JPH03247506A - Polycrystal silicon carbide - Google Patents

Polycrystal silicon carbide

Info

Publication number
JPH03247506A
JPH03247506A JP2044769A JP4476990A JPH03247506A JP H03247506 A JPH03247506 A JP H03247506A JP 2044769 A JP2044769 A JP 2044769A JP 4476990 A JP4476990 A JP 4476990A JP H03247506 A JPH03247506 A JP H03247506A
Authority
JP
Japan
Prior art keywords
silicon carbide
vapor deposition
chemical vapor
polycrystal silicon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044769A
Other languages
Japanese (ja)
Inventor
Masashi Shigeto
繁戸 雅司
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2044769A priority Critical patent/JPH03247506A/en
Publication of JPH03247506A publication Critical patent/JPH03247506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To change the thermal expansion coefficient, resistivity, heat conductivity, etc., and to obtain dense high-purity silicon carbide having desired characteristic values by incorporating a polycrystal silicon carbide film obtained by chemical vapor deposition, Al and O into the silicon carbide. CONSTITUTION:An org. compd. such as silane or an inorg. material such as SiO2 and C is used as the raw material, and the former is subjected to chemical vapor deposition at about 1300-1600 deg.C and the latter at about 1600-2000 deg.C under reduced pressure to form a polycrystal silicon carbide film. In this case, 0.1-5vol.% of an alkoxide, an acetylacetone complex, etc., or about 0.1-20wt.% of Al2O3, etc., is added to the raw material. As a result, a polycrystal silicon carbide film is deposited on the substrate of graphite, etc. The silicon carbide having desired characteristic values is obtained in accordance with the contents of Al and O.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、ダミーウェハー等の半導体用治具。[Detailed description of the invention] [Industrial application fields] The present invention relates to a jig for semiconductors such as dummy wafers.

ダイヤモンドコーティング用基材等に使用される化学気
相蒸着法による膜状等の炭化珪素に関するものである。
This invention relates to film-like silicon carbide produced by chemical vapor deposition, which is used for diamond coating substrates and the like.

[従来の技術] 炭化珪素は、高温領域での強度、耐熱性、耐食性、耐摩
耗性に優れた材料であり、焼結体として広い分野で利用
されている。一方、化学気相蒸着法で作製された炭化珪
素は、焼結法で作製された炭化珪素より緻密で高純度で
あるため半導体製造用治具として黒鉛にコーティングし
たり、セラミックス上にコーティングされ表面特性を改
善するために応用されている。
[Prior Art] Silicon carbide is a material with excellent strength, heat resistance, corrosion resistance, and wear resistance in high-temperature regions, and is used as a sintered body in a wide range of fields. On the other hand, silicon carbide produced by chemical vapor deposition is denser and more pure than silicon carbide produced by sintering, so it is often coated on graphite as a jig for semiconductor manufacturing, or coated on ceramics to form a surface. Applied to improve properties.

また、最近、化学気相蒸着法でmmオーダーの厚みの炭
化珪素を作成しダミーウェハー、ビンセットの1部分あ
るいは、ダイヤモンドコーティング用の基材として一部
は実用化されている。
Recently, silicon carbide with a thickness on the order of millimeters has been produced by chemical vapor deposition, and some of it has been put into practical use as part of dummy wafers, bottle sets, or as base materials for diamond coating.

しかしながら、化学気相蒸着法で作成された炭化珪素の
特性については、製法や製造条件を変えて特性を変化さ
せることはむずかしく、工程が繁雑になるなどのため、
従来はほとんど行われていない。
However, it is difficult to change the characteristics of silicon carbide created by chemical vapor deposition by changing the manufacturing method or manufacturing conditions, and the process becomes complicated.
This has rarely been done in the past.

