JPS6158432B2 - - Google Patents

Info

Publication number
JPS6158432B2
JPS6158432B2 JP53022333A JP2233378A JPS6158432B2 JP S6158432 B2 JPS6158432 B2 JP S6158432B2 JP 53022333 A JP53022333 A JP 53022333A JP 2233378 A JP2233378 A JP 2233378A JP S6158432 B2 JPS6158432 B2 JP S6158432B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
powder
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53022333A
Other languages
English (en)
Other versions
JPS54114513A (en
Inventor
Shuji Yatsu
Akio Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2233378A priority Critical patent/JPS54114513A/ja
Priority to AU35667/78A priority patent/AU518306B2/en
Priority to CA302,420A priority patent/CA1103042A/en
Priority to GB17564/78A priority patent/GB1598775A/en
Priority to FR7813045A priority patent/FR2389437B1/fr
Priority to US05/902,812 priority patent/US4171973A/en
Priority to US05/968,970 priority patent/US4231762A/en
Priority to DE19792905452 priority patent/DE2905452A1/de
Publication of JPS54114513A publication Critical patent/JPS54114513A/ja
Publication of JPS6158432B2 publication Critical patent/JPS6158432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/063Carbides
    • B01J2203/0635Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/0685Crystal sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 現在非鉄合金やプラスチツク、セラミツクの切
削に、ダイヤモンドが70容量%を越し結合材とし
てCoを主成分とする金属が用いられた焼結体部
が超硬合金母材上に接合された工具材が市販され
ている。この工具材は価格が高いにもかかわらず
Siを多く含むAl合金や硬度の高い銅合金などの切
削工具として一部好評を博している。
本発明者らはこの工具材についてその特性など
を種々調査した。この工具材で切削加工用のバイ
トを作成し、前記したような材料を実際に切削し
てみると、確かに耐磨耗性の点においては従来用
いられてきた超硬合金製のバイトに比較してはる
かに優れており、また衝撃に対しては天然ダイヤ
モンドの単石から加工されたバイトに比較して強
靭である特徴を有している。
しかしこのような特徴を持つ反面、例えば非鉄
合金を切削した場合の被加工面を観察すると、天
然ダイヤモンド単石工具に比較して面粗度が粗
く、特に美麗な面粗度が要求される部品材料の加
工には適さないことが判つた。
また時計部品等の小物、薄肉の被加工物を切削
加工する場合、切削抵抗が大きく加工物が変形し
たり、寸法精度が維持できないといつた問題点が
ある。この理由について検討した結果次のことが
判明した。
第1図は現在市販されている超微粒WC基超硬
合金で製作したバイトの刃先顕微鏡写真である。
第2図は前述した市販のダイヤモンド焼結体を
加工して作成したバイトの刃先顕微鏡写真であ
