JPH0335060B2 - - Google Patents
Info
- Publication number
- JPH0335060B2 JPH0335060B2 JP60017807A JP1780785A JPH0335060B2 JP H0335060 B2 JPH0335060 B2 JP H0335060B2 JP 60017807 A JP60017807 A JP 60017807A JP 1780785 A JP1780785 A JP 1780785A JP H0335060 B2 JPH0335060 B2 JP H0335060B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- oil
- temperature sensor
- tank
- controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 16
- 230000020169 heat generation Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000001050 lubricating effect Effects 0.000 claims 1
- 239000003921 oil Substances 0.000 description 54
- 239000010687 lubricating oil Substances 0.000 description 11
- 101100168642 Arabidopsis thaliana CRN gene Proteins 0.000 description 3
- 101100045632 Arabidopsis thaliana TCX2 gene Proteins 0.000 description 3
- 101100045633 Arabidopsis thaliana TCX3 gene Proteins 0.000 description 3
- 101150037491 SOL1 gene Proteins 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 101150103732 sol2 gene Proteins 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000010724 circulating oil Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/14—Methods or arrangements for maintaining a constant temperature in parts of machine tools
- B23Q11/146—Methods or arrangements for maintaining a constant temperature in parts of machine tools by controlling the temperature of a cutting liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/14—Methods or arrangements for maintaining a constant temperature in parts of machine tools
- B23Q11/141—Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automatic Control Of Machine Tools (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は工作機械にマシニングセンタ旋盤等の
加工精度向上のための温度制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a temperature control device for improving the machining accuracy of a machine tool such as a machining center lathe.
従来技術
潤滑油ユニツトにて機械の温度制御を行なうた
めの油温度制御装置として、公知の特公昭46−
16216号では大気温度に対応して油温を制御し、
大気温度変化にかかわらず常に油循環装置のまわ
りの温度勾配を一定にして該装置を中心にした熱
変位に原因する歪をなくすものがあり、また特公
昭46−19327号では循環油の温度を大気温度に対
して比較制御し、大気温度変化にかかわらず循環
油温度と大気温度との温度差を常に一定値に維持
するものがある。Prior art A well-known oil temperature control device for controlling the temperature of machinery in a lubricating oil unit is the
No. 16216 controls oil temperature according to atmospheric temperature,
There is a device that keeps the temperature gradient around the oil circulation device constant regardless of atmospheric temperature changes to eliminate distortion caused by thermal displacement around the device. There is a system that performs comparative control with respect to the atmospheric temperature and maintains the temperature difference between the circulating oil temperature and the atmospheric temperature at a constant value regardless of changes in the atmospheric temperature.
発明が解決しようとする問題点
しかしながら機械には熱発生源が電動機、駆動
系、主軸軸受等複数個所あつて、基準温度との温
度差がそれぞれ異なるため上記の方法では各熱発
生位置の温度を充分に制御することができなかつ
た。Problems to be Solved by the Invention However, machines have heat generation sources in multiple locations such as electric motors, drive systems, and main shaft bearings, each with a different temperature difference from the reference temperature. I couldn't control it enough.
問題点を解決するための手段
熱発生部位より離れた位置に基準点用温度セン
サ61,62,63を設け、油タンクの油の温度
センサ20及び被温度制御位置の温度センサ1
8,19を設け基準点用温度センサ61,62,
63とそれぞれの温度センサ18,19,20の
それぞれの温度差を設定値に比較して制御信号を
出力する調整手段64,65,66を設け、該調
整手段によつて油タンク21の温度を制御する冷
却手段23、さらに加熱手段及び流体の流量を調
整する選択手段42,51を設けてなるものであ
る。Means for Solving the Problems Temperature sensors 61, 62, 63 for reference points are provided at positions distant from the heat generation site, and temperature sensors 20 for oil in the oil tank and temperature sensor 1 for the temperature controlled position are provided.
