JPS5950626B2 - Container for pulling silicon single crystals - Google Patents

Container for pulling silicon single crystals

Info

Publication number
JPS5950626B2
JPS5950626B2 JP7047681A JP7047681A JPS5950626B2 JP S5950626 B2 JPS5950626 B2 JP S5950626B2 JP 7047681 A JP7047681 A JP 7047681A JP 7047681 A JP7047681 A JP 7047681A JP S5950626 B2 JPS5950626 B2 JP S5950626B2
Authority
JP
Japan
Prior art keywords
silicon
silicon nitride
container
silicon single
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7047681A
Other languages
Japanese (ja)
Other versions
JPS57188497A (en
Inventor
透逸 松尾
康弘 今西
秀夫 長島
正晴 渡辺
俊郎 宇佐美
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd, Toshiba Ceramics Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7047681A priority Critical patent/JPS5950626B2/en
Priority to US06/368,440 priority patent/US4515755A/en
Priority to DE8282103457T priority patent/DE3280107D1/en
Priority to EP82103457A priority patent/EP0065122B1/en
Publication of JPS57188497A publication Critical patent/JPS57188497A/en
Publication of JPS5950626B2 publication Critical patent/JPS5950626B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明はシリコン単結晶引上げ用容器に関する。[Detailed description of the invention] The present invention relates to a container for pulling silicon single crystals.

半導体装置のウェハ等として用いられるシリコン単結晶
の製造方法としては、一般にCZ法が知られている。
The CZ method is generally known as a method for manufacturing silicon single crystals used as wafers and the like for semiconductor devices.

この中で、CZ法はシリコンを容器(ルツボ等)内で溶
融し、種結晶を用いてこれを回転させつつ円柱状のシリ
コン単結晶を引上げる方法である。
Among these, the CZ method is a method in which silicon is melted in a container (such as a crucible), and a cylindrical silicon single crystal is pulled up while rotating it using a seed crystal.

かかるCZ法に用いられるシリコン溶融用容器は、従来
、石英ガラスで形成されている。
A silicon melting container used in such a CZ method has conventionally been made of quartz glass.

しかしながら、容器を石英ガラスで形成すると、シリコ
ンの溶融温度程度でもシリコンと石英ガラスと反応して
、酸素成分が溶融シリコン中に取り込まれ、晶出シリコ
ン中に約2× 101018ato/mの固溶は避けられない。
However, if the container is made of quartz glass, silicon will react with the quartz glass even at the melting temperature of silicon, and oxygen components will be incorporated into the molten silicon, resulting in a solid solution of approximately 2 x 101018ato/m in the crystallized silicon. Inevitable.

このようにシリコン中に酸素が固溶すると、これが種々
の結晶欠陥の核となり、シリコン単結晶の結晶性等を悪
化させるため、これを加工して半導体装置を製造した場
合、その電気特性を著しく劣化させる。
When oxygen is dissolved in silicon in this way, it becomes the nucleus of various crystal defects and deteriorates the crystallinity of the silicon single crystal. Therefore, when a semiconductor device is manufactured by processing this, the electrical characteristics of the silicon are significantly deteriorated. deteriorate.

これに対し、本発明者らは上記欠点を克服すべく鋭意研
究した結果、窒化珪素はシリコンと反応しにくいことに
着目し、反応焼結法による多孔質窒化珪素或いはホット
プレス法による高密度窒化珪素より容器を構成した。
On the other hand, as a result of intensive research by the present inventors in order to overcome the above-mentioned drawbacks, we focused on the fact that silicon nitride does not easily react with silicon. The container was made of silicon.

しかしながら、反応焼結法でポリビニルアルコール等の
粘結剤を、ホットプレス法ではMgO,A I N、
Y2O3などの焼結促進助剤を用いるため、これらが窒
化珪素中に不純物として混入する。
However, the reactive sintering method uses a binder such as polyvinyl alcohol, while the hot pressing method uses MgO, AIN,
Since sintering accelerators such as Y2O3 are used, these are mixed into silicon nitride as impurities.