る。両者を比較して判るように市販のダイヤモン
ド焼結体で作成したバイトでは切刃部が鋭く一直
線ではなく、微細な欠けが多い。このダイヤモン
ド焼結体は被研削加工性が極めて悪い。実際にこ
れを用いてバイトを作成する場合はダイヤモンド
砥石を使用して行うが、研削抵抗が高く、短時間
で砥粒が目つぶれを起して切れ味が悪くなり、鋭
い刃先形状に加工することは極めて困難である。
第3図はこのダイヤモンド焼結体の顕微鏡組織
写真を示したものであるが、3〜10μの粒子径を
有するダイヤモンドが相互に接合した組織を呈し
ている。このような粒度のダイヤモンド焼結体を
ダイヤモンド砥石で研削すると切刃部のダイヤ粒
子は破壊されてとても鋭い刃先は得られない。特
に前述したような切削抵抗を極力小さくする為
に、バイト刃先角度ですくい面と逃げ面の両平面
のなす角度が90゜以下の正のすくい角を持つよう
な刃先形状が必要な場合は、この市販のダイヤモ
ンド焼結体では満足な刃先加工ができない。
市販のダイヤモンド焼結体工具材には、第4図
の如く粒度が約60μのダイヤモンド粒子からなる
ものもある。これは主に線引きダイスとして現在
使用されている。発明者等はこの粗粒の焼結体に
ついても線引きダイスとしての性能を調べた。
従来、超硬合金製の線引きダイスを用いていた
分野で使用してみて耐磨耗性が著しく改良される
例がいくつか得られたが、また問題点も明らかに
なつた。これは例えば線引き加工された線の表面
に傷が残るといつた問題である。第5図、第6図
にその一例を示した。第5図は天然ダイヤモンド
の単石で製作したバイトを用いて線引きした直径
0.5mmの銅線の表面状態を示すもので、第6図は
前述の市販のダイヤモンド焼結体を用いて製作し
たダイスで、同一条件で線引きした場合の表面状
態である。
両者を比較して明らかなように、市販のダイヤ
モンド焼結体のダイスでは線の表面傷が非常に多
い。この原因を調べる為に使用后のダイス内面を
観察してみたところ、第7図に示すように焼結さ
れたダイヤモンド粒子の一部が破壊して欠け落ち
ており、このような欠陥部に線引きされる金属が
喰込んで傷の原因となるものと推定された。
以上述べたような市販のダイヤモンド焼結体工
具材の問題点を克服した新規な工具用焼結体を開
発すべく種々検討した結果、発明者等は焼結体中
のダイヤモンド粒子の粒度を極めて微細にするこ
とによつてこれ等の問題点が解消できると考え、
このような焼結体を試作してみた。
ダイヤモンド焼結体の製法としては、例えば日
本特許公告昭39−20483号に示されているような
ダイヤモンド粉末とダイヤモンドを溶解する鉄族
金属等の粉末を混合してダイヤモンドが安定な高
温、高圧条件下でホツトプレスする方法がある。
発明者等は先ずこの方法で粒度1μ以下の微細な
ダイヤモンド粉末とカーボニルNi粉末とを混合
して超高圧下で焼結してみた。この場合ち密な焼
結体は得られたが、焼結体の組織を観察すると組
織中の全面においてダイヤモンド粒子の異常な粒
成長が見られ500μを越える粒子が多数存在して
いた。発明者等は更に原料ダイヤモンド粒子の粒
度を種々変えて、また焼結温度圧力条件を変えて
検討した。その結果この方法では原料ダイヤモン
ド粒子の粒度が3μ以上であれば、このような異
常粒成長を生じることなく充分ち密な焼結体が得
られるが、ダイヤモンド原料粉末の粒度が1μ以
下となると、ち密な焼結体を得る条件下では必ず
粒成長を生じ、均一な微細ダイヤモンド粒子のみ
からなる焼結体は製造できないことが判明した。
また、別の製法として日本特許公告昭52−
12126号に述べられたものがあり、これは現在市
販されている切削工具用のダイヤモンド焼結体の
製法であると見なされる。この方法ではダイヤモ
ンド粉末を超硬合金からなる母材と接して容器内
に充填し、高温、高圧下で超硬合金母材からCo
―W―Cの共晶組成液相をダイヤモンド粉末中に
溶浸せしめることにより焼結する方法である。
発明者等は実際に粒度1μ以下のダイヤモンド
原料粉末を使用してWC―6%Co超硬合金製の円
板に接してこれを充填し、超高圧下で焼結してみ
た。得られた焼結体の超硬合金に接した面を観察
したところ、第8図に示したように数百μに異常
粒成長したダイヤモンドが多数観察された。この
場合も焼結温度条件等を種々変えてみたが、ち密
な焼結体が得られる条件下では必ずこのような異
常粒成長が見られた。
以上のことから従来公知の方法では粒度1μ以