Reference point temperature sensors 61, 62,
63 and the respective temperature sensors 18, 19, 20 are provided, and adjustment means 64, 65, 66 for outputting a control signal by comparing the temperature difference between each temperature sensor 18, 19, 20 with a set value are provided, and the temperature of the oil tank 21 is adjusted by the adjustment means. It is provided with a cooling means 23 for controlling, a heating means, and selection means 42, 51 for adjusting the flow rate of the fluid.
実施例
以下本発明の実施例を図面にもとづき説明す
る。周知のマシニングセンタにおいて、ベツド1
上には中央後よりにコラム2が設立され、前より
にはコラム2に対して前後に位置制御可能にサド
ルが載置され、その上面に左右位置決め可能にテ
ーブルが載置されている。Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings. In a well-known machining center, bed 1
At the top, a column 2 is installed at the rear of the center, and at the front, a saddle is placed on the column 2 so that its position can be controlled back and forth, and a table is placed on the top surface of the saddle so that it can be positioned left and right.
そしてコラム2の前面両側の垂直案内面に主軸
頭3が上下位置決め可能に設けられていて、該主
軸頭3に垂直方向に主軸4が軸受で回転可能に支
持されており、その下端部の軸受5を嵌装したオ
イルジヤケツト6の外周には冷却するための油の
環状流路7が主軸頭3との間に形成されていて主
軸頭3内の油供給流路8と排出流路9に接続され
ている。 A spindle head 3 is provided on vertical guide surfaces on both front sides of the column 2 so as to be vertically positionable, and a spindle 4 is rotatably supported by bearings in the vertical direction on the spindle head 3. An annular oil flow path 7 for cooling is formed on the outer periphery of the oil jacket 6 fitted with the oil jacket 6 between the spindle head 3 and an oil supply flow path 8 and an oil discharge flow path 9 in the spindle head 3. It is connected to the.
また主軸4の中央より上端側の軸受10を嵌装
したオイルジヤケツト11の外周には環状流路1
2が形成され、図示しない主軸頭3内の供給流路
排出流路と接続されている。主軸4は中間軸13
の歯車群14を介して主電動機15の回転が伝達
されるようになつている。この主電動機15は熱
発生源となるため熱絶縁材16を介して主軸頭3
に固着されており、主軸頭側固着面に冷却用の環
状流路17が形成されていて、図示しない供給流
路、排出流路に接続されている。そして軸受5の
温度を検出する温度センサ18がオイルジヤケツ
ト6に、また主電動機15の取付部の温度を検出
する温度センサ19が取付部に螺着されている。
本機の背面には冷却を兼ねる潤滑油タンク21と
工具交換装置等の作動油の油圧タンク22とが空
気層によつて断熱間仕切りされて併置され、、そ
の上部に冷却装置23が設けられている。潤滑油
タンク21の油は2連供給ポンプP1,P2によ
つて潤滑及び冷却に必要なる油がオイルジヤケツ
ト6,11、主軸頭3の歯車箱及び主電動機15
の取付部に給油せられる。即ち供給ポンプP1側
では流路31からタンク内の油が吸み上げられ、
流路32、最初に絞り量がセツトされる絞り弁3
3流路34を経て主軸頭3の流路8,7及び12
に送られるとともに、流路53で歯車箱内の歯車
噛合面に供給面に供給され、排出流路9,35、
流路36,37より排油ポンプP3で流路38、
油圧タンク22内の二重管式冷却器39の外側管
に送られ冷却された油が流路40より潤滑油タン
ク21内に還流される。この循環系の途中流路3
1,32間にシーケンス弁41が、また流路32
に2ポート2置電磁切換弁42、この排出側に最
初に絞り量がセツトされた絞り弁43が設けられ
ている。そしてソレノイドSOL1が作用して切
換弁42がI位置にあるとき供給油の一部が排出
されて軸受部への供給量が減少される。供給ポン
プP2側は流路45から潤滑油タンク21内の油
が吸み上げられ、流路46、最初に絞り量がセツ
トされる絞り弁47、流路48,17を経て主電
動機15の取付部に供給して冷却し、流路49,
