JPS6157145B2 - - Google Patents

Info

Publication number
JPS6157145B2
JPS6157145B2 JP1529679A JP1529679A JPS6157145B2 JP S6157145 B2 JPS6157145 B2 JP S6157145B2 JP 1529679 A JP1529679 A JP 1529679A JP 1529679 A JP1529679 A JP 1529679A JP S6157145 B2 JPS6157145 B2 JP S6157145B2
Authority
JP
Japan
Prior art keywords
temperature
cutting fluid
lubricating oil
workpiece
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1529679A
Other languages
Japanese (ja)
Other versions
JPS55112748A (en
Inventor
Masayoshi Takagi
Toshito Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP1529679A priority Critical patent/JPS55112748A/en
Publication of JPS55112748A publication Critical patent/JPS55112748A/en
Publication of JPS6157145B2 publication Critical patent/JPS6157145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/143Methods or arrangements for maintaining a constant temperature in parts of machine tools comprising heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/141Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

【発明の詳細な説明】 本発明は温度制御機能を有する加工装置に関す
るもので、その目的は空調設備のない工場におい
て恒温室とほぼ同じ状態を経済的に作り出し加工
穴中心の位置誤差をなくし高精度の機械加工を達
成することである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing device having a temperature control function.The purpose of the present invention is to economically create conditions almost the same as a constant temperature room in a factory without air conditioning equipment, eliminate positional errors in the center of a processed hole, and increase height. The goal is to achieve precision machining.

一般に広大な機械加工工場に空調設備を設ける
には膨大な設備費を要する上に大電力の消費を余
儀なくされるためほとんど設置されないのが現状
である。空調設備のない一般工場においては、気
温の変化が激しく一日の内でも朝昼晩と変化し、
また四季の移り変りによつても変化し、その温度
差は極めて大きい。
In general, installing air conditioning equipment in a vast machining factory requires a huge amount of equipment cost and consumes a large amount of electricity, so the current situation is that it is rarely installed. In general factories without air-conditioning equipment, the temperature changes dramatically throughout the day, from morning to night.
It also changes with the changing seasons, and the temperature differences are extremely large.

このため工作物と加工装置の相対的熱変位によ
る加工穴中心の位置誤差が生じ工作物の精度維持
が困難な状態にあり、しかも加工装置軸頭部と工
作物の材質の相違による線膨張係数の違いも加工
精度低下の要因となつている。
As a result, relative thermal displacement between the workpiece and processing equipment causes a positional error in the center of the machined hole, making it difficult to maintain the accuracy of the workpiece.In addition, the coefficient of linear expansion is due to the difference in material between the shaft head of the processing equipment and the workpiece. The difference is also a factor in reducing machining accuracy.

第1図は加工装置の軸頭部1と工作物Wの関係
を示すもので、軸頭部1のスピンドル2,3間の
心間距離の熱膨張と工作物Wの加工穴心間距離の
熱膨張は、軸頭部1と工作物Wの線膨張係数の違
いによつても異り、また軸頭部1と工作物Wの熱
容量の違いにより大気の温度変化に伴う温度差及
び発熱源を有する軸頭部の温度上昇によつても両
者の熱膨張には少なからず差異が生ずる。このた
め加工時点における両者の熱膨張に差があると、
常温に復帰した場合には加工穴ピツチに寸法誤差
が生ずることになり、工作物加工精度の低下をも
たらす。
Figure 1 shows the relationship between the shaft head 1 of the processing device and the workpiece W, and shows the relationship between the thermal expansion of the center-to-center distance between the spindles 2 and 3 of the shaft head 1 and the center-to-center distance of the machined hole of the workpiece W. Thermal expansion also varies depending on the difference in linear expansion coefficient between the shaft head 1 and the workpiece W, and also due to the difference in heat capacity between the shaft head 1 and the workpiece W, the temperature difference due to atmospheric temperature changes and the heat generation source. There is also a considerable difference in thermal expansion between the two due to an increase in the temperature of the shaft head. Therefore, if there is a difference in thermal expansion between the two at the time of processing,
When the temperature returns to room temperature, a dimensional error will occur in the machined hole pitch, resulting in a decrease in workpiece processing accuracy.