下の微細なダイヤモンド粒子からなる均一な組織
を有する焼結体は製造困難であることが判明し
た。
発明者等は引続いて微細なダイヤモンド粒子か
らなる焼結体の製法を研究した。その結果ダイヤ
モンドの結合材としてWCを主成分とする炭化物
もしくは更にこれに鉄族金属を含有する超硬合金
を用いた場合、目的とする焼結体が得られること
を見出した。
WCを結合材として選んだのは次のような理由
による。まずダイヤモンド焼結体の工具材料とし
ての特徴はダイヤモンドの有する非常に高い硬
度、剛性率、耐磨耗性及びあらゆる材料の中で最
も高い熱伝導率などを生かすことにある。しかし
ダイヤモンドのみからなる焼結体を得るには焼結
に必要とされる圧力が100Kb以上、温度が2500℃
以上と極めて高く工学的に困難な要素が多い。こ
の為適当な結合材を用いて超高圧焼結するのであ
るが、こゝで使用する結合材の選択にも上記した
ようなダイヤモンドの有する優れた特性を害わな
いものを選ぶ必要がある。WCはダイヤモンドや
CBN(立方晶窒化硼素)についで高い剛性率を
有する物質で、また熱伝導率も高い。
この他ダイヤモンドと複合焼結体を作る上で重
要な要素となる熱膨脹係数も殆んどダイヤモンド
に近い値を有しており、焼結体中に不都合な内部
残留応力を残さない点でも優れた結合材物質であ
る。耐磨耗性の点で言えば勿論Co等の金属結合
材よりは優れているが、耐熱性や高温での耐磨耗
性の点では他の化合物に劣る場合もある。
しかしダイヤモンドも高温下では不安定であ
り、この点を考えると結合材の耐熱性はそれほど
重要ではない。以上のことからWCはダイヤモン
ド焼結体の結合材として特に適したものと言うこ
とができる。
WC以外にこれに類した特性を有するものとし
てWの一部または大部分をMoで置換して得られ
るWCと同一結晶構造を有する(MoW)Cがあ
る。発明者等の一人は別の研究者と共にこの化合
物を使用した超硬合金について詳細な特性の研究
を行い、例えば(Mo7W3)Cや(Mo5W5)Cで
表わされる炭化物の硬度、剛性率、耐磨耗性、熱
伝導率、熱膨脹係数等の特性がWCと殆んど類似
していることを確認した。以下の説明ではWCに
限つて述べるが、本発明ではWCと全く同様にこ
の(MoW)C炭化物を用いることができる。
本発明の工具用焼結体は1μ以下のダイヤモン
ド粒子が1μ以下のWCを主成分とする炭化物で
結合された均一な組織を有する焼結体である。硬
質成分であるダイヤモンド粒子が極めて微細な均
一に分散している為に研削してバイトに仕立てる
と、その刃先は極めて鋭い凹凸のないものが得ら
れる。その一例を第9図に示した。これはダイヤ
モンドの含有量が容量で60%、残部が1μ以下の
WCからなる焼結体である。第10図は顕微鏡組
織写真を示したものである。このように研削によ
る刃立性の良いものを得るためには結合材中の
WCも1μ以下のものとする必要がある。
本発明の焼結体を切削工具として使用する場合
刃立性が良く、美麗な被加工面が得られると共
に、結合材が強靭なWCであることから鋭い刃先
角度にしても欠損が少なく、切削抵抗を軽減せし
めて超硬合金工具として同様な刃先形状で使用し
得る為に、その使用分野は一挙に拡大される。
本発明の焼結体中のダイヤモンド含有量は容量
で95〜30%であり、用途に応じて変え得る。特に
強靭性が必要とされ、耐磨耗性を多少犠牲にして
使用する断続切削加工用の工具では結合材量の多
い方を選択する。ダイヤモンド含有量が30%未満
では本発明の焼結体の如く超高圧装置を用いて製
造する工具の価格と寿命の点からメリツトは少な
いようである。
線引きダイスとして本発明の焼結体を使用する
と、先ずダイスの仕上加工面が極めて平滑なもの
が得られ、線引きの際の抵抗が少なく、細径の比
較的強度の低い金属線の線引きでも問題なく行う
ことができ、またダイヤモンド粒子の破壊や脱落
が生じ難く極めて美麗な被加工面が得られる。
さて、本発明の組成の焼結体で何故1μ以下の
超微粒のダイヤモンド粒子からなる均一な組織の
焼結体が得られるかであるが、これは次の如く推
定される。ダイヤモンド粒子は極めて高硬度で変
形し難い。従つて超高圧下で圧縮してもダイヤモ
ンド粒子のみでは粒子間に空隙が残る。ダイヤモ
ンド粒子が微粒であるほど空隙率は増す。前述し
た特公昭39−20483号もしくは特公昭52−12126号
の方法で試作した焼結体はいずれもダイヤモンド
原料粉末の粒度が微細なほど焼結体中の結合金属