37を経て同様に二重管式冷却器39で冷却され
て潤滑油タンク21に還流される。この循環系の
途中流路45,46間にシーケンス弁50が、ま
た流路46に2ポート2位置電磁切換弁51、こ
の排出側に最初に絞り量がセツトされた絞り弁5
2が設けられている。そしてソレノイドSOL2
が作用して切換弁51がI位置にあるとき供給油
の一部が排出されて主電動機取付部への供給量が
減少される。また潤滑油タンク21内に油温を計
測する温度センサ20が設けられている。更に油
圧タンク22には工具交換装置等作動させる圧油
を送る供給ポンプP4が設けられている。冷凍装
置23は冷凍機55を内蔵し冷却管56より二重
管式冷却器39の中心管に冷媒用ガスが送られ外
側管の油を冷却して冷却管57を経てコンデンサ
フアン58の送風によりコンデンサ59で空冷さ
れて冷凍機55に還流される。そして冷却管56
と57との間には保安上の高低圧力スイツチ60
が設けられている。本機のベツド1の後側で主軸
4、主電動機15、駆動系の熱に影響されない位
置に温度制御の基準点温度用の温度センサ61,
62,63(1個で共有とすること可能)が螺着
されており、この温度センサ61は潤滑油タンク
21の温度検測用の温度センサ20の基準となる
もので本機に設けた基点追従差温式自動温度調節
器64(本例ではニホンクエンオール社製)にお
いて両センサの温度を比較し、設定温度差(本例
では零に設定)が零でなくなり油温側が高くなれ
ば信号を出力して冷凍機55の運転を行なわせ
る。温度センサ62は軸受5温度検側用の温度セ
ンサ18の基準となるもので、同機に基点追従差
温式自動温度調節器65において、両センサの温
度を比較し設定温度差より大きくなり軸受5側が
高くなれば信号を出力して切換弁42を位置に
切換えて油の排出を止め供給油量を増大させる。
温度センサ63は主電動機15の取付部の温度セ
ンサ19の基準となるもので、同機に基点追従差
温式自動温度調節器66において両センサの温度
を比較し、設定温度差より大きくなり取付側が高
くなれば信号を出力して切換弁51を位置に切
換え油の排出を止め供給油量を多くするものであ
る。 Further, an annular flow passage 1 is formed on the outer periphery of the oil jacket 11 fitted with the bearing 10 on the upper end side of the center of the main shaft 4.
2 is formed and connected to a supply channel and a discharge channel in the spindle head 3 (not shown). The main shaft 4 is the intermediate shaft 13
The rotation of the main motor 15 is transmitted through a gear group 14 . Since this main motor 15 becomes a heat generation source, it is connected to the spindle head 3 through a heat insulating material 16.
A cooling annular channel 17 is formed on the fixing surface on the spindle head side, and is connected to a supply channel and a discharge channel (not shown). A temperature sensor 18 for detecting the temperature of the bearing 5 is screwed onto the oil jacket 6, and a temperature sensor 19 for detecting the temperature of the mounting portion of the main motor 15 is screwed onto the mounting portion.
On the back of the machine, a lubricating oil tank 21 that also serves as cooling and a hydraulic oil tank 22 for hydraulic oil for tool changers, etc. are placed side by side, separated by an air layer, and a cooling device 23 is installed above them. There is. The oil in the lubricating oil tank 21 is supplied to the oil jackets 6, 11, the gear box of the spindle head 3, and the main motor 15 by means of two supply pumps P1 and P2.
Oil is supplied to the mounting part of the That is, on the supply pump P1 side, the oil in the tank is sucked up from the flow path 31,
Flow path 32, throttle valve 3 where the throttle amount is initially set
3 passages 34 to the passages 8, 7 and 12 of the spindle head 3.
