JP3982298B2 - Temperature control method and apparatus for processing machine - Google Patents

Temperature control method and apparatus for processing machine Download PDF

Info

Publication number
JP3982298B2
JP3982298B2 JP2002092315A JP2002092315A JP3982298B2 JP 3982298 B2 JP3982298 B2 JP 3982298B2 JP 2002092315 A JP2002092315 A JP 2002092315A JP 2002092315 A JP2002092315 A JP 2002092315A JP 3982298 B2 JP3982298 B2 JP 3982298B2
Authority
JP
Japan
Prior art keywords
temperature
area
tool
processing
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092315A
Other languages
Japanese (ja)
Other versions
JP2003291050A (en
Inventor
道博 鈴木
宏治 磯島
睦雄 峯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2002092315A priority Critical patent/JP3982298B2/en
Publication of JP2003291050A publication Critical patent/JP2003291050A/en
Application granted granted Critical
Publication of JP3982298B2 publication Critical patent/JP3982298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、加工機械の温度を制御する方法及びその方法を実施する装置に関するものである。
【0001】
【従来の技術】
従来、加工機械が、加工による発熱、駆動モータの発熱及び設置場所の温度変化などにより熱変形して加工精度が低下するのを防止するために、機械全体をカバーで覆い、該カバーの内部にフロン等の冷媒を使用した空調装置で温度調整した送風エアを供給するものがあった。
【0002】
【発明が解決しようとする課題】
上記従来装置では、工具がワークを加工して発熱量が多い加工エリアと加工エリア以外の後部エリアとを一つのカバーで覆っているので、温度変化が大きい加工エリアに温度調節された大量の送風エアを供給し、容積は大きいが温度変化の小さい後部エリアには小量の送風エアを供給しても送風エアは両エリアを流通するため、カバー内の温度を目標温度に効率的に制御することができなかった。また、主軸及び可動部を駆動する駆動モータなども全体カバーで覆っていたので、駆動モータから発生した熱を除去するために大量の送風エアを供給しなければならない不具合があった。さらに、送風エアの温度を制御する空調装置の冷媒は気体で熱容量が小さいので、送風エアの温度制御が頻繁に行なわれ、カバー内の温度が安定せず、且つ温度分布が不均一になり、送風エアが当る部分が局部的に冷やされ、又は暖められ、機械温度が安定しない問題があった。
【0003】
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、ベッド上に工具を支持する工具支持装置とワークを保持するワーク保持装置とを装架し、前記工具支持装置と前記ワーク保持装置とを相対的に移動させて工具によりワークを加工する加工機械の温度制御方法において、前記加工機械の全体をカバーで覆い、該カバーに固定された仕切り板によって該カバーの内部を工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、前記仕切り板には前記加工エリアと前記後部エリアとを開閉可能に連通する工具交換用の扉を設け、該加工エリアと後部エリアに温度調節された送風エアを供給することである。
【0004】
請求項2に係る発明の構成上の特徴は、請求項1に記載の加工機械の温度制御方法において、前記温度調節された前記送風エアの流量は、前記加工エリアの発熱部の発熱量に基づいて決められた加工エリア流量と、前記後部エリアの発熱部の発熱量に基づいて決められた後部エリア流量とからなる前記送風エアの流量であることである。
【0005】
請求項3に係る発明の構成上の特徴は、請求項2に記載の加工機械の温度制御方法において、前記加工エリア流量と前記後部エリア流量を満たすために、夫々の流速が前記加工エリアと前記後部エリアとで略等しくなるよう決められた夫々の送風開口部断面積であることである。
【0006】
請求項4に係る発明の構成上の特徴は、請求項3に記載の加工機械の温度制御方法において、前記加工エリア流量と前記後部エリア流量を満たすための夫々の流速は0.3m/s〜1.0m/sの範囲にある流速のうちの略等しい流速であることである。