量は増やす必要があるか、または結果として増え
る。これ等の方法によるダイヤモンド焼結体の焼
結はダイヤモンドの炭素と鉄属金属との共晶組成
液相を介して行われ、共晶組成液相中にダイヤモ
ンドが溶解、析出することで進行する。特に微細
なダイヤモンド粒子では表面エネルギーが大であ
り粒成長を生じ易いことは一般の液相焼結の場合
と同様であろう。ダイヤモンドが焼結する場合に
異常な粒成長を生じる場合は、ダイヤモンド粒子
の周囲にこれに接してダイヤモンドを溶解するに
充分な量の液相と粒成長を阻害するような他の物
質が存在しない条件下で起ると思われる。
本発明の焼結体では前記した1μ以下の微細な
ダイヤモンド粒子間の空隙を微細なWCが埋めて
おり、これを超高圧下で焼結することによつて特
に液相の存在を必要とせず完全にち密な焼結体を
得ることができる。このようにダイヤモンドの粒
成長が生じる必要条件である液相が存在せず、ま
たダイヤモンド粒子間にWCの粒子が介在するこ
とによりダイヤモンドの焼結時における粒成長は
完全に抑制される。場合によつてはダイヤモンド
粒子の結合材としてWCと共にこれに極く少量の
鉄族金属を含むWC基の超硬合金を用いても良
い。この場合は焼結時においては超硬合金中の鉄
族金属を含む少量の液相で充分ち密な焼結体が得
られる。
また超硬合金中のWC粒子はダイヤモンド粒子
相互の完全な接合を阻害し、粒成長を抑制する。
ダイヤモンドとWCの接合は強固であり、強靭な
超硬合金を結合材として超微粒のダイヤモンド焼
結体が得られる。
本発明の実施に当つてこのようなミクロン以下
のダイヤモンド結晶、WC結晶とから合金が構成
される時には、超硬合金製ボール及び超硬合金で
内張したポツトを用いて両者を湿式ボールミル混
合することが便利である。又湿式ボールミルとほ
ぼ同じ作用をするアトライターや振動ミルを用い
ても良い。
ダイヤモンドは硬いからボールや内張りからか
なり多量の磨耗粉が混入する。これをそのまゝ結
合材成分として利用すれば便利である。特にボー
ルと内張りを結合材を構成しようとする超硬合金
と同じ組成としておけばより便利である。
本発明の焼結体では前記した如く焼結中の液相
量を必要最小限にすることが望ましく、また結合
材は剛性を必要とするので余りに金属成分が多い
ことは好ましくない。Coの場合焼結体の重量で
15%位が限度である。必ずしもCoでなくても良
くNiやFeあるいはCo、Ni、Feの合金であつても
良い。WCが主成分でなくても良いがWCのもつ
強靭性や熱伝導率が高いといつた優れた特性を利
用するという立場からWCを用いることが最も好
ましい。
WCの一部を置換する他の炭化物としてTiC、
ZrC、HfC、TaC、NbC等が使用できる。
本発明の焼結体の原料ダイヤモンド粉末として
は市販されているラツピング加工用の天然もしく
は人造のダイヤモンドパウダーを使用することが
できる。原料ダイヤモンドの粒度は1μ以上のも
のを使用して前記した如く超硬合金製のボール、
ポツトを用いて粉砕して使用しても良い。
本発明の如く微細な1μ以下のダイヤモンド粉
末とWCを均一に混合することが必要な場合は、
前述した如くボールミルによる方法が最も適して
いるが、この場合は超硬合金製のボール、ポツト
を用いてもその超硬合金に含まれる少量の結合金
属が混入することになる。焼結時におけるダイヤ
モンドの粒成長を抑制するには前述した如くこの
金属混入量を最小限にすることが望ましく、この
混入量が多い場合はダイヤモンドとWCの粉砕混
合后これを塩酸溶液中で金属成分を溶解除去する
ことができる。
本発明の焼結体のホツトプレス条件はダイヤモ
ンドが安定な高温、高圧下で行う必要がある。こ
の領域はBerman―Simonの平衡線として良く知
られている。第11図はこのダイヤモンド熱力学
的安定領域を示している。本発明の焼結体はこの
ダイヤモンドの安定領域において圧力45Kb以
上、温度1200℃以上で焼結する。このような高
圧、高温条件で焼結することにより、ダイヤモン
ドと炭化物を主体とする結合相の間に強固な冶金
学的な結合が生じ、目的とする焼結体が得られ
る。さて本発明の焼結体の焼結に当つてはダイヤ
モンド及び結合材中のWCの粒成長を極力抑制す
る必要がある。実験によると結合材中にWCと共
に少量のCo、Fe、Nf等の鉄属金属が存在すると
焼結温度が高過ぎる場合はこの両者はやはり粒成
長する傾向が見られる。目的とする1μ以下のダ
イヤモンドとWCからなる超微粒の焼結体を安定