したがって、こうした窒化珪素からなる容器内でシリコ
ンを溶解し、シリコン単結晶の引上げを行なうと、窒化
珪素中の不純物がシリコン単結晶に固溶してその結晶性
等を著しく悪化させることがわかった。
Therefore, it has been found that when silicon is melted in a container made of silicon nitride and a silicon single crystal is pulled, the impurities in the silicon nitride dissolve into the silicon single crystal and significantly deteriorate its crystallinity. .

しかして、本発明者らは上記知見を踏えて検討した結果
、CVD法により生成される窒化珪素は高純度で高密度
性を有することに着目し、この窒化珪素膜を同種の窒化
珪素焼結体(基材)に被覆して容器を構成した。
As a result of studies based on the above knowledge, the inventors of the present invention focused on the fact that silicon nitride produced by the CVD method has high purity and high density. A container was constructed by coating the body (base material).

しかしながら、この容器を用いてシリコン単結晶の引上
げを行なうと、窒化珪素膜の高純度性が窒化珪素焼結体
中の不純物の拡散等により損なわれ、該容器から不純物
が溶融シリコン中に混入し、その結果得られたシリコン
単結晶の純度低下を招くという致命的な欠点を生じるこ
とを究明した。
However, if this container is used to pull a silicon single crystal, the high purity of the silicon nitride film will be impaired due to the diffusion of impurities in the silicon nitride sintered body, and impurities will be mixed into the molten silicon from the container. It was discovered that this resulted in a fatal drawback of reducing the purity of the resulting silicon single crystal.

そこで、本発明者らは上記究明結果を踏えて更に検討し
たところ、窒化珪素焼結体中の不純物のうちで、Feと
Cuの拡散性が大きいことに着目し、半導体装置の製造
上、多大な悪影響を及ぼすことがらFe含有率を250
ppm以下、Cu含有率が50ppm以下に規制し、か
つ気孔率も所定範囲に規制した窒化珪素焼結体を用い、
これにガス相から析出された窒化珪素膜を被覆して容器
を構成することによって、窒化珪素の不純物に起因する
溶融シリコンへの不純物混入を防止できることを見い出
した。
Therefore, the present inventors conducted further studies based on the above investigation results, and noticed that among the impurities in the silicon nitride sintered body, Fe and Cu have high diffusivity. If the Fe content is 250
Using a silicon nitride sintered body whose Cu content is regulated to 50 ppm or less, and whose porosity is regulated to a predetermined range,
It has been found that by coating this with a silicon nitride film deposited from the gas phase to form a container, it is possible to prevent impurities from entering the molten silicon due to impurities of silicon nitride.

その結果、従来の石英ガラスルツボを使用した場合と異
なり酸素の固溶を防止できるから高純度で酸素濃度が2
X 101016ato/ClTl3以下の非常に低
い良好なシリコン単結晶を引上げることができた。
As a result, unlike when using a conventional silica glass crucible, solid solution of oxygen can be prevented, resulting in high purity and an oxygen concentration of 2.
It was possible to pull a good silicon single crystal with a very low X of 101016ato/ClTl3 or less.

しかも熱衝撃に対して窒化珪素膜は基材質であるため剥
離を起こさない。
Moreover, since the silicon nitride film is made of a base material, it does not peel off due to thermal shock.

つまり、本発明は窒化珪素焼結体をことさら高純度化せ
ず、窒化珪素膜への拡散等を考慮して、少なくともFe
とCuの不純物の含有限界を規制することによって、超
高純度化処理に伴なうコスト高を招くことなく、比較的
安価に上述した効果を有するシリコン単結晶引上げ用容
器を得るに至つたものである。
In other words, the present invention does not particularly purify the silicon nitride sintered body, but takes into consideration diffusion into the silicon nitride film, and at least Fe
By regulating the content limit of impurities of Cu and Cu, we have achieved a container for pulling silicon single crystals that has the above-mentioned effects at a relatively low cost without incurring the high costs associated with ultra-high purification processing. It is.