【0007】
請求項5に係る発明の構成上の特徴は、請求項1乃至4のいずれかに記載の加工機械の温度制御方法において、前記温度調節された送風エアを前記加工エリアでは天井から供給するとともに前記工具支持装置に向けて吹き付け、前記後部エリアでは天井から供給することである。
【0008】
請求項6に係る発明の構成上の特徴は、請求項1乃至5のいずれかに記載の加工機械の温度制御方法において、前記送風エアの温度調節をヒータ及び冷凍機により温度制御された冷温水を冷媒とする空調機で行なうことである。
【0009】
請求項7に係る発明の構成上の特徴は、請求項1乃至6のいずれかに記載の加工機械の温度制御方法において、基準温度ブロックを前記ベッドの設置場所と同じ条件の前記カバー外部の場所に設置し、該基準ブロックの温度に基づいて前記送風エアを温度調節することである。
【0010】
請求項8に係る発明の構成上の特徴は、請求項1乃至7のいずれかに記載の加工機械の温度制御方法において、前記加工機械の可動部を駆動するモータを取り囲んでカバー内部から隔離し、該モータが発生する熱をカバー外部に排熱させるモータ隔離部をカバーに設けたことである。
【0011】
請求項9に係る発明の構成上の特徴は、ベッド上に工具を支持する工具支持装置とワークを保持するワーク保持装置とを装架し、前記工具支持装置と前記ワーク保持装置とを相対的に移動させて工具によりワークを加工する加工機械の温度制御装置において、前記加工機械の全体をカバーで覆い、該カバーに固定された仕切り板によって該カバーの内部を工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、前記仕切り板には前記加工エリアと前記後部エリアとを開閉可能に連通する工具交換用の扉を設け、温度調節された送風エアを供給するエア供給装置を設け、該エア供給装置を前記加工エリアと後部エリアに夫々接続したことである。
請求項10に係る発明の構成上の特徴は、請求項9に記載の加工機械の温度制御装置において、前記仕切り板の内縁は、前記工具支持装置を支承して前記ベッド上に摺動可能に支承されたコラムの両側面と対向することである。
【0012】
上記のように構成した請求項1に係る発明においては、工具によりワークを加工する加工機械の温度制御方法において、加工機械全体を覆うカバーの内部を該カバーに固定された仕切り板によって工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、仕切り板に該加工エリアと後部エリアとを開閉可能に連通する工具交換用の扉を設け、加工エリアと後部エリアに温度調節された送風エアを必要な量だけ夫々供給するようにしたので、各エリアに夫々必要な量の送風エアを供給することにより、加工機械の温度制御を精度よく安定して効率的に行うことができる。
【0013】
上記のように構成した請求項2に係る発明においては、温度調節された送風エアの流量を、加工エリアの発熱部の発熱量に基づいて決められた加工エリア流量と、後部エリアの発熱部の発熱量に基づいて決められた後部エリア流量としたので、加工エリア及び後部エリアの温度を略等しく制御することができる。
【0014】
上記のように構成した請求項3に係る発明においては、加工エリアと後部エリアに夫々必要な加工エリア流量と後部エリア流量を満たし、且つ夫々の流速が略等しくなるように、夫々の送風開口部断面積を決めたので、簡単な構成により加工エリアと後部エリアとに必要な流量の温度調節された送風エアを略等しい流速で供給することができ、加工エリアと後部エリアに夫々位置する機械部位の温度を略等しく制御することができる。
【0015】
上記のように構成した請求項4に係る発明においては、加工エリア流量と後部エリア流量を満たすための夫々の流速を、0.3m/s〜1.0m/sの範囲の略等しい流速としたので、送風エアが乱流になる程度を抑えることができ、各エリアの温度ムラを抑えて機械温度が局部的に低下することを防止できる。
【0016】
上記のように構成した請求項5に係る発明においては、温度調節された送風エアを加工エリアでは天井から供給するとともに工具支持装置に向けて吹き付け、後部エリアでは天井から供給しているので、温度調節された送風エアを各エリアに満遍なく供給し、加工熱が工具を支持する工具支持装置に与える影響を除去して、加工熱による加工精度の低下を防止することができる。
【0017】
上記のように構成した請求項6に係る発明においては、加工エリアと後部エリアに夫々供給される送風エアの温度をヒータ及び冷凍機により温度制御された冷温水を冷媒とする空調機で調節している。冷温水は熱容量が大きいので、送風エアの温度変化を緩やかにしてカバー内の温度分布を均一にし、機械の熱変位を小さくすることができる。
【0018】
上記のように構成した請求項7に係る発明においては、基準温度ブロックを加工機械のベッドの設置場所と同じ条件のカバー外部の場所に設置し、この基準ブロックの温度に基づいて前記送風エアの温度を調節している。基準ブロックは加工による発熱及び駆動モータの発熱などの影響を受けることがなく、ベッドを設置場所に放置した場合と略同じ温度になる。基準ブロックの温度に基づいて温度調節された送風エアをカバー内部に供給して機械の温度制御を行なっているので、ベッドに対する機械各部の熱変位を小さくして加工精度を向上することができる。