して製造できる条件は、使用した結合材超硬合金
中の鉄族金属とWCダイヤモンドにより生じる共
晶組成液相の出限温度以上で、これを100℃以上
上回らない範囲である。金属成分を酸洗除去した
場合は更に高温でも焼結時の粒成長は生じない。
本発明の使用原料粉末は極めて微細であるため
吸着ガス量が多い。従つて通常300℃以上の温度
で真空中で加熱脱ガス后焼結する必要がある。
300℃未満の温度で脱ガスする場合は長時間を必
要とする為実際的でない。
以下実施例を述べる。
実施例 1 粒度1μ以下の超微粒のダイヤモンドパウダー
を用い、WC―7%Co超硬合金製のボールと同一
組成の超硬合金で内張されたポツトを使用してア
セトンを溶媒にして粉砕した。ダイヤモンドの投
入量は5gであつたが40時間粉砕したところ重量
は8.3gに増加していた。この増加分がポツトとボ
ールより混入した超硬合金の微細な粉末である。
これよりこの粉末の組成を推定すると容量で80%
のダイヤモンドを含んでいる。この粉末を走査型
電子顕微鏡を用いて観察したところ全部が1μ以
下の極めて微細な粉末からなることが判つた。こ
の粉末を型押、成型して厚さ1.5mm、外径10mmの
円板とした。
これを真空炉中で1000℃まで加熱して脱ガスし
た。脱ガス后超高圧装置を用いて55Kb、1370℃
で10分間保持して焼結した。
得られた焼結体をダイヤモンドペーストを用い
て研磨して組織を調べたところ、1μ以外のダイ
ヤモンド粒子と1μ以下のWCからなる極めて微
細な粒子の焼結体であつた。これを切断して1片
を鋼製のシヤンクにロウ付けし、刃先をダイヤモ
ンド砥石で研削した。同様の形状の市販ダイヤモ
ンド焼結体を用いて比較用のバイトを作成した。
研磨された刃先を観察したところ市販ダイヤモ
ンド焼結体は刃先に巾10μ前後の研削中に欠け落
ちた部分が多く認められた。双方のバイトで電動
機の銅合金製のコミユテーターを切削した。切削
速度は400m/分で、切込み0.5mm、送り0.05mm/
回転で切削した。本発明の焼結体を用いたものは
2000ケ切削した状態で被加工材の表面粗さは最大
粗さ1.3μであつたが、市販のダイヤモンド焼結
体は切削初期より最大粗さ2.6μで、500ケ切削后
3.9μに達した。
実施例 2 実施例1と同様のダイヤモンド原料粉末と超硬
合金製のボールとポツトを用い120時間粉砕し
た。5g投入したダイヤモンド粉末は14.2g増加し
ており全体で19.2gとなつていた。これより粉末
の組成を推定すると、容量で60%のダイヤモンド
と残部がWC―7%Coからなるものである。これ
を希塩酸溶液を用いて金属成分を酸洗除去した。
この粉末を型押成型后、実施例1と同様に加熱
脱ガスした。別にWC―10%Coの厚み3mm、直径
10mmの円板とMo製の厚さ0.05mm、直径10mmの円
板を用意した。脱ガスしたダイヤモンドを含む型
押体に接してMo円盤を置き、その下に超硬合金
の円板を配置して、この全体を超高圧装置に入れ
実施例1と同一条件で焼結した。焼結体を切断し
て断面を観察すると厚さ1mmの超微粒のダイヤモ
ンドを含有する焼結体がMoの炭化物からなる厚
さ50μの中間層を介して超硬合金円板に強固に接
合していた。ダイヤモンド焼結体部の顕微鏡組織
写真が第10図に示したものである。この焼結体
と市販の粒度が3〜10μのダイヤモンド焼結体を
用いてバイトを作成し、Al―18%Si合金製の長さ
方向にスリツトを有する丸棒を切削加工した。
切削速度は500m/分で、切込み0.13mm、送り
0.05mm/回転で切削した。本発明の焼結体は30分
切削后の逃げ面磨耗巾は0.15mmで正常な磨耗であ
つた。市販のダイヤモンド焼結体は30分切削后、
逃げ面に巾0.5mmのチツピングが生じていた。被
削材の仕上げ面は切削初期で本発明の焼結体は最
大粗さ1.6μであり、市販のダイヤモンド焼結体
では2.6μであつた。
実施例 3 粒度3〜6μのダイヤモンド粉末を実施例1と
同様の方法で5時間粉砕したものと25時間粉砕し
たものを作成した。前者はWC―7%Co超硬合金
を重量で32.1%含有しており、容量で約90%のダ
イヤモンドを含有する。後者は重量で86.5%の超
硬合金を含有しており、容量で40%のダイヤモン
ドを含む。この両者の粉末を用いて実施例1と同
様にして直径3mm、厚さ1.5mmの焼結体を得た。
組織をみるといずれも1μ以下のダイヤモンドと
WC粒子からなることが確認された。これを直径