現在実用化されている化学気相蒸着法による炭化珪素の
製造方法には、大きく分けて2種類の方法がある。一つ
は、SiH4,5iHC13、S i CH3C13等
のシラン系のガス、炭化水素ガスおよびH2ガス用いて
炭化珪素を黒鉛等の基材に蒸着する方法。他方は、Si
O2とCを混合した原料を加熱することにより発生する
5iO1COガスを用いて同基材に炭化珪素を蒸着する
方法である。これらの方法で得られた炭化珪素はいずれ
もβ型の結晶構造を持つ多結晶の炭化珪素であり、熱1
14[数!、t、、4.4−4.5X10−6/’Cと
一定しているが、前者の方法で得られた炭化珪素は、(
111)方向に配向する傾向が強く、結晶粒径が細かい
。一方、後者の方法で作製された、炭化珪素は結晶の配
向性はランダムで、比較的、結晶粒が大きく熱伝導率が
大きいのが特徴である。
There are roughly two types of methods for producing silicon carbide by chemical vapor deposition that are currently in practical use. One is a method of vapor depositing silicon carbide onto a base material such as graphite using a silane gas such as SiH4,5iHC13, SiCH3C13, hydrocarbon gas, and H2 gas. The other is Si
This is a method of vapor depositing silicon carbide onto the same substrate using 5iO1CO gas generated by heating a raw material that is a mixture of O2 and C. The silicon carbide obtained by these methods is polycrystalline silicon carbide with a β-type crystal structure, and it
14 [number! , t, is constant at 4.4-4.5X10-6/'C, but the silicon carbide obtained by the former method is (
111) direction, and the crystal grain size is fine. On the other hand, silicon carbide produced by the latter method has random crystal orientation and is characterized by relatively large crystal grains and high thermal conductivity.

単結晶の炭化珪素については半導体的性質をコントロー
ルするため、周期表第3属や第5属の元素をドーピング
してp型あるいはn型の半導体を作製している例がある
。しかしながらこの場合。
In order to control the semiconductor properties of single crystal silicon carbide, there are examples of doping with elements from Group 3 or Group 5 of the periodic table to produce p-type or n-type semiconductors. However in this case.

用途としては半導体に限られる。Its use is limited to semiconductors.

これに対して、焼結法で作成された炭化珪素は。On the other hand, silicon carbide made by sintering method.

焼結時に用いる焼結助材を工夫することで、比抵抗、強
度、熱伝導率をある程度自由にコントロールしている。
By devising the sintering aids used during sintering, specific resistance, strength, and thermal conductivity can be controlled to a certain degree.

[発明が解決しようとする課題] 化学気相蒸着法による多結晶炭化珪素は高密度、高純度
、耐酸化、耐腐食性など優れた性質をもっているが、従
来は前記したように特性値を目的に応じて変化させるこ
とは容易でなかった。
[Problem to be solved by the invention] Polycrystalline silicon carbide produced by chemical vapor deposition has excellent properties such as high density, high purity, oxidation resistance, and corrosion resistance. It was not easy to change it accordingly.

基材に炭化珪素を析出させる場合、両者の熱膨張係数を
ほぼ一致させる必要があり、炭化珪素の熱膨張係数が一
定だとすると基材をそれに合わせなければならず、基材
が制限されることになる。
When depositing silicon carbide on a base material, it is necessary to make the coefficients of thermal expansion of the two almost the same, and if the coefficient of thermal expansion of silicon carbide is constant, the base material must match it, which limits the base material. Become.

その他の用途についても目的に応じて特性が変化できれ
ば便利である。
It would be convenient for other uses as well if the characteristics could be changed depending on the purpose.

本発明の目的は化学気相蒸着法の炭化珪素の熱膨張率、
比抵抗、熱伝導率等の特性を変化させ、用途目的に合フ
た特性値のものを容易に製造できる方法を提供すること
にある。
The purpose of the present invention is to reduce the thermal expansion coefficient of silicon carbide by chemical vapor deposition,
It is an object of the present invention to provide a method for easily manufacturing products with characteristic values that suit the purpose of use by changing characteristics such as specific resistance and thermal conductivity.

[課題を解決するための手段] 上記目的達成のため鋭意研究した結果、化学気相蒸着法
の炭化珪素において、製造工程にA1化合物を添加する
ことにより、析出する多結晶炭化珪素にA1とOを含有
させることにより、特性のコントロールが可能であり、
しかも含有量に応じて一定の傾向で変化することを発見
し、本発明に至ったものである。
[Means for Solving the Problems] As a result of intensive research to achieve the above objectives, it was found that by adding an A1 compound to the manufacturing process of silicon carbide by chemical vapor deposition, A1 and O By containing it, it is possible to control the characteristics,
Furthermore, they discovered that the content changes in a certain manner depending on the content, leading to the present invention.