また、工作物下面が取付基準面となつているよ
うな場合には、加工時点における取付基準面に対
する各加工穴中心までの熱膨張とが等しくないと
常温においては工作物取付基準面に対する加工穴
中心までの寸法誤差も生ずることになる。
In addition, if the bottom surface of the workpiece is the mounting reference surface, if the thermal expansion to the center of each machined hole is not equal to the mounting reference surface at the time of machining, the machined hole relative to the workpiece mounting reference surface will be A dimensional error up to the center will also occur.

ところで軸頭部1の温度も工作物Wの温度も同
じ一定温度に保つことができれば恒温室において
加工したのとほぼ同じ状態にすることができるこ
とになる。その便宜的な手段として軸頭部1には
一定温度に保たれた潤滑油を循環させ、工作物W
には一定温度に保たれた切削液を大量に供給し切
削液温度と等しい状態で加工することが考えられ
る。ところが切削液の供給量は大量であるため、
これを一年を通じて一定温度に制御することは大
容量の温度制御装置を必要とするばかりでなく、
夏とか冬のように大気温度との温度差が大きい場
合にはエネルギー消費が増大し好ましいものでは
ない。四季の温度変化に合せて切削液の温度を段
階的に変えてやれば大気温度に対する温度差を小
さくすることができることになる。一方軸頭部1
の潤滑油温度も切削液の温度の設定替えに伴つて
変えてやれば、加工時点における軸頭部1と工作
物Wの熱膨張量を等しくすることができるので一
般工場においても経済的に恒温室とほぼ同じよう
な加工環境を作り出すことができて加工精度の低
下を防ぎかつエネルギー消費の節減を図ることが
できる。工作物と軸頭部の構成材料の相違に基づ
く線膨張係数の違いがある場合には、切削液と軸
頭部潤滑油の設定温度に差を設けることによりあ
る程度補正することができる。即ち基準温度(摂
氏20度)に対する工作物設定温度との差と基準温
度に対する軸頭部設定温度との差の比が工作物と
軸頭部の線膨張係数の逆比になるようにすれば、
加工時点における工作物の熱膨張量と軸頭部の熱
膨張量とが等しくなり、加工穴中心の位置誤差の
発生は防止できる。
By the way, if the temperature of the shaft head 1 and the temperature of the workpiece W can be kept at the same constant temperature, it will be possible to create almost the same state as when machining was performed in a constant temperature room. As a convenient means for this purpose, lubricating oil kept at a constant temperature is circulated through the shaft head 1, and the workpiece W
One idea would be to supply a large amount of cutting fluid that is kept at a constant temperature and perform machining at the same temperature as the cutting fluid temperature. However, since the amount of cutting fluid supplied is large,
Controlling this to a constant temperature throughout the year not only requires a large-capacity temperature control device;
When the temperature difference with the atmospheric temperature is large, such as in summer or winter, energy consumption increases, which is not preferable. If the temperature of the cutting fluid is changed in stages according to seasonal temperature changes, the temperature difference with respect to the atmospheric temperature can be reduced. On the other hand, shaft head 1
By changing the temperature of the lubricating oil in conjunction with changing the setting of the cutting fluid temperature, it is possible to equalize the amount of thermal expansion of the shaft head 1 and the workpiece W at the time of machining, making it economically possible to maintain a constant temperature even in general factories. It is possible to create a machining environment that is almost the same as that in the chamber, thereby preventing deterioration in machining accuracy and reducing energy consumption. If there is a difference in the coefficient of linear expansion due to the difference in the constituent materials of the workpiece and the shaft head, it can be corrected to some extent by providing a difference in the set temperatures of the cutting fluid and the shaft head lubricating oil. In other words, if the ratio of the difference between the workpiece set temperature and the reference temperature (20 degrees Celsius) and the difference between the shaft head set temperature and the reference temperature is the inverse ratio of the linear expansion coefficients of the workpiece and the shaft head, then ,
The amount of thermal expansion of the workpiece and the amount of thermal expansion of the shaft head at the time of machining become equal, and positional errors in the center of the machined hole can be prevented from occurring.