0.5mmの穴径のダイスに加工した。また市販の約
60μの粗粒ダイヤモンドの焼結体で同様のダイス
を製作した。被加工材としてAl線を用い、スピ
ンドル油を潤滑剤として各ダイスの線引き時の引
抜き力を測定した。
市販ダイヤモンド焼結体の場合は15.1Kg/mm2
あつたのに対して本発明の90%のダイヤモンド含
有率のものは12.1Kg/mm2と小さく、また40%のダ
イヤモンド含有率のものは13.8Kg/mm2の値であつ
た。また線引きされた線の表面状態を比較する
と、市販のダイヤモンド焼結体の場合よりも表面
のスジ状の傷が大巾に少なくなつており、特にダ
イヤモンド含有量の多い方は表面傷が少なかつ
た。
実施例 4 (Mo7W3)C―10%Co―5%Ni合金からなる
ボールとポツトを用いて実施例1で用いたダイヤ
モンド粉末4gと粒度3μのTaC粉末を1g加え120
時間粉砕した。粉砕后の重量は15gであつた。
これを実施例2と同様にして混入した金属成分
を酸洗除去した。この粉末は容量でダイヤモンド
65%、(Mo7W3)C32%、TaC3%を含むものであ
る。この粉末を実施例2と同様にして超硬合金製
円板にMo炭化物の中間層を介して接合した焼結
体を作成した。焼結条件は55Kb、1450℃で10分
間保持した。得られた焼結体の組織はやはり1μ
以下の微粒ダイヤモンドと1μ以下の
(Mo7W3)C及び少量のTaCからなる均一な組織
の超微粒合金であつた。
【図面の簡単な説明】
第1図は本発明の効果を説明する為のもので、
市販されている超微粒WC基超硬合金で製作した
バイトの刃先を拡大した顕微鏡写真である。第2
図は市販されている粒度3〜10μのダイヤモンド
の焼結体で製作したバイトの刃先を拡大した顕微
鏡写真である。第3図は第2図に示した市販のダ
イヤモンド焼結体の顕微鏡組織写真である。灰色
の粒子がダイヤモンドの結晶で、白色に見える部
分がCoを主体とする金属結合相である。第4図
はダイスに使用される市販のダイヤモンド焼結体
の顕微鏡組織写真である。灰色の相互に結合した
粒子がダイヤモンドの結晶で、粒度は約60μであ
る。白色の部分がCoを主体とする金属からなる
結合材である。第5図は天然ダイヤモンドの単石
を用いたダイスで線引き加工された0.5mm径の銅
線の表面状態を示す顕微鏡写真である。第6図は
市販のダイヤモンド焼結体で作成したダイスを用
いて、第5図に示したものと同一条件件で線引き
加工された銅線の表面状態の顕微鏡写真である。
第7図は市販のダイヤモンド焼結体で作成したダ
イスの使用后のダイス内面を示した顕微鏡写真で
ある。灰色粒子がダイヤモンドで、周囲の細く黒
い輪郭は粒界、他の黒い部分はダイヤモンドの抜
け落ちた跡である。第8図は本発明の効果を説明
する為のもので、本発明によらない公知の方法で
焼結した微粒ダイヤモンド焼結体の顕微鏡組織写
真である。数百μに異常成長したダイヤモンド結
晶が多数見られる。第9図は本発明による超微粒
ダイヤモンド焼結体を用いて、第2図に示した市
販ダイヤモンド焼結体の場合と同一条件で研削加
工して製作したバイトの刃先状態を示す顕微鏡写
真である。極めて鋭い切刃が得られている。第1
0図は本発明の焼結体の顕微鏡組織写真である。
灰色の微細な粒子がダイヤモンドで白色の結合材
部が1μ以下のWCからなる。第11図は本願発
明焼結体の製造条件を説明するためのもので、ダ
イヤモンドが熱力学的に安定な領域を示してい
る。

Claims (1)

  1. 【特許請求の範囲】 1 圧力45Kb以上、温度1200℃以上のダイヤモ
    ンドが熱力学的に安定な超高圧、高温下で焼結さ
    れた1μ以下のダイヤモンドが容量で95〜30%を
    占め、残りが1μ以下のWCを主体とする炭化物
    結合相からなる工具用焼結体。 2 1μ以下のダイヤモンドが容量で95〜30%を
    占め、残りが1μ以下のWCと同一結晶構造を有
    する(MoW)C炭化物結合相からなる特許請求
    の範囲第1項記載の工具用焼結体。 3 圧力45Kb以上、温度1200℃以上のダイヤモ
    ンドが熱力学的に安定な超高圧、高温下で焼結さ
    れた1μ以下のダイヤモンドが容量で95〜30%を
    占め、残りが1μ以下のWCもしくはこれと同一
    結晶構造を有する(MoW)C炭化物を主成分と
    する超硬合金結合相からなり、鉄族金属が焼結体
    中で15重量%以下であることを特徴とする工具用