At the same time, it is supplied to the gear meshing surface in the gear box through the flow path 53, and the discharge flow paths 9, 35,
From the flow paths 36 and 37, the drain oil pump P3 connects the flow path 38,
The cooled oil sent to the outer pipe of the double pipe cooler 39 in the hydraulic tank 22 is returned to the lubricating oil tank 21 through the flow path 40. Midway flow path 3 of this circulation system
A sequence valve 41 is installed between 1 and 32, and a flow path 32
A 2-port 2-position electromagnetic switching valve 42 is provided on the exhaust side, and a throttle valve 43 to which the throttle amount is initially set is provided on the discharge side. Then, when the solenoid SOL1 is activated and the switching valve 42 is in the I position, a part of the supplied oil is discharged and the amount of supplied oil to the bearing portion is reduced. On the supply pump P2 side, the oil in the lubricating oil tank 21 is sucked up from the flow path 45, and the main motor 15 is attached via the flow path 46, the throttle valve 47 where the throttle amount is first set, and the flow paths 48 and 17. The flow path 49,
37, is similarly cooled by a double-pipe cooler 39, and then returned to the lubricating oil tank 21. A sequence valve 50 is provided between the flow paths 45 and 46 in the middle of this circulation system, a 2-port 2-position electromagnetic switching valve 51 is provided in the flow path 46, and a throttle valve 5 whose throttle amount is initially set is placed on the discharge side.
2 is provided. And solenoid SOL2
When the switching valve 51 is in the I position, part of the supplied oil is discharged and the amount of supplied oil to the main motor mounting portion is reduced. Further, a temperature sensor 20 is provided in the lubricating oil tank 21 to measure the oil temperature. Further, the hydraulic tank 22 is provided with a supply pump P4 that supplies pressure oil to operate a tool changer and the like. The refrigeration system 23 has a built-in refrigerator 55, and refrigerant gas is sent from a cooling pipe 56 to the center pipe of the double-pipe cooler 39, cools the oil in the outer pipe, and then passes through the cooling pipe 57 and is blown by a condenser fan 58. It is air-cooled by a condenser 59 and refluxed to the refrigerator 55. and cooling pipe 56
and 57, there is a high/low pressure switch 60 for safety reasons.
is provided. A temperature sensor 61 for the reference point temperature for temperature control is located at the rear of the bed 1 of this machine at a position that is not affected by the heat of the main shaft 4, main motor 15, and drive system.
62 and 63 (one piece can be shared) are screwed together, and this temperature sensor 61 serves as a reference for the temperature sensor 20 for measuring the temperature of the lubricating oil tank 21. Compare the temperatures of both sensors in the follow-up differential temperature automatic temperature controller 64 (manufactured by Nihon Kuenall Co., Ltd. in this example), and if the set temperature difference (set to zero in this example) is no longer zero and the oil temperature side becomes higher, a signal is generated. is output to cause the refrigerator 55 to operate. The temperature sensor 62 serves as a reference for the temperature sensor 18 for the bearing 5 temperature detection side.In the same machine, the base point tracking differential temperature automatic temperature controller 65 compares the temperatures of both sensors, and if the temperature difference is greater than the set temperature difference, the bearing 5 is detected. When the side becomes higher, a signal is output and the switching valve 42 is switched to the position to stop the oil discharge and increase the amount of oil supplied.
The temperature sensor 63 serves as a reference for the temperature sensor 19 on the mounting part of the main motor 15.The temperature sensor 63 is used as a reference for the temperature sensor 19 on the mounting part of the main motor 15.The temperature of both sensors is compared using the base point tracking differential temperature automatic temperature controller 66 of the same machine. If the level becomes high, a signal is output to set the switching valve 51 to the position to stop draining the oil and increase the amount of oil supplied.
作 用
次いで制御回路の第4,5,6図を参照して作
用を説明する。Function Next, the function will be explained with reference to FIGS. 4, 5, and 6 of the control circuit.