以下本発明の実施例を図面に基づいて説明す
る。第2図において、10は加工装置、11はベ
ツド、12はベツド11上に設置された送りユニ
ツト、13はこの送りユニツト12に形成された
案内面、14は案内面13に沿つて摺動可能に案
内された摺動台、15は摺動台14上に設置され
た軸頭部、16,17はこの軸頭部に回転可能に
軸承されたスピンドル、18,19はスピンドル
16,17に設けられた加工工具、20は各スピ
ンドル16,17と連結された歯車箱、21はス
ピンドル駆動用のモータである。22は前記ベツ
ド11上に設置された治具本体、この治具本体2
2には工作物Wを位置決めするための基準面23
及びこの基準面23に工作物Wを押圧しクランプ
するクランプ装置24が設けられている。25は
切削液の貯溜槽、26は切削液供給ポンプ、27
はポンプ26に導管28を介して連通され治具本
体22に設けられた切削液噴出ノズル、29は工
作物Wに供給された切削液を回収する戻し管、3
0はこの戻し管29には貯溜槽25に戻される切
削液温度を検出する温度検出器、31は切削液を
加熱する加熱器、32は切削液を冷却する冷却
器、33は温度検出器30にて検出された温度が
設定温度になるように前記加熱器31及び冷却器
32を作動させる温度制御装置、35は軸頭部1
5に供給する潤滑油の貯溜槽、36は潤滑油供給
ポンプ、37はポンプ36と一端が連通され、他
端が軸頭部15に連通された供給管、38は軸頭
部15から排出される潤滑油を貯溜槽35に戻す
戻し管、39は潤滑油を加熱する加熱器、40は
潤滑油を冷却する冷却器、41は戻し管38より
貯溜槽35に戻される潤滑油の温度を検出する温
度検出器、42は温度検出器41にて検出された
温度が設定温度になるように加熱器39及び冷却
器40を作動させる温度制御装置、43は各温度
制御装置33,42の温度設定器、この温度設定
器43は加工装置10の稼動時間帯における平均
室温を検出し、その平均室温を各温度制御装置3
3,42の設定温度として設定する。従つてその
好ましい一例としては加工装置起動時において数
日ないし1週間前から前日に至るまでの平均室温
を設定温度として設定し、その日一日中はその温
度に潤滑油及び切削液温度を維持する。この結
果、室温の変化があつても工作物及び軸頭部は同
じ温度に保たれることになり、相対的な熱膨張の
差による加工穴ピツチ間誤差及び工作物取付面に
対する加工穴中心の位置誤差は防止される。又、
その日一日の室温変化に対し、潤滑油及び切削液
との温度差を最小限にすることができるので、設
定温度維持に要する電力消費も極めて小さくする
ことができるばかりでなく、各温度制御装置3
3,42の加熱器、冷却器は容量の小さなものが
使用できる利点もある。しかも前日までの平均温
度に応じて設定温度を遂次更新すれば四季の変化
に設定温度を追従させることができ、一年を通じ
て室温に対する潤滑油及び切削液の温度差を最小
限に保つことができる。
Embodiments of the present invention will be described below based on the drawings. In FIG. 2, 10 is a processing device, 11 is a bed, 12 is a feed unit installed on the bed 11, 13 is a guide surface formed on this feed unit 12, and 14 is slidable along the guide surface 13. 15 is a shaft head installed on the slide table 14, 16 and 17 are spindles rotatably supported on this shaft head, and 18 and 19 are installed on the spindles 16 and 17. 20 is a gear box connected to each spindle 16, 17, and 21 is a motor for driving the spindle. 22 is a jig body installed on the bed 11; this jig body 2;
2 has a reference plane 23 for positioning the workpiece W.
A clamping device 24 is provided on this reference surface 23 to press and clamp the workpiece W. 25 is a cutting fluid storage tank, 26 is a cutting fluid supply pump, 27
3 is a cutting fluid spouting nozzle that is connected to the pump 26 via a conduit 28 and is provided on the jig body 22; 29 is a return pipe that recovers the cutting fluid supplied to the workpiece W;
0 is a temperature detector in this return pipe 29 that detects the temperature of the cutting fluid returned to the storage tank 25, 31 is a heater that heats the cutting fluid, 32 is a cooler that cools the cutting fluid, and 33 is a temperature detector 30. 35 is a temperature control device that operates the heater 31 and the cooler 32 so that the temperature detected by the shaft head 1 becomes a set temperature;
5, a lubricating oil supply pump 36, a supply pipe 37 communicating with the pump 36 at one end and the other end communicating with the shaft head 15, and 38 discharging from the shaft head 15; 39 is a heater for heating the lubricating oil; 40 is a cooler for cooling the lubricating oil; 41 is for detecting the temperature of the lubricating oil returned to the storage tank 35 from the return pipe 38; 42 is a temperature controller that operates the heater 39 and cooler 40 so that the temperature detected by the temperature detector 41 becomes the set temperature; 43 is a temperature setting for each temperature controller 33, 42; This temperature setting device 43 detects the average room temperature during the operating time of the processing device 10, and sets the average room temperature to each temperature control device 3.
Set as the set temperature of 3.42. Therefore, as a preferable example, when starting up the processing equipment, the average room temperature from several days to a week before to the previous day is set as the set temperature, and the lubricating oil and cutting fluid temperatures are maintained at that temperature throughout the day. As a result, even if the room temperature changes, the workpiece and shaft head are kept at the same temperature, which reduces the error between the machining hole pitches due to the difference in relative thermal expansion, and the center of the machining hole relative to the workpiece mounting surface. Position errors are prevented. or,
As the temperature difference between lubricating oil and cutting fluid can be minimized due to room temperature changes throughout the day, not only can the power consumption required to maintain the set temperature be extremely small, but also each temperature control device can 3
There is also the advantage that the heaters and coolers of 3 and 42 can be of small capacity. Furthermore, by updating the set temperature one after another according to the average temperature up to the previous day, the set temperature can be made to follow seasonal changes, and the temperature difference between lubricating oil and cutting fluid relative to room temperature can be kept to a minimum throughout the year. can.