    焼結体。 4 WCもしくはこれと同一結晶構造を有する
    (MoW)Cを主成分とする超硬合金ボール、同じ
    くこの超硬合金を内張りしたポツトを用いて必要
    ならばWCもしくは(MoW)C炭化物粉末を加え
    ダイヤモンド粉末を粉砕し、同時にボールと内張
    材とから摩耗によつて混入した微細超硬合金粉末
    を附加し、これ等の粉末を1μ以下に粉砕したの
    ち、これを粉状でもしくは型押成型し、真空中で
    300℃以上の温度に加熱脱ガスしたのち、圧力
    45Kb以上、温度1200℃以上の熱力学的にダイヤ
    モンドが安定な高温、高圧下でホツトプレスする
    ことを特徴とする1μ以下のダイヤモンドが容量
    で95〜30%を占め、残りが1μ以下のWCもしく
    は(MoW)Cを主成分とする結合相からなる工
    具用焼結体の製造方法。
JP2233378A 1977-05-04 1978-02-28 Sintered body for tool use and preparation thereof Granted JPS54114513A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2233378A JPS54114513A (en) 1978-02-28 1978-02-28 Sintered body for tool use and preparation thereof
AU35667/78A AU518306B2 (en) 1977-05-04 1978-05-02 Sintered compact for use ina cutting tool anda method of producing thesame
CA302,420A CA1103042A (en) 1977-05-04 1978-05-02 Sintered compact for use in a cutting tool and a method of producing the same
GB17564/78A GB1598775A (en) 1977-05-04 1978-05-03 Sintered compact for use in a cutting tool and method of producing the same
FR7813045A FR2389437B1 (ja) 1977-05-04 1978-05-03
US05/902,812 US4171973A (en) 1977-05-04 1978-05-04 Diamond/sintered carbide cutting tool
US05/968,970 US4231762A (en) 1977-05-04 1978-12-13 Method of producing a sintered diamond compact
DE19792905452 DE2905452A1 (de) 1978-02-28 1979-02-13 Gesinterter presskoerper, und verfahren zu dessen herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233378A JPS54114513A (en) 1978-02-28 1978-02-28 Sintered body for tool use and preparation thereof

Publications (2)

Publication Number Publication Date
JPS54114513A JPS54114513A (en) 1979-09-06
JPS6158432B2 true JPS6158432B2 (ja) 1986-12-11

Family

ID=12079774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233378A Granted JPS54114513A (en) 1977-05-04 1978-02-28 Sintered body for tool use and preparation thereof

Country Status (2)

Country Link
JP (1) JPS54114513A (ja)
