?J!1.2μmの窒化アルミニウム931a%と、
粒径O17μmの酸化イツトリウム3型苗%と、粒径0
.2μmの二酸化ケイ素4重伝%とを混合し、さらにパ
ラフィンを所定量添加して成形した後脱脂し、窒素雰囲
気中で約2000 ’CX 2時間の条件で反応させる
とともに焼成して全体がへβ−81−〇−N系化合物か
らなるポリタイプの窒化アルミニウム製保温部材をiす
だ。この保温部材は窒化アルミニウム製のものに比べて
熱伝導電率が約1/10と小さく、保温性に優れていた
grain? J! 1.2μm aluminum nitride 931a%,
Yttrium oxide type 3 seedlings with particle size O17μm and particle size 0
.. 2μm of silicon dioxide is mixed with 2μm of silicon dioxide, and after adding a predetermined amount of paraffin and molding, it is degreased, reacted in a nitrogen atmosphere at about 2000'CX for 2 hours, and fired to reduce the whole to β. -81- A polytype aluminum nitride heat insulating member made of a N-based compound is used. This heat retaining member had a thermal conductivity that was about 1/10 lower than that of a member made of aluminum nitride, and had excellent heat retaining properties.

この装置を使用して従来方法によりQa AS単結晶を
引き上げたところ、るつぼ内の温度分布がより均一であ
るため結晶欠陥が窒化アルミニウム製促温部材を使用し
た場合よりも低減した。また、従来の炭素製品を使用し
た場合と比較すると結晶欠陥は1/10g、上低減した
When a Qa AS single crystal was pulled by the conventional method using this apparatus, crystal defects were reduced compared to when an aluminum nitride heating member was used because the temperature distribution in the crucible was more uniform. Furthermore, compared to the case where conventional carbon products were used, crystal defects were reduced by 1/10g.

実施例2 実施例1における保温部材として、次のように製造した
ものを使用した以外は実施例1と同様の装置によりGa
As単結晶を引き上げた。
Example 2 Ga was heated using the same equipment as in Example 1, except that the heat insulating member in Example 1 was manufactured as follows.
An As single crystal was pulled up.

この保温部材は、第2図に示すような円筒状の窒化アル
ミニウム成形体の表面に、厚さ1μ階の二酸化ケイ素の
膜をCVD法により成形し、その後窒素雰囲気中で20
00℃×2時間の条件で反応させるとともに焼成を行な
ってポリタイプの窒化アルミニウム層13で被覆された
窒化アルミニウム焼結体14からなる保温部材を製造し
た。得られた単結晶は結晶欠陥が窒化アルミニウム製保
温部材を使用した場合よりも低減していた。
This heat insulating member is made by forming a silicon dioxide film with a thickness of 1 μm on the surface of a cylindrical aluminum nitride molded body as shown in Fig. 2 using the CVD method, and then in a nitrogen atmosphere for 20 minutes.
A heat insulating member consisting of an aluminum nitride sintered body 14 coated with a polytype aluminum nitride layer 13 was manufactured by reacting and firing under the conditions of 00° C. for 2 hours. The resulting single crystal had fewer crystal defects than when an aluminum nitride heat insulating member was used.

〔発明の効果1 以上説明したように本発明の化合物半導体単結晶の製造
装置では、保温部材に、通常の窒化アルミニウムより保
温性に優れたポリタイプの窒化アルミニウムを使用して
いるので、るつぼ内の温度分布がより均一になる結果、
高品質の化合物半導体単結晶が1qられるとともに、装
置を大型化した場合に生じる温度分布を避けることがで
きる。
[Effect of the invention 1] As explained above, in the compound semiconductor single crystal manufacturing apparatus of the present invention, polytype aluminum nitride, which has better heat retention than ordinary aluminum nitride, is used for the heat insulation member, so that the inside of the crucible is As a result, the temperature distribution of
1 q of high-quality compound semiconductor single crystals can be obtained, and temperature distribution that occurs when the device is enlarged can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例を概略的に示す略式断面図
、第2図は本発明装置の特徴部分である保温部材の実施
例を示す斜視図である。 1・・・・・・・・・・・・・・・高圧容器2・・・・
・・・・・・・・・・・るつぼ3.4.5・・・るつぼ
受け台 6・・・・・・・・・・・・・・・発熱体7・・・・・
・・・・・・・・・・結晶原料融液8・・・・・・・・
・・・・・・・封止剤融液12・・・・・・・・・・・
・・・・保温部材13・・・・・・・・・・・・・・・
窒化アルミニウムポリタイプ層
FIG. 1 is a schematic sectional view schematically showing an embodiment of the apparatus of the present invention, and FIG. 2 is a perspective view showing an embodiment of a heat insulating member which is a characteristic part of the apparatus of the present invention. 1・・・・・・・・・・・・・・・High pressure container 2・・・・
・・・・・・・・・・・・ Crucible 3.4.5 Crucible holder 6・・・・・・・・・・・・Heating element 7・・・
......Crystal raw material melt 8...
......Sealant melt 12...
・・・・Heat insulation member 13・・・・・・・・・・・・・・・
aluminum nitride polytype layer