工作物と軸頭部の材料が同じであれば、切削液
の設定温度と潤滑油の設定温度は等しくしておけ
ば良いが、材料が異なる場合で線膨張係数に差が
あれば、この線膨張係数の比に応じて切削液と潤
滑油の各設定温度に適当な温度差をもたせる必要
がある。例えば摂氏20度を基準温度となし、この
基準温度に対する切削液の設定温度との差と基準
温度に対する潤滑油の各設定温度との差の比が工
作物と軸頭部の線膨張係数の逆比となるような関
係を保つようにする。
If the material of the workpiece and the shaft head are the same, the set temperature of the cutting fluid and the set temperature of the lubricant should be the same, but if the materials are different and there is a difference in linear expansion coefficient, this line It is necessary to provide an appropriate temperature difference between the respective set temperatures of the cutting fluid and the lubricating oil depending on the ratio of expansion coefficients. For example, with 20 degrees Celsius as the reference temperature, the ratio of the difference between the set temperature of the cutting fluid with respect to this reference temperature and the difference between each set temperature of the lubricating oil with respect to the reference temperature is the inverse of the linear expansion coefficient of the workpiece and the shaft head. Try to maintain a comparable relationship.

工作物の材質がアルミニウムであればその線膨
張係数は(24×10-6)℃-1、軸頭部の材質が鋳鉄
であればその線膨張係数は(12×10-6)℃-1であ
る。この場合における切削液設定温度t1の基準温
度に対する温度差△t1と潤滑油設定温度t2の基準
温度に対する温度差△t2の比は△t1/△t2=1/2と
なり、平均室温が15℃であれば切削液の設定温度
t1は15℃に、潤滑油の設定温度t2は10℃に設定す
る。又平均室温が25℃であれば、切削液の設定温
度t1は25℃に、潤滑油の設定温度t2は30℃に設定
する。
If the material of the workpiece is aluminum, its coefficient of linear expansion is (24×10 -6 )°C -1 , and if the material of the shaft head is cast iron, its coefficient of linear expansion is (12×10 -6 )°C -1. It is. In this case, the ratio of the temperature difference △t 1 of the cutting fluid set temperature t 1 with respect to the reference temperature and the temperature difference △t 2 of the lubricating oil set temperature t 2 with respect to the reference temperature is △t 1 /△t 2 = 1/2, If the average room temperature is 15℃, the cutting fluid temperature is set.
Set t 1 to 15°C, and set the lubricating oil temperature t 2 to 10°C. Further, if the average room temperature is 25°C, the set temperature t 1 of the cutting fluid is set to 25°C, and the set temperature t 2 of the lubricating oil is set to 30°C.