炭化珪素中に含有するAIと○は主としてA 1203
の形態をなすが、その化アルコキシド等の熱分解による
中間化合物やアルミニウムオキシカーバイドなどが一部
含まれていてもよい。
AI contained in silicon carbide and ○ are mainly A 1203
However, intermediate compounds resulting from thermal decomposition such as alkoxides thereof, aluminum oxycarbide, etc. may be partially included.

A1と○の含有量は通常の化学気相蒸着法による炭化珪
素に含まれる不純物を越える量であり。
The contents of A1 and ○ exceed the impurities contained in silicon carbide produced by ordinary chemical vapor deposition.

十分な特性変化をもたらすにはA1と○の含量で0.0
05重量%以上含有させることが好ましい。
In order to bring about a sufficient change in characteristics, the content of A1 and ○ should be 0.0.
The content is preferably 0.05% by weight or more.

またあまり多く含有させると炭化珪素の特性を失うから
、その上限はA1と○の含量で5重党%とすることが好
ましい。
Moreover, if it is contained too much, the characteristics of silicon carbide will be lost, so it is preferable that the upper limit is set to 5% by the content of A1 and ○.

この炭化珪素は結晶の大きさが10〜100μm程度の
粒子の多結晶体からなり、密度は多くは炭化珪素の理論
密度3.2g/Cm3に対し、3゜1 g / c m
 ”以上である。そして用途にもよるが一般には30μ
m以上の膜状をなしている。
This silicon carbide consists of polycrystalline particles with a crystal size of about 10 to 100 μm, and its density is often 3°1 g/cm, compared to the theoretical density of silicon carbide, which is 3.2 g/cm3.
” or more.Although it depends on the application, it is generally 30μ.
It is in the form of a film with a diameter of m or more.

次に本発明の炭化珪素の製造法の代表例について説明す
る。化学気相蒸着法には大別してシラン系等の有機化合
物を原料とする方法、SiO2とCの混合原料を用いる
方法があるが、本発明にはこのいずれも適用できる。有
機化合物を用いる場合はそのガス中に有機系A1化合物
例えば、アルコキシド(A l (OC3H5) 3)
やアセチルアセトン錯体(A l  (Cs H702
) 3 )等を混合させればよい。その量はガスの容量
で0. 1〜5%が適当である。また、SiO2とCを
原料とした方法では、アルミナ(A l 203)を、
固体として原料に0゜1〜20重量%程度混合する方法
、あるいは、前述の有機系Al化合物をガスとして原料
から蒸発してくるガス中に0. 1〜5容量%混合する
方法で目的とする炭化珪素が作製できる。
Next, a typical example of the method for producing silicon carbide of the present invention will be explained. Chemical vapor deposition methods can be roughly divided into methods using organic compounds such as silane as raw materials, and methods using mixed raw materials of SiO2 and C, both of which can be applied to the present invention. When an organic compound is used, an organic A1 compound such as an alkoxide (A l (OC3H5) 3) is added to the gas.
and acetylacetone complex (A l (Cs H702
) 3) etc. may be mixed. The amount is 0. 1 to 5% is appropriate. In addition, in the method using SiO2 and C as raw materials, alumina (Al 203) is
A method of mixing about 0.1 to 20% by weight with the raw material as a solid, or a method of adding 0.1 to 20% by weight of the organic Al compound described above into the gas evaporated from the raw material as a gas. The desired silicon carbide can be produced by mixing 1 to 5% by volume.

炭化珪素を析出させる温度は従来公知の方法と変りはな
く有機化合物を原料とする場合は1300〜1600℃
程度、SiO2とCを原料とする場合は1600〜20
00℃程度である。そして前者では通常水素ガスをキャ
リアーガスとして用い、両者とも減圧下で行われる。
The temperature at which silicon carbide is precipitated is the same as in conventional methods, and is 1300 to 1600°C when using organic compounds as raw materials.
degree, 1600 to 20 when using SiO2 and C as raw materials
It is about 00℃. In the former, hydrogen gas is usually used as a carrier gas, and both are carried out under reduced pressure.

炭化珪素を析出させる基材は通常は黒鉛であるが1本発
明では炭化珪素の熱膨張を変化させることができるので
、黒鉛の外、焼結炭化珪素、タングステンカーバイド等
も用いることができる。
The base material on which silicon carbide is deposited is usually graphite, but in the present invention, the thermal expansion of silicon carbide can be changed, so in addition to graphite, sintered silicon carbide, tungsten carbide, etc. can also be used.