【0019】
上記のように構成した請求項8に係る発明においては、加工機械の可動部を駆動するモータをカバーに設けたモータ隔離部で取り囲んでカバー内部から隔離し、モータが発生する熱をカバーの外部に排熱しているので、モータの発熱の影響を受けることなく加工機械の温度を高精度に制御することができる。特に、カバー内を送風エアで冷房して加工機械の温度を制御する場合は、加工機械の温度制御を効率的に行うことができる。
【0020】
上記のように構成した請求項9に係る発明においては、工具によりワークを加工する加工機械の温度制御装置において、加工機械全体を覆うカバーの内部を該カバーに固定された仕切り板によって工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、該仕切り板に該加工エリアと後部エリアとを開閉可能に連通する工具交換用の扉を設け、該加工エリアと後部エリアに夫々接続されたエア供給装置から該加工エリアと後部エリアに温度調節された送風エアを夫々供給するので、各エリアの夫々必要な量の送風エアを供給することにより、加工機械の温度制御を精度よく安定して効率的に行うことができる。
上記のように構成した請求項10に係る発明においては、工具によりワークを加工する加工機械の温度制御装置において、加工機械全体を覆うカバーに固定された仕切り板の内縁が、工具支持装置を支承してベッド上に摺動可能に支承されたコラムの両側面と対向しているので、コラムが後退端に位置しても、前記カバーの内部を工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分することができる。
【0021】
【実施の形態】
以下、本発明に係る加工機械の温度制御方法を実施する加工機械の温度制御装置の実施の形態を図面に基づいて説明する。図1乃至3において、工場の床面に掘られたピット1内に設置された加工機械であるマシニングセンタ2のベッド3上にはコラム4が水平面内でZ軸方向に移動可能に支承され、ベッド3に回転可能に軸承された送りネジ5を有する送りネジ機構及び送りネジ5を回転駆動するサーボモータ6によりZ軸方向に往復移動される。コラム4には、工具を支持する工具支持装置としての主軸台7が上下のY軸方向に移動可能に支承され、一対のサーボモータ8及び図略の送りネジ機構によりY軸方向に移動される。主軸台7には先端に工具Tが着脱自在に装着される主軸9がZ軸方向に軸承され、主軸モータ19により回転駆動される。
【0022】
ベッド3にはテーブル10がコラム4と対向してX軸方向に水平面内で移動可能に装架され、一対のサーボモータ11及び図略の送りネジ機構によりX軸方向に往復移動されるようになっている。テーブル10上にはチルトテーブル12がX軸と平行なA軸回りに回動可能に支承され、サーボモータ13により旋回駆動される。チルトテーブル12上には、ワークを保持するワーク保持装置としての回転テーブル14が回転可能に支承され、サーボモータによりB軸回りに割出し回転されるようになっている。回転テーブル14にはワークWが取付けられるパレットPが着脱可能に装着され、回転テーブル14と主軸台7とのX,Y,Z軸方向の相対移動及びA,B軸回りの回転によりワークWが主軸9に装着された工具Tにより加工される。
【0023】
15はベッド3の前側にピット1内に設置されたパレットチェンジャで、2個のパレット搬入出台15a,15bがX軸方向に並んで設けられている。ワークWの加工が完了すると、テーブル10がX軸方向に移動され、A,B軸回りに原位置に割り出された回転テーブル14を一方のパレット搬入出位置と整列する位置に位置決めし、図略の搬入出装置が加工完了したワークWを載置したパレットPを空のパレット搬入出位置に搬出し、その後、テーブル10はX軸方向に移動されて回転テーブル14を他方のパレットPが搬入出位置と整列する位置に位置決めし、搬入出装置が次に加工するワークWを載置したパレットPを回転テーブル14上に搬入する。
【0024】
16は複数の工具Tを着脱可能に収納する工具マガジンで、工具マガジン16は、図2に示すように、ピット1内にコラム3の側方に設置されている。17はコラム3の上方に装着された工具交換装置で、コラム3が工具マガジン16と整列する後退位置に後退され、工具ヘッド6が上方の工具交換位置に上昇されたとき、次に使用する工具Tを工具マガジン16から取り出し、使用済みの工具Tを主軸9から抜き出して両工具を交換するようになっている。
【0025】
20はマシニングセンタ2の全体を覆うカバーで、工具TがワークWを加工する加工エリア21と加工エリア21以外の後部エリア22とに内部が区分されている。即ち、カバー20の両側壁からコラム4の両側壁に向かって前後仕切り板23a,23bが、ベッド3の下端からコラム4の工具交換装置17の下方位置まで延在されている。前後仕切り板23a,23bの各内縁はコラム4の両側面に夫々微少隙間を有して対向し、後退端に位置するコラム4の前側が僅かに加工エリア21に露出する位置に設けられている。
【0026】