このように加工装置の稼動時間帯における平均
室温の検出と各温度制御装置33,42の設定温
度の設定替えを自動的に行う回路手段の具体例を
第3図によつて説明する。50は室温検出器、5
1はこの室温検出器50にて検出された温度を1
時間毎に累積加算する累算回路、52は時計回路
で、加工装置の起動信号から1時間毎に累算器5
1に信号を与える。53は累算器51にて累積さ
れた値を累積回数で割つて加工装置稼動時間帯の
平均室温を求める割算回路、54は割算回路53
から出力される平均室温を記憶する記憶回路で、
この記憶回路54は少くとも数日前から前日に至
るまでの平均室温を記憶する。55は切削液の設
定温度更新回路で、記憶された平均室温から翌日
の平均室温を予測し、これを切削液の設定温度t1
として温度制御装置33に対して出力する。56
は切削液の設定温度t1から基準温度t0を減算する
減算回路、57は減算回路56の出力に係数を乗
算する係数乗算器で、この係数乗算器57には工
作物の線膨張係数設定器58の値αwと軸頭部の
線膨張係数設定器59の値αmの比をとる除算回
路60より係数αw/αmが与えられる。61は
係数乗算器57の出力に基準温度t0を加算する加
算回路で、この加算回路61の出力が潤滑油の設
定温度t2として温度制御装置42に与えられる。
A specific example of a circuit means that automatically detects the average room temperature during the operating time of the processing apparatus and changes the set temperature of each temperature control device 33, 42 will be described with reference to FIG. 50 is a room temperature detector, 5
1 is the temperature detected by this room temperature detector 50.
An accumulator 52 is a clock circuit that performs cumulative addition every hour.
Give a signal to 1. 53 is a division circuit that divides the value accumulated by the accumulator 51 by the number of times of accumulation to obtain the average room temperature during the operating time of the processing equipment; 54 is a division circuit 53;
A memory circuit that stores the average room temperature output from
This memory circuit 54 stores the average room temperature from at least several days before to the previous day. 55 is a cutting fluid set temperature update circuit that predicts the next day's average room temperature from the stored average room temperature, and updates this as the cutting fluid set temperature t 1
It is output to the temperature control device 33 as 56
57 is a subtraction circuit that subtracts the reference temperature t 0 from the set temperature t 1 of the cutting fluid, and 57 is a coefficient multiplier that multiplies the output of the subtraction circuit 56 by a coefficient. A coefficient αw/αm is given by a division circuit 60 which takes the ratio of the value αw of the linear expansion coefficient setting unit 58 and the value αm of the shaft head linear expansion coefficient setting unit 59. Reference numeral 61 denotes an addition circuit that adds a reference temperature t 0 to the output of the coefficient multiplier 57, and the output of this addition circuit 61 is given to the temperature control device 42 as the set temperature t 2 of the lubricating oil.

かかる構成において、加工装置の稼動時間帯に
おける平均室温を一日毎に検出してある一定期間
にわたつて記憶し、その平均を求めることにより
翌日の平均室温を予測し、これによつて加工装置
の起動にあたつて切削液及び潤滑油の設定温度が
設定され、一日中一定温度に維持される。よつて
加工される工作物も軸頭部も一定温度に一日中保
たれるので一般工場において恒温室と同じような
状態を作ることができ熱膨張による加工穴ピツチ
間誤差及び工作物取付基準面に対する加工穴中心
までの位置誤差が防止される。しかも切削液、潤
滑油の室温に対する温度差は極めて小さくできる
ので温度制御に要するエネルギー消費を少くでき
る利点を有する。
In such a configuration, the average room temperature during the operating hours of the processing equipment is detected every day and stored over a certain period of time, and the average room temperature for the next day is predicted by calculating the average. The preset temperatures for the cutting fluid and lubricating oil are set at startup and are maintained at a constant temperature throughout the day. Since both the workpiece and the shaft head are kept at a constant temperature throughout the day, it is possible to create conditions similar to a constant temperature room in a general factory, and to reduce errors between machined hole pitches due to thermal expansion and the workpiece mounting reference plane. Positional errors to the center of the machined hole are prevented. Furthermore, since the temperature difference between the cutting fluid and the lubricating oil relative to room temperature can be made extremely small, there is an advantage that the energy consumption required for temperature control can be reduced.