本発明による炭化珪素は板状、筒状、その他の形状の基
材に膜状として析出させ、そのまま使用することができ
、あるいは基材を酸化、溶解等により除去し、炭化珪素
自立体として使用することもできる。
The silicon carbide according to the present invention can be deposited as a film on a plate-shaped, cylindrical, or other shaped base material and used as it is, or the base material can be removed by oxidation, dissolution, etc. and used as a free-standing silicon carbide body. You can also.

[作用] 炭化珪素を化学気相蒸着法で、A1、○を同時に添加し
て作製したものは、炭化珪素の結晶中あるいは、結晶粒
界に酸化物として蒸着され、電気抵抗を大きくする働き
を持っているものと考えられる。強度についても増加す
る傾向が見られる。
[Function] Silicon carbide made by adding A1 and ○ at the same time by chemical vapor deposition is deposited as an oxide in the silicon carbide crystal or at the grain boundaries, and has the function of increasing electrical resistance. It is considered that you have it. There is also a tendency for strength to increase.

この様な炭化珪素は、焼結法で作られた炭化珪素に較べ
、気孔がほとんどなく、緻密性がきわめて良好である。
Such silicon carbide has almost no pores and is extremely dense compared to silicon carbide made by a sintering method.

また、焼結法では、厚みの薄い材料を製造することはき
わめて困難であるが、化学気相蒸着法で作製すると、μ
mから数mmの厚みの材料の製造も可能になる。従来の
化学気相蒸着法では、基材の熱膨張係数と析出した炭化
珪素の熱膨張係数が、一致しないと析出成長中にストレ
スが蓄積し、亀裂や反り等が生じる。そのため、基材の
選定は、重要なポイントとされている。この点を含めて
改良を行ったのが本発明の重要なポイントである。
In addition, it is extremely difficult to manufacture thin materials using the sintering method, but when manufacturing using the chemical vapor deposition method, μ
It also becomes possible to manufacture materials with a thickness of several millimeters. In the conventional chemical vapor deposition method, if the thermal expansion coefficient of the base material and the thermal expansion coefficient of the deposited silicon carbide do not match, stress will accumulate during the precipitation growth, causing cracks, warping, etc. Therefore, selection of the base material is considered to be an important point. An important point of the present invention is that improvements including this point have been made.

[実施例コ 以下、本発明の実施例を示す。[Example code] Examples of the present invention will be shown below.

実施例1 原料ガスとしてS i HCl 3ガスとC3Hsガス
(混合比6: 1)、キャリアーガスとしてH2を用い
、A l (OC3H3) 3 をS i HCl 3
に対してO,0,1,1,5v01%混合し、約20T
orr、1450℃で黒鉛上にA1.0を添加した炭化
珪素膜(膜厚1 m m )を蒸着した。その時の炭化
珪素の特性を表1に示す。
Example 1 Using S i HCl 3 gas and C3Hs gas (mixing ratio 6:1) as raw material gases and H2 as carrier gas, A l (OC3H3) 3 was converted to S i HCl 3
Mixed with O, 0, 1, 1, 5v01%, about 20T
A silicon carbide film (film thickness: 1 mm) doped with A1.0 was deposited on graphite at 1450°C. Table 1 shows the characteristics of silicon carbide at that time.

実施例2 Si02に対しAl2O3を0,1、2、5、20wt
%混合した原料を黒鉛るつぼにに入れ、るつぼを炭素源
とし、約ITorr、1800℃で黒鉛基材にAl  
○を添加した炭化珪素膜(膜厚1m m )を蒸着した
。その時の炭化珪素の特性を表2に示す。
Example 2 0, 1, 2, 5, 20wt of Al2O3 for Si02
% mixed raw materials were placed in a graphite crucible, the crucible was used as a carbon source, and Al was added to the graphite base material at about ITorr and 1800℃.
A silicon carbide film (film thickness: 1 mm) doped with ○ was deposited. Table 2 shows the characteristics of silicon carbide at that time.

(以下余白) 表1と表2かられかるように、製法の違いによる炭化珪
素の特性は違うものの、原料にA l 203を添加し
た場合、比抵抗を約3桁大きくできる。
(The following is a blank space) As can be seen from Tables 1 and 2, although the characteristics of silicon carbide differ depending on the manufacturing method, when Al 203 is added to the raw material, the specific resistance can be increased by about three orders of magnitude.