マシニングセンタは当初電磁切換弁42,51
のソレノイドSOL1,SOL2が作動しそれぞれ
位置にあつて供給油の一部を側路に送つており
少ない油を供給している。この状態で加工が連続
されると電動機15、油タンク21,22、切削
部、駆動系等の熱発生源より離れたベツド1の位
置は一般に一部の熱伝導と大気温による影響を受
けてわずかの温度変化はあるものの比較的安定し
た温度を保つ。従つて温度センサ60,61,6
2よりの検出温度は基準点となしうるものであつ
て、これに対して主軸4の軸受5の温度センサ1
8、主電動機15取付部の温度センサ19、及び
潤滑油タンク21の温度センサ20の検出温度は
運転状態において、次第に上昇し温度の平衝状態
が崩れていく。そこで温度センサ20の検出温度
は自動温度調節器64によつて比較され温度セン
サ20の検出温度が高くなると冷凍機55のスイ
ツチMS3を入れ冷媒用ガスを循環させて二重管
式冷却器39において流路38より還流される油
を冷却するとともに油圧タンク22内の油をもあ
わせて冷却する。この冷却された潤滑油タンク2
1内の油は流路31より2連供給ポンプのP1に
よつて送り出され流路32絞り弁33を経て流路
7,12でオイルジヤケツト6,11を冷却する
とともに流路53より歯車群14を潤滑し、軸受
部の温度上昇を抑制しているが、運転時間ととも
に冷却と発生熱との釣合が崩れて温度センサ18
の検出温度は基準の温度センサ62の検出温度よ
り高くなり温度差が設定温度差の零でなくなると
自動温度調節器65の働きで、電磁切換弁42の
ソレノイドSOL1が消磁され位置に切換えら
れ、供給油の一部の排出がとめられ増量された供
給油によつて軸受5,10が充分冷却される。 The machining center initially had solenoid switching valves 42 and 51.
Solenoids SOL1 and SOL2 are activated and in their respective positions send some of the supplied oil to the side passage, supplying a small amount of oil. If machining continues in this state, the position of the bed 1 away from heat generation sources such as the electric motor 15, oil tanks 21 and 22, cutting parts, and drive system will generally be affected by some heat conduction and atmospheric temperature. Although there are slight temperature changes, it maintains a relatively stable temperature. Therefore, temperature sensors 60, 61, 6
The temperature detected by sensor 2 can be used as a reference point, whereas the temperature detected by temperature sensor 1 of bearing 5 of main shaft 4
8. The temperatures detected by the temperature sensor 19 of the main motor 15 attachment part and the temperature sensor 20 of the lubricating oil tank 21 gradually rise during the operating state, and the temperature equilibrium state collapses. Therefore, the temperature detected by the temperature sensor 20 is compared by the automatic temperature controller 64, and when the temperature detected by the temperature sensor 20 becomes high, the switch MS3 of the refrigerator 55 is turned on and the refrigerant gas is circulated to the double pipe type cooler 39. The oil returned from the flow path 38 is cooled, and the oil in the hydraulic tank 22 is also cooled. This cooled lubricating oil tank 2
The oil in 1 is sent out from the flow path 31 by the dual supply pump P1, passes through the flow path 32 and the throttle valve 33, cools the oil jackets 6 and 11 in the flow paths 7 and 12, and is sent to the gear group from the flow path 53. The temperature sensor 18 is lubricated to suppress the temperature rise of the bearing part, but as the operating time increases, the balance between cooling and generated heat is lost, causing the temperature sensor 18 to lubricate.
When the detected temperature becomes higher than the detected temperature of the standard temperature sensor 62 and the temperature difference is no longer the set temperature difference of zero, the solenoid SOL1 of the electromagnetic switching valve 42 is demagnetized and switched to the position by the action of the automatic temperature regulator 65. The bearings 5 and 10 are sufficiently cooled by the increased amount of supplied oil, which is partially discharged.