尚、温度設定器43は自動的に設定温度の設定
替えを行うものに限らず手動により設定できるも
のであつても良く、第4図に示すように四季の温
度変化に合せて設定温度を複数の段階に適宜設定
しても良い。特に季節の変り目においては、2点
鎖線で示すように季節毎の温度差を更に数段階に
分けて季節の移り変りに応じた設定温度を選ぶの
が好ましい。
Note that the temperature setting device 43 is not limited to one that automatically changes the setting temperature, but may be one that allows manual setting, and as shown in FIG. It may be set as appropriate. Especially at the change of seasons, it is preferable to further divide the seasonal temperature difference into several stages as shown by the two-dot chain line and select a set temperature according to the change of seasons.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
工作物と軸頭部の関係を示す説明図、第2図は加
工装置の構成を示す外観図に切削液循環回路及び
潤滑油循環回路を併記した図、第3図は温度設定
回路のブロツク線図、第4図は設定温度の季節の
推移に伴う変化を示す線図である。 10……加工装置、15……軸頭部、16,1
7……スピンドル、22……治具本体、23……
基準面、W……工作物、25……切削液貯溜槽、
26……供給ポンプ、27……切削液噴出ノズ
ル、30……温度検出器、31……加熱器、32
……冷却器、33……切削液温度制御装置、35
……潤滑油貯溜槽、36……供給ポンプ、39…
…加熱器、40……冷却器、41……温度検出
器、42……潤滑油温度制御装置、43……温度
設定器。
The drawings show an embodiment of the present invention. Fig. 1 is an explanatory diagram showing the relationship between the workpiece and the shaft head, and Fig. 2 is an external view showing the configuration of the processing equipment, including a cutting fluid circulation circuit and a lubricating oil circulation. FIG. 3 is a block diagram of the temperature setting circuit, and FIG. 4 is a diagram showing changes in the set temperature with seasonal changes. 10...Processing device, 15...Shaft head, 16,1
7... Spindle, 22... Jig body, 23...
Reference plane, W... workpiece, 25... cutting fluid reservoir,
26... Supply pump, 27... Cutting fluid jet nozzle, 30... Temperature detector, 31... Heater, 32
... Cooler, 33 ... Cutting fluid temperature control device, 35
... Lubricating oil storage tank, 36 ... Supply pump, 39 ...
... Heater, 40 ... Cooler, 41 ... Temperature detector, 42 ... Lubricating oil temperature control device, 43 ... Temperature setting device.

Claims (1)