また、化学気相蒸着法ではコントロールが困難であった
熱膨張係数の変更も可能になった。 また、A1、○を
添加した炭化珪素をSIMSにより元素分析を行ったと
ころ、比較例の無添加炭化珪素では1表面のみ酸素(m
/e=16)が存在しているが、A1、○を添加したも
のは内部までアルミラムと酸素が存在していることが確
認できた。
Additionally, it has become possible to change the coefficient of thermal expansion, which was difficult to control using chemical vapor deposition. In addition, when silicon carbide with A1 and ○ added was subjected to elemental analysis by SIMS, it was found that in the comparative example of silicon carbide with no additives, only one surface had oxygen (m
/e=16), but it was confirmed that aluminum and oxygen were present even inside the sample containing A1 and ○.

[発明の効果コ 本発明によれば、化学気相蒸着法で得られる緻密な特徴
を変える事なく、比抵抗、熱膨張係数を人為的に変更で
き、コーティングや、自立体の材料として広い分野へ応
用できる。
[Effects of the invention] According to the present invention, the resistivity and coefficient of thermal expansion can be artificially changed without changing the fine features obtained by chemical vapor deposition, and it can be used in a wide range of fields as a material for coatings and self-supporting bodies. Can be applied to.

Claims (1)

【特許請求の範囲】[Claims] 1、A1、Oを含んでいる化学気相蒸着法の多結晶炭化
珪素。
Polycrystalline silicon carbide prepared by chemical vapor deposition containing 1, A1, and O.
JP2044769A 1990-02-26 1990-02-26 Polycrystal silicon carbide Pending JPH03247506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044769A JPH03247506A (en) 1990-02-26 1990-02-26 Polycrystal silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044769A JPH03247506A (en) 1990-02-26 1990-02-26 Polycrystal silicon carbide

Publications (1)

Publication Number Publication Date
JPH03247506A true JPH03247506A (en) 1991-11-05

Family

ID=12700629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044769A Pending JPH03247506A (en) 1990-02-26 1990-02-26 Polycrystal silicon carbide

Country Status (1)

Country Link
JP (1) JPH03247506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169725A (en) * 2019-05-09 2019-10-03 信越化学工業株式会社 SILICON CARBIDE (SiC) COMPOSITE SUBSTRATE
CN112299871A (en) * 2020-11-16 2021-02-02 哈尔滨科友半导体产业装备与技术研究院有限公司 Preparation method of porous ceramic containing silicon carbide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169725A (en) * 2019-05-09 2019-10-03 信越化学工業株式会社 SILICON CARBIDE (SiC) COMPOSITE SUBSTRATE
CN112299871A (en) * 2020-11-16 2021-02-02 哈尔滨科友半导体产业装备与技术研究院有限公司 Preparation method of porous ceramic containing silicon carbide film

Similar Documents

Publication Publication Date Title
US4469801A (en) Titanium-containing silicon nitride film bodies and a method of producing the same
CA2058075C (en) Composite ceramic powder and production process thereof
JPH0134925B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
KR20230004940A (en) Process for manufacturing a silicon carbide coated body
CN116479402A (en) Process for manufacturing a body of coated silicon carbide
US4572844A (en) Method for preparing coated powder
JPS61236604A (en) Synthesizing method for beta-si3n4
KR102571078B1 (en) Process for manufacturing silicon carbide coated bodies
US7179505B2 (en) Manufacturing method of MoSi2-SiC nanocomposite coating
Oh et al. The effect of input gas ratio on the growth behavior of chemical vapor deposited SiC films
JPH03247506A (en) Polycrystal silicon carbide
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JP2000185981A (en) Porous molded article of silicon carbide and its production
KR102476826B1 (en) Process for manufacturing silicon carbide coated bodies
JPH0851001A (en) Ceramic resistor
JPH03252307A (en) Polycrystal silicon carbide
Gomez-Aleixandre et al. Crystallization and sintering characteristics of chemically vapor deposited silicon nitride powders
JPH0784357B2 (en) Boron nitride coated crucible
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS5950626B2 (en) Container for pulling silicon single crystals
JPS60122706A (en) Manufacture of silicon nitride powder
JP2500012B2 (en) Method for manufacturing ceramics sintered body having composite coating layer