温度センサ18の検出温度が下がると再び自動
温度調節器64が働き電磁切換弁42が切換えら
れて冷却油の軸受部への送り量が減少される。こ
の繰返しによつて軸受5,10部内の温度が基準
点温度にならつて安定した状態に保たれる。また
主電動機15の運転により発生した熱は取付部に
おいて絶縁材16により伝熱を防止するものの完
全には遮断できず、取付部の温度センサ19によ
り検出された温度が基準温度センサ63の検出温
度より上昇して温度差が設定温度差の零でなくな
ると、自動温度調節器66の働きで電磁切換弁5
1のソレノイドSOL2が消磁され位置に切換
えられ供給油の一部排出が止められ増量された油
が流路17に送られ取付部の冷却作用を増し温度
を下げる。温度センサ19の検出温度が基準温度
センサ63の検出温度より下がれば自動温度調節
器66の働きで電磁切換弁51が再び切換えられ
供給油が減少される。この繰返しによつて取付部
の温度は安定状態に保たれる。また軸受部、主電
動機取付部が冷却されすぎた場合は冷凍機の運転
を別個に止めるか、断続運転して油タンクの冷却
を一時止める。若しくは冷却能力を落とすことで
油の循環による温度上昇によつて対処するように
構成されている。また油温の上昇、下降に対して
冷媒用ガスの流量を調整するように冷凍機又は管
路を制御運転することもできる。また駆動系部分
にも必要により温度センサが設けられ、各部の制
御は個個に行なわれるものである。更に主軸が停
止しているときには電動機部のみの冷却を行うこ
とも随時行われる。以上の説明では油を冷却する
ことを主に述べたが、基準点の温度に全て一致さ
せるように制御することを主旨としているのでヒ
ータを設けて基準点温度に一致するよう油を加熱
することも当然行ない得るものである。 When the temperature detected by the temperature sensor 18 falls, the automatic temperature regulator 64 is activated again, the electromagnetic switching valve 42 is switched, and the amount of cooling oil sent to the bearing portion is reduced. By repeating this process, the temperature inside the bearings 5 and 10 is maintained in a stable state in line with the reference point temperature. In addition, although the heat generated by the operation of the main motor 15 is prevented from being transferred by the insulating material 16 at the mounting part, it cannot be completely shut off, and the temperature detected by the temperature sensor 19 at the mounting part is the detection temperature of the reference temperature sensor 63. When the temperature rises further and the temperature difference is no longer the set temperature difference of zero, the automatic temperature controller 66 operates to close the solenoid switching valve 5.
The solenoid SOL2 of No. 1 is demagnetized and switched to the demagnetized position, part of the supplied oil is stopped from being discharged, and the increased amount of oil is sent to the flow path 17 to increase the cooling effect of the mounting part and lower the temperature. When the temperature detected by the temperature sensor 19 falls below the temperature detected by the reference temperature sensor 63, the automatic temperature regulator 66 switches the electromagnetic switching valve 51 again to reduce the supply of oil. By repeating this process, the temperature of the attachment part is kept stable. In addition, if the bearing or main motor mounting part becomes too cool, either stop the operation of the refrigerator separately or use intermittent operation to temporarily stop cooling the oil tank. Alternatively, the cooling capacity is reduced to cope with the temperature rise due to oil circulation. Further, the refrigerator or the pipe line can be controlled and operated so as to adjust the flow rate of the refrigerant gas in response to rises and falls in oil temperature. Furthermore, a temperature sensor is provided in the drive system section as necessary, and each section is individually controlled. Furthermore, when the main shaft is stopped, only the electric motor section is cooled at any time. In the above explanation, we mainly talked about cooling the oil, but since the main purpose is to control the temperature so that it all matches the temperature at the reference point, it is necessary to install a heater and heat the oil so that it matches the temperature at the reference point. Of course, this can also be done.
効 果
以上詳述したように本発明は大気温に対して油
循環装置等の温度を制御するものと異なり、油タ
ンクの油以外に更に機械の発熱部の温度を基準点
の温度に制御するように加熱または冷却した油の
流量を調整するようになしてきめ細かい制御で安
定状態に保つようになしたので、熱による各部の
変形が防止されて安定した高い精度の加工が実現
できる効果を有する。Effects As detailed above, the present invention is different from the one that controls the temperature of an oil circulation device etc. with respect to the atmospheric temperature, and in addition to the oil in the oil tank, the present invention also controls the temperature of the heat generating part of the machine to the temperature of the reference point. The flow rate of the heated or cooled oil is adjusted to maintain a stable state through careful control, which prevents deformation of each part due to heat and enables stable, high-precision machining. .