すなわち、本発明は溶融シリコンから種結晶によりシリ
コン単結晶を引上げる際に用いる容器において、FFe
250pp以下、Cu50ppm以下で気孔率10〜4
0%の窒化珪素焼結体を基材として、その少なくとも溶
融シリコン接触面に、ガス相から析出された窒化珪素膜
を被覆した構造にすることを特徴とするものである。
That is, the present invention provides FFe in a container used for pulling a silicon single crystal from molten silicon using a seed crystal.
250pp or less, Cu50ppm or less, porosity 10-4
The structure is characterized in that a 0% silicon nitride sintered body is used as a base material, and at least the surface in contact with molten silicon is coated with a silicon nitride film deposited from the gas phase.

本発明における窒化珪素焼結体中のFe、 Cuの含有
量を上記範囲に限定した理由はそれらFe。
The reason why the content of Fe and Cu in the silicon nitride sintered body in the present invention is limited to the above range is because of these Fe.

Cuが夫々250ppm、 soppmを超えると、こ
れらの拡散により被覆される窒化珪素膜の純度が悪化し
、シリコン単結晶の引上げ時にそれら不純物により得ら
れたシリコン単結晶の純度低下を招くからである。
This is because when Cu exceeds 250 ppm and soppm, respectively, the purity of the silicon nitride film coated by these diffusions deteriorates, and the purity of the silicon single crystal obtained by these impurities during pulling of the silicon single crystal decreases.

本発明における窒化珪素焼結体の気孔率を上記範囲に限
定した理由は、その気孔率を10%未満にすると、ガス
相から析出される窒化珪素膜の該焼結体に対する密着性
が低下し、その窒化珪素膜の剥離等を招き易くなり、一
方その気孔率が40%を超えると、この上にガス相から
析出される窒化珪素膜の膜質が粗雑となり、ピンホール
等を発生し易くなるからである。
The reason why the porosity of the silicon nitride sintered body in the present invention is limited to the above range is that when the porosity is less than 10%, the adhesion of the silicon nitride film deposited from the gas phase to the sintered body decreases. On the other hand, if the porosity exceeds 40%, the quality of the silicon nitride film deposited from the gas phase becomes rough and pinholes are likely to occur. It is from.

本発明における窒化珪素膜の膜厚は5μm以上にするこ
とが望ましい。
The thickness of the silicon nitride film in the present invention is preferably 5 μm or more.

この理由は、その膜厚を5μm未満にすると、部分的に
ピンホールが生じ易くなり、シリコン単結晶の引上げ時
に溶融シリコンが窒化珪素体に侵入し純度低下を招く恐
れがあるからである。
The reason for this is that if the film thickness is less than 5 μm, pinholes are likely to occur locally, and molten silicon may invade the silicon nitride body during pulling of the silicon single crystal, leading to a decrease in purity.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 まず半導体用ポリシリコンを粉砕し、このシリコン粉末
にポリビニールアルコールを結合剤として加え、成形し
た後、1400℃で5時間窒素雰囲気中で窒化処理した
Example First, polysilicon for semiconductors was pulverized, polyvinyl alcohol was added as a binder to the silicon powder, and the mixture was molded and then nitrided at 1400° C. for 5 hours in a nitrogen atmosphere.

(ルツボNo、 1. 2)これを更に1400℃
のC12ガス中で純化処理した。
(Crucible No. 1. 2) This is further heated to 1400℃
Purification treatment was performed in C12 gas.

(ルツボNo、 3. 4s 5)これらが下記表
に示す純度、気孔率の5種の窒化珪素焼結体(基材)で
ある。
(Crucible No., 3.4s 5) These are the five types of silicon nitride sintered bodies (substrates) with purity and porosity shown in the table below.

次いで、これら基材を蒸着炉内に導入し、SIC14ガ
スを260cc /min、 H2ガスを2000 c
c /min、NH3ガスを80cc /minで供給
し、20TOrrニ保持した状態で1380℃の温度条
件にしたCVD法により厚さ80〜130μmの窒化珪
素膜を基材全面に蒸着して5種のシリコン単結晶引上げ
用ルツボを造った。
Next, these base materials were introduced into a vapor deposition furnace, and SIC14 gas was supplied at 260 cc/min and H2 gas was supplied at 2000 cc/min.
A silicon nitride film with a thickness of 80 to 130 μm was deposited on the entire surface of the substrate using the CVD method under a temperature condition of 1380° C. while supplying NH3 gas at a rate of 80 cc/min and maintaining 20 TOrr. We built a crucible for pulling silicon single crystals.