Claims (3)

【特許請求の範囲】[Claims] (1)高圧容器と、該高圧容器内に配設されたるつぼお
よびるつぼ受け台と、該るつぼおよびるつぼ受け台を取
り囲む発熱体と、該発熱体の外側に配設された保温部材
と、前記るつぼ上に昇降自在に配置された結晶引上げ装
置とから主に構成される化合物半導体単結晶の製造装置
において、前記保温部材をポリタイプの窒化アルミニウ
ムまたはポリタイプの窒化アルミニウムで被覆された窒
化アルミニウム焼結体で構成してなることを特徴とする
化合物半導体単結晶の製造装置。
(1) a high-pressure container, a crucible and a crucible holder arranged in the high-pressure container, a heating element surrounding the crucible and the crucible holder, a heat-retaining member arranged outside the heating element; In a compound semiconductor single crystal manufacturing apparatus mainly consisting of a crystal pulling device disposed on a crucible so as to be able to move up and down, the heat insulating member is made of polytype aluminum nitride or aluminum nitride sintered coated with polytype aluminum nitride. An apparatus for manufacturing a compound semiconductor single crystal, characterized in that it is made up of solids.
(2)ポリタイプの窒化アルミニウムは、Al−Si−
O−N系化合物からなる特許請求の範囲第1項記載の化
合物半導体単結晶の製造装置。
(2) Polytype aluminum nitride is Al-Si-
An apparatus for producing a compound semiconductor single crystal according to claim 1, which is made of an O-N compound.
(3)Al−Si−O−N系化合物は、窒化アルミニウ
ムと二酸化ケイ素とを高温で加熱して反応させたもので
ある特許請求の範囲第2項記載の化合物半導体単結晶の
製造装置。
(3) The apparatus for manufacturing a compound semiconductor single crystal according to claim 2, wherein the Al-Si-O-N-based compound is obtained by heating aluminum nitride and silicon dioxide at a high temperature to cause a reaction.
JP18559784A 1984-09-05 1984-09-05 Installation for production of single cyrstal of compound semiconductor Pending JPS6163590A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18559784A JPS6163590A (en) 1984-09-05 1984-09-05 Installation for production of single cyrstal of compound semiconductor
EP85306325A EP0177194A3 (en) 1984-09-05 1985-09-05 Apparatus for production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18559784A JPS6163590A (en) 1984-09-05 1984-09-05 Installation for production of single cyrstal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6163590A true JPS6163590A (en) 1986-04-01

Family

ID=16173582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18559784A Pending JPS6163590A (en) 1984-09-05 1984-09-05 Installation for production of single cyrstal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6163590A (en)

Similar Documents

Publication Publication Date Title
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
US3275415A (en) Apparatus for and preparation of silicon carbide single crystals
JPS6365640B2 (en)
JPH04501251A (en) Epitaxial Ba-Y-Cu-O superconducting thin film
US5089468A (en) Process for producing bismuth-based superconducting oxide
JP4416040B2 (en) Compound semiconductor crystal
US4572844A (en) Method for preparing coated powder
US6554897B2 (en) Method of producing silicon carbide
JPS6163590A (en) Installation for production of single cyrstal of compound semiconductor
JPS60226492A (en) Single crystal producer for compound semiconductor
JP3300382B2 (en) Method for producing β-BaB2O4 thin film
JPS6163591A (en) Installation for production of single crystal of compound semiconductor
US3429831A (en) Lithiated nickel oxide crystals
JPS6018638B2 (en) Silicon single crystal pulling equipment
US6497829B2 (en) Method of producing silicon carbide: heating and lighting elements
NL2029666B1 (en) MANUFACTURING METHOD OF SILICON CARBIDE (SiC) SINGLE CRYSTAL
WO2019153335A1 (en) Plastic semiconductor material and preparation method thereof
JPS6163588A (en) Apparatus for producing compound semiconductor single crystal
JPS5950626B2 (en) Container for pulling silicon single crystals
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPH0784357B2 (en) Boron nitride coated crucible
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
US20020071804A1 (en) Method of producing silicon carbide: high temperature sensor elements
JP2987426B2 (en) Manufacturing method of graphite