【特許請求の範囲】 1 回転スピンドルに設けた加工工具にて治具本
体に固定された工作物の加工穴を切削液を供給し
つつ加工する加工装置において、この加工装置の
軸頭部内に潤滑油を循環させる循環手段と、この
潤滑油を加熱又は冷却して予め設定された一定温
度に維持する潤滑油温度制御手段と、前記切削液
を循環させる循環手段と、この切削液を加熱又は
冷却して予め設定された一定温度に維持する切削
液温度制御手段と、前記潤滑油温度制御手段の設
定温度及び前記切削液温度制御手段の設定温度を
加工装置稼働時間帯における室温の平均温度に応
じて次式の関係をもつて設定しかつ一日の稼働時
間帯を通じてその設定温度を維持する温度設定手
段とを設けたことを特徴とする温度制御機能を有
する加工装置。 △t1/△t2=αm/αw 但し △t1:切削液の設定温度と基準温度との差 △t2:潤滑油の設定温度と基準温度との差 αm:工作物の線膨張係数 αw:軸頭部の線膨張係数
[Scope of Claims] 1. In a processing device that uses a processing tool provided on a rotating spindle to machine a hole in a workpiece fixed to a jig body while supplying cutting fluid, there is a a circulating means for circulating lubricating oil; a lubricating oil temperature control means for heating or cooling the lubricating oil and maintaining it at a preset constant temperature; a circulating means for circulating the cutting fluid; A cutting fluid temperature control means for cooling and maintaining a preset constant temperature, and a set temperature of the lubricating oil temperature control means and a set temperature of the cutting fluid temperature control means to an average temperature of the room temperature during the working time of the processing equipment. 1. A processing device having a temperature control function, characterized in that it is provided with a temperature setting means for setting the temperature according to the following equation according to the temperature and maintaining the set temperature throughout the operating hours of the day. △t 1 / △t 2 = αm / αw However, △t 1 : Difference between the set temperature of cutting fluid and reference temperature △t 2 : Difference between set temperature of lubricating oil and reference temperature αm: Coefficient of linear expansion of workpiece αw: Linear expansion coefficient of shaft head
JP1529679A 1979-02-13 1979-02-13 Work device with temperature control function Granted JPS55112748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1529679A JPS55112748A (en) 1979-02-13 1979-02-13 Work device with temperature control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1529679A JPS55112748A (en) 1979-02-13 1979-02-13 Work device with temperature control function

Publications (2)

Publication Number Publication Date
JPS55112748A JPS55112748A (en) 1980-08-30
JPS6157145B2 true JPS6157145B2 (en) 1986-12-05

Family

ID=11884858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1529679A Granted JPS55112748A (en) 1979-02-13 1979-02-13 Work device with temperature control function

Country Status (1)

Country Link
JP (1) JPS55112748A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584343A (en) * 1981-06-29 1983-01-11 Toshiba Mach Co Ltd Method of regrinding rolling roll and grinding machine therefor
JPS5817218A (en) * 1981-07-23 1983-02-01 Toshiba Corp Precision machine using air bearing
JPS58202749A (en) * 1982-05-18 1983-11-26 Toyoda Mach Works Ltd Working apparatus equipped with temperature controlling faculty
JP6858323B2 (en) * 2016-11-14 2021-04-14 株式会社ニイガタマシンテクノ Machine tool temperature control device
CN106964828B (en) * 2017-03-01 2018-11-09 大连理工大学 A kind of hollow handle of a knife of direct-connected conveying type of ultralow temperature medium main shaft
JP7427326B2 (en) * 2019-08-26 2024-02-05 株式会社ディスコ Constant temperature water supply device

Also Published As

Publication number Publication date
JPS55112748A (en) 1980-08-30

Similar Documents

Publication Publication Date Title
US6675549B1 (en) Processing machine installation
JPS6157145B2 (en)
WO2002064307A1 (en) Machine tool with thermal deformation suppressing function
GB861335A (en) Temperature control of machine tool
JP2007103833A (en) Cutting device
EP0226215B1 (en) Electric spark machining apparatus
CN101152698B (en) Processing method of printing substrate
EP0164102B1 (en) Electrical discharge machining apparatus
JPS6157144B2 (en)
CN116372632A (en) Positioning fixture for machining center
JPH0335060B2 (en)
GB2114924A (en) Holding a thermally deflectable member of a machine tool against mispositioning
JP5063711B2 (en) Liquid temperature control device
JP2004338034A (en) Method and apparatus for cooling main spindle of machine tool, and method of balancing the main spindle
JPH09300173A (en) Method and system of cooling main spindle of machine tool
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
JPH11104901A (en) Correction device for tailstock
WO2024084697A1 (en) Wire electric discharge machining system
JPH07328889A (en) Main spindle unit cooling system in printed circuit board work machine
JP2003136366A (en) Method and device for temperature regulation of machine tool
JP4083283B2 (en) Constant temperature apparatus and temperature control method for the constant temperature apparatus
JPH10277886A (en) Machine tool
WO2024095359A1 (en) Coolant apparatus and machine tool
JPH03113198A (en) Bearing lubricating device
JP2584969B2 (en) Processing fluid supply device for electric machining