しかして、得られた各ルツボを用いてシリコンを溶解し
、その溶融シリコンの液面より種結晶を回転しつつ引上
げてシリコン単結晶の引上げを行ない、得られた円柱状
のシリコン単結晶の酸素濃度、結晶状態等を調べた。
The resulting crucibles are used to melt silicon, and the seed crystal is pulled up while rotating from the liquid surface of the molten silicon to pull up the silicon single crystal. The concentration, crystal state, etc. were investigated.

その結果を同表に併記した。The results are also listed in the same table.

上表より明らかなように、Fe及びCuの両者或いは一
方の含有量が本発明の範囲(Fe250I)I)m以下
、Cu50ppm以下)より多い窒化珪素焼結体を基材
としたルツボ(No、 1. 2)を用いた場合、そ
の基材に被覆した窒化珪素膜への不純物拡散に起因して
溶融シリコン中の不純物が多くなり、引上げられたシリ
コンは単結晶とならず、多結晶となった。
As is clear from the above table, crucibles (No. 1. When using 2), impurities in the molten silicon increase due to impurity diffusion into the silicon nitride film coated on the base material, and the pulled silicon becomes polycrystalline instead of single crystal. Ta.

また、Fe、 Cuの含有量が規定値以下の窒化珪素焼
結体を用いても、その気孔率が本発明の範囲、特に下限
値(10%)未満のものを基材としたルツボ(No、
4’)を使用した場合、シリコンの引上げ中に窒化珪
素膜の剥離が生じ、所定のシリコン単結晶の引上げが困
難となった。
Furthermore, even if a silicon nitride sintered body whose content of Fe and Cu is below the specified value is used, a crucible (No. ,
When 4') was used, the silicon nitride film peeled off during silicon pulling, making it difficult to pull a predetermined silicon single crystal.

これに対し、Fe及びCuの両者の含有量が規定値以下
で、気孔率が10〜40%あ範囲にある窒化珪素焼結体
を基材とした本発明のルツボ(No、 3゜5)を用
いた場合、その基材に被覆した窒化珪素膜は剥離せず、
かつ所定の高純度性が維持されることにより、溶融シリ
コン中へ不純物の混入を抑制でき、良質のシリコン単結
晶の引上げを行なうことができた。
On the other hand, the crucible of the present invention (No. 3゜5) is made of a silicon nitride sintered body in which the content of both Fe and Cu is below the specified value and the porosity is in the range of 10 to 40%. When using , the silicon nitride film coated on the base material does not peel off,
Moreover, by maintaining a predetermined level of high purity, it was possible to suppress the incorporation of impurities into the molten silicon, and it was possible to pull high quality silicon single crystals.

しかも本発明のルツボ(No。3.5)を用いて引上げ
られたシリコン単結晶中の酸素量は2 X 10101
6ato/CI+13となり、従来の石英ガラスルツボ
により得られたシリコン単結晶中のそれ(I X 10
1018ato/ClTl3)に比べて著しい酸素濃度
の減少を図ることができた。
Moreover, the amount of oxygen in the silicon single crystal pulled using the crucible of the present invention (No. 3.5) is 2 x 10101
6ato/CI+13, which is higher than that in a silicon single crystal obtained using a conventional quartz glass crucible (I x 10
1018ato/ClTl3), it was possible to significantly reduce the oxygen concentration.

以上詳述したように、本発明によれば高純度で酸素濃
度が2×101016atO/cm3以下の非常に低い
、かつ良好なシリコン単結晶の引上げを行なうことがで
き、ひいては電気的特性の優れた半導体装置の製造に適
したウェハなどに有効なシリコン単結晶を得ることがで
きる等顕著な効果を有するシリコン単結晶引上げ用容器
を提供できるものである。
As described in detail above, according to the present invention, it is possible to pull a silicon single crystal with high purity and a very low oxygen concentration of 2×101016 atO/cm3 or less, and also with excellent electrical properties. It is possible to provide a container for pulling silicon single crystals that has remarkable effects such as being able to obtain silicon single crystals that are effective for wafers and the like suitable for manufacturing semiconductor devices.