DE (1) DE2905452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774527A2 (en) 1995-11-15 1997-05-21 Sumitomo Electric Industries, Ltd. Superhard composite member and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2163953C (en) * 1994-11-30 1999-05-11 Yasuyuki Kanada Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof
EP1070562A4 (en) 1998-03-02 2004-11-24 Sumitomo Electric Industries SINTERED DIAMOND TOOL AND METHOD FOR THE PRODUCTION THEREOF
US8069937B2 (en) 2009-02-26 2011-12-06 Us Synthetic Corporation Polycrystalline diamond compact including a cemented tungsten carbide substrate that is substantially free of tungsten carbide grains exhibiting abnormal grain growth and applications therefor
CN112899589A (zh) * 2021-01-18 2021-06-04 长沙理工大学 一种超高温耐烧蚀陶瓷基复合材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774527A2 (en) 1995-11-15 1997-05-21 Sumitomo Electric Industries, Ltd. Superhard composite member and method of manufacturing the same

Also Published As

Publication number Publication date
JPS54114513A (en) 1979-09-06
DE2905452A1 (de) 1979-09-06

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
US4171973A (en) Diamond/sintered carbide cutting tool
JP3309897B2 (ja) 超硬質複合部材およびその製造方法
KR900002701B1 (ko) 공구용 다이어몬드 소결체 및 그 제조 방법
JP4173573B2 (ja) 多孔質砥粒砥石の製造方法
EP2101903B1 (en) Abrasive compacts with improved machinability
WO2010002832A2 (en) Abrasive slicing tool for electronics industry
EP1931594A2 (en) Sintered polycrystalline diamond material with extremely fine microstructures
JP2014237892A (ja) 立方晶窒化ホウ素成形体
JPS6121187B2 (ja)
JPH0443874B2 (ja)
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPS5832224B2 (ja) 工具用微細結晶焼結体およびその製造方法
JPS6158432B2 (ja)
JP3513547B2 (ja) 単結晶ダイヤモンド又はダイヤモンド焼結体研磨用砥石及び同研磨方法
JPH0128094B2 (ja)
JPH10310838A (ja) 超硬質複合部材およびその製造方法
KR810001998B1 (ko) 공구용 소결체
JP5008789B2 (ja) 超硬質焼結体
JPS6246510B2 (ja)
JPS6137221B2 (ja)
JPH0215515B2 (ja)
JPS6310119B2 (ja)
JPS6159392B2 (ja)
JP2954996B2 (ja) 工具用焼結材料