第1図は本発明の制御回路図、第2図は基準用
温度センサの取付位置を示す図、第3図は主軸頭
部分を一部断面で示す図。第4,5,6図は制御
回路図である。
1…ベツド、4…主軸、6,11…オイルジヤ
ケツト、5,10…軸受、7,12,17…環状
流路、15…主電動機、21…潤滑油タンク、2
2…油圧タンク、P1,P2,P4…供給ポン
プ、P3…排油ポンプ、18,19,20…温度
センサ、42,51…電磁切換弁、61,62,
63…基準点用の温度センサ、64,65,66
…基点追従差温式自動温度調節器。
FIG. 1 is a control circuit diagram of the present invention, FIG. 2 is a diagram showing the mounting position of a reference temperature sensor, and FIG. 3 is a partial cross-sectional view of the spindle head. 4, 5 and 6 are control circuit diagrams. DESCRIPTION OF SYMBOLS 1... Bed, 4... Main shaft, 6, 11... Oil jacket, 5, 10... Bearing, 7, 12, 17... Annular flow path, 15... Main motor, 21... Lubricating oil tank, 2
2... Hydraulic tank, P1, P2, P4... Supply pump, P3... Drain pump, 18, 19, 20... Temperature sensor, 42, 51... Solenoid switching valve, 61, 62,
63...Temperature sensor for reference point, 64, 65, 66
...Base point tracking differential temperature automatic temperature controller.
Claims (1)
源より遠くて温度変化の少ない位置または大気中
に基準点用温度センサを設け、油タンクに油の温
度を検知する第1温度センサを設け、機械の1個
所以上の被温度制御位置にその位置の温度を検知
する第2温度センサを1個以上設け、前記基準点
用温度センサの温度と前記第1温度センサの温度
との温度差を検知して制御信号を出力する第1調
整手段を設け、前記基準点用温度センサの温度と
前記第2温度センサの温度との温度差を検知して
制御信号を出力する第2調整手段を前記第2温度
センサに対応して設け、前記第1調整手段によつ
て作動を制御されるタンク内油の温度制御手段を
設け、前記第2調整手段によつて前記被温度制御
位置へ供給される潤滑兼加熱冷却油の流量の調整
手段を被温度制御位置に対応して設けてなり、油
タンク及び被温度制御位置の温度を基準点温度に
ならうように独自に制御するようになしたことを
特徴とする温度制御装置。 2 タンク内油の温度制御手段は冷却手段である
特許請求の範囲第1項記載の温度制御装置。 3 タンク内油の温度制御手段は加熱手段である
特許請求の範囲第1項または第2項記載の温度制
御装置。[Scope of Claims] 1. A reference point temperature sensor is provided in the machine body at a location far from heat generation sources such as the electric motor, main shaft, drive system, etc. and where there is little temperature change, or in the atmosphere, and the temperature of the oil in the oil tank is detected. A first temperature sensor is provided, and one or more second temperature sensors are provided at one or more temperature-controlled positions of the machine to detect the temperature at that position, and the temperature of the reference point temperature sensor and the first temperature sensor are A first adjustment means is provided for detecting a temperature difference between the reference point temperature sensor and the second temperature sensor and outputting a control signal. A second adjustment means is provided corresponding to the second temperature sensor, a temperature control means for the oil in the tank whose operation is controlled by the first adjustment means is provided, and the temperature of the oil in the tank is controlled by the second adjustment means. A means for adjusting the flow rate of lubricating/heating/cooling oil supplied to the control position is provided corresponding to the temperature controlled position, and the temperature of the oil tank and the temperature controlled position is independently controlled to follow the reference point temperature. A temperature control device characterized by: 2. The temperature control device according to claim 1, wherein the temperature control means for the oil in the tank is a cooling means. 3. The temperature control device according to claim 1 or 2, wherein the temperature control means for the oil in the tank is a heating means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1780785A JPS61178147A (en) | 1985-01-31 | 1985-01-31 | Temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1780785A JPS61178147A (en) | 1985-01-31 | 1985-01-31 | Temperature controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61178147A JPS61178147A (en) | 1986-08-09 |
JPH0335060B2 true JPH0335060B2 (en) | 1991-05-24 |