Claims (1)

【特許請求の範囲】 1 溶融シリコンから種結晶によりシリコン単結晶を引
上げる際に用いる容器において、 FFe250pp以下、Cu50ppm以下で気孔率1
0〜40%の窒化珪素焼結体を基材として、その少なく
とも溶融シリコン接触面に、ガス相から析出された窒化
珪素膜を被覆した構造にすることを特徴とするシリコン
単結晶引上げ用容器。
[Claims] 1. In a container used for pulling a silicon single crystal from molten silicon using a seed crystal, the porosity is 1 when FFe is 250 ppm or less and Cu is 50 ppm or less.
A container for pulling a silicon single crystal, characterized in that it has a structure in which a silicon nitride sintered body containing 0 to 40% is used as a base material, and at least the surface in contact with molten silicon is coated with a silicon nitride film deposited from a gas phase.
JP7047681A 1981-05-11 1981-05-11 Container for pulling silicon single crystals Expired JPS5950626B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7047681A JPS5950626B2 (en) 1981-05-11 1981-05-11 Container for pulling silicon single crystals
US06/368,440 US4515755A (en) 1981-05-11 1982-04-14 Apparatus for producing a silicon single crystal from a silicon melt
DE8282103457T DE3280107D1 (en) 1981-05-11 1982-04-23 DEVICE PART FROM SILICON NITRIDE FOR DRAWING SINGLE CRYSTALLINE SILICON AND METHOD FOR THE PRODUCTION THEREOF.
EP82103457A EP0065122B1 (en) 1981-05-11 1982-04-23 Device made of silicon nitride for pulling single crystal of silicon and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047681A JPS5950626B2 (en) 1981-05-11 1981-05-11 Container for pulling silicon single crystals

Publications (2)

Publication Number Publication Date
JPS57188497A JPS57188497A (en) 1982-11-19
JPS5950626B2 true JPS5950626B2 (en) 1984-12-10

Family

ID=13432610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047681A Expired JPS5950626B2 (en) 1981-05-11 1981-05-11 Container for pulling silicon single crystals

Country Status (1)

Country Link
JP (1) JPS5950626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547324B2 (en) * 1986-12-01 1993-07-16 Niigata Engineering Co Ltd

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162199A (en) * 1982-12-23 1984-09-13 テキサス・インスツルメンツ・インコ−ポレイテツド Crystal growth using silicon nitride and manufacture of parts therefor
JPH0562869A (en) * 1991-08-30 1993-03-12 Shin Etsu Chem Co Ltd Manufacture of high-integration-level memory structure
NO317080B1 (en) * 2002-08-15 2004-08-02 Crusin As Silicon nitride crucibles resistant to silicon melts and processes for making such crucibles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547324B2 (en) * 1986-12-01 1993-07-16 Niigata Engineering Co Ltd

Also Published As

Publication number Publication date
JPS57188497A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
KR101146050B1 (en) Method and device for ain single crystal production with gas-permeable crucible walls
US3658586A (en) Epitaxial silicon on hydrogen magnesium aluminate spinel single crystals
EP2330236A1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
EP0229322B1 (en) Method and apparatus for czochralski single crystal growing
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
EP1746186B1 (en) A method for producing a silicon single crystal
JPH059097A (en) Method for pulling up silicon single crystal
JPS5950626B2 (en) Container for pulling silicon single crystals
Deike et al. Reactions between liquid silicon and different refractory materials
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JP3888065B2 (en) Quartz crucible
JPS6018638B2 (en) Silicon single crystal pulling equipment
JPS5932427B2 (en) High-density silicon nitride container for pulling silicon single crystals
US4046954A (en) Monocrystalline silicates
JPH0784357B2 (en) Boron nitride coated crucible
US20020071803A1 (en) Method of producing silicon carbide power
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JPH1179896A (en) Production of silicon carbide single crystal
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof
JPH03247506A (en) Polycrystal silicon carbide
JP3709307B2 (en) Silicon single crystal manufacturing method and manufacturing apparatus
JPH11130583A (en) Quartz crucible for pulling single crystal and its production