Family
ID=11953998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1780785A Granted JPS61178147A (en) | 1985-01-31 | 1985-01-31 | Temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61178147A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07110468B2 (en) * | 1987-05-14 | 1995-11-29 | 神威産業株式会社 | Liquid circulation device |
JPH07110469B2 (en) * | 1987-05-14 | 1995-11-29 | 神威産業株式会社 | Liquid circulation device |
JPH01306147A (en) * | 1988-05-31 | 1989-12-11 | Mitsui Seiki Kogyo Co Ltd | Adaptive cooling control device for heat generating body |
JPH02109656A (en) * | 1988-10-18 | 1990-04-23 | Makino Milling Mach Co Ltd | Method and device for controlling temperature of main shaft device |
JPH02139049U (en) * | 1989-04-26 | 1990-11-20 | ||
JP3982298B2 (en) * | 2002-03-28 | 2007-09-26 | 株式会社ジェイテクト | Temperature control method and apparatus for processing machine |
JP5415871B2 (en) * | 2009-08-31 | 2014-02-12 | 株式会社ナガセインテグレックス | Precision processing machine |
JP5394913B2 (en) * | 2009-12-25 | 2014-01-22 | 株式会社森精機製作所 | Machine tool cooling apparatus and cooling method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4925754A (en) * | 1972-07-06 | 1974-03-07 | ||
JPS55106747A (en) * | 1979-02-13 | 1980-08-15 | Toyoda Mach Works Ltd | Machining device |
JPS60167745A (en) * | 1984-02-08 | 1985-08-31 | Mitsubishi Heavy Ind Ltd | Temperature controller for spindle head of machine tool |
-
1985
- 1985-01-31 JP JP1780785A patent/JPS61178147A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4925754A (en) * | 1972-07-06 | 1974-03-07 | ||
JPS55106747A (en) * | 1979-02-13 | 1980-08-15 | Toyoda Mach Works Ltd | Machining device |
JPS60167745A (en) * | 1984-02-08 | 1985-08-31 | Mitsubishi Heavy Ind Ltd | Temperature controller for spindle head of machine tool |
Also Published As
Publication number | Publication date |
---|---|
JPS61178147A (en) | 1986-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5147015A (en) | Seal oil temperature control method and apparatus | |
US5197537A (en) | Apparatus for controlling temperature of machine tool | |
EP0396600B1 (en) | Improvements in heating and cooling systems | |
KR950024289A (en) | Temperature controller and method using recycle coolant | |
JPH0335060B2 (en) | ||
KR20170004149U (en) | apparatus for controlling temperature of coolant using machine tool | |
US4730094A (en) | Electric spark machining apparatus | |
JPH0775814B2 (en) | Method and device for controlling spindle temperature of machine tool | |
JP2018079520A (en) | Temperature adjustment device of machine tool | |
JPH11166549A (en) | Lubricating oil quantity control device of bearing part | |
JP2000257800A (en) | Liquid circulation device | |
JPH0415362Y2 (en) | ||
JP3225546B2 (en) | Liquid temperature control device | |
JPH0641796Y2 (en) | Spindle unit | |
JPH0418984B2 (en) | ||
JP2000266039A (en) | Device and method for cooling rotary shaft, and machine equipped with rotary shaft cooling device | |
JPH09300173A (en) | Method and system of cooling main spindle of machine tool | |
JP2011143490A (en) | Liquid temperature control device | |
CN111055165A (en) | Machine tool oil cooling system and control method thereof | |
JPS5818180B2 (en) | Automatic thermal displacement correction device | |
JPH01306147A (en) | Adaptive cooling control device for heat generating body | |
JPH04360748A (en) | Spindle stock cooling device | |
JPH03113198A (en) | Bearing lubricating device | |
JPH0457651A (en) | Method and apparatus for controlling spindle temperature of machine tool | |
EP4368333A1 (en) | Temperature control device for machine tool |