前後仕切り板23a,23bの上端から上下仕切り板24がテーブル10側に向けて水平方向に延在され、上方に屈曲されてカバー20の天井に接続されている。上下仕切り板24の両端はカバー20の両側壁に接続されている。上下仕切り板24にはコラム4が前進するときに侵入する矩形穴25が前後仕切り板23a,23bの内縁から連続して前方に形成されている。コラム14の前面には矩形穴25の一部を閉鎖する庇板26が、上下仕切り板24の上方に微小隙間を有して突設されている。上下仕切り板24の上方には、庇板26に当接して矩形穴25を閉鎖する開閉板27が装架され、開閉板27はカバー20の天井に固定されたシリンダ28のピストンロッドに連結されてシリンダ28に内臓された圧縮スプリングのばね力により後方に付勢され、庇板26に当接されて矩形穴25を常時は閉鎖している。開閉板27は、コラム4が後退端に位置したとき、シリンダ28により前方に移動されて庇板26から開離して矩形穴25を開放し、工具交換装置17による工具交換を可能にしている。上下仕切り板24は開閉板27の前方への移動を許容するために一部がテーブル10中央部分まで延在して上方に屈曲され、カバー20の天井に接続されている。これによりカバー20の内部は、前後仕切り板23a,23bより前方で、且つ上下仕切り板24より下方の加工エリア21と、加工エリア21以外の後部エリア22とに区分される。
【0027】
カバー20の加工エリア21及び後部エリア22に夫々対応する天井には、温度調節された送風エアを供給する開度を調整可能な各一対のポート30,31が両側に夫々開口されている。矩形穴25の両側縁の下方には、矩形穴25内に侵入したコラム4の側面に上方から下方に向けて送風エアを吹き付けるために多数のエア穴が斜め下方に向けて開口された吹出しダクト32が夫々配置され、各吹出しダクト32は前後仕切り板23a,23bに後端部を固定され、パイプによりカバー20の天井に設けられた開度を調整可能なポート33に接続されている。カバー20の天井の一方側に設けられたポート30,31,33はパイプ34により所定流量の送風エアを送出する空調機35に接続され、他方側に設けられたポート30,31,33はパイプ36により空調機35に接続されている。
【0028】
ポート30及び33の各開口部断面積は、合計断面積が両ポート30,33から加工エリア21に供給される送風エアの流量が加工エリア21の発熱部の発熱量に基づいて決められた加工エリア流量を満たすとともに、ポート30,33の各開口部での流速が0.3m/s〜1.0m/s、好ましくは0.4m/s〜0.5m/sとなるように決められている。ポート31の開口部断面積は、ポート31から後部エリア22に供給される送風エアの流量が後部エリア22の発熱部の発熱量に基づいて決められた後部エリア流量を満たすとともに、開口部での流速が0.3m/s〜1.0m/s、好ましくは0.4m/s〜0.5m/sとなるように決められている。さらに、ポート30,31,33の各開口部断面積は、夫々の開口部での流速が略等しくなるように決められている。
【0029】
カバー20には、コラム4及びテーブル10を駆動するサーボモータ6,11を夫々取り囲むトンネル状のモータ隔離部40,41が設けられ、サーボモータ6,11が発生する熱をサーボモータ6,11の後端部に設けられたファンによってカバー20の外部に排熱するようになっている。42は主軸台7を駆動するサーボモータ8を取り囲み、且つ主軸7を回転駆動する主軸モータ19が発生する熱を収集するようにコラム4上方を覆う排熱カバーで、カバー20の天井にZ軸方向に穿設された長穴43を覆う巻取り式カバー44を貫通してカバー外部に開口している。巻取り式カバー44の中央部分は排熱カバー42の周囲に気密を保って固定され、両端は長穴43のZ軸方向の両端部に装着された巻取り装置45に巻き取られ、コラム4の移動に伴う排熱カバー42のZ方向移動に追従して移動する。
【0030】
46は基準温度ブロックで、マシニングセンタ2のベッド3が設置されているピット1のカバー20の外部に設置されている。これにより基準ブロック46の設置場所はカバー20の内部であるか外部であるかの違い以外の点では、ベッド3の設定場所と同じ条件である。基準ブロック46の内部温度は温度計47により測定され、その内部温度に基づいてカバー20に供給される送風エアの温度が調節される。基準ブロック46は加工による発熱及び駆動モータの発熱などの影響を受けることがなく、ベッド3をピット1内に放置した場合と略同じ温度になる。
【0031】
50はカバー20の天井に加工エリア21の前方両側の設けられたポートで、バキュームポンプ51にパイプ52で接続され、クーラントミスト、切粉等の粉塵を含んだ加工エリア21内のエアをバキュームポンプ51で吸い出してフィルタにより濾過してカバー20の外部に排出する。カバー20の前面には、パレットPをテーブル10とパレットチェンジャ15との間で搬入出するための搬入出口53が設けられ、開閉カバー54により開閉されるようになっている。55は工具TによるワークWの加工によって生じる切粉をクーラントと分離して回収する切粉回収装置である。切粉はテーブル10の下方でベッド1に設けられたスクリュウコンベアにより切粉回収装置55に排出される。
【0032】
カバー20内に供給される送風エアを温度調節する空調機35は、図4に示すように、冷温水を冷媒とする熱交換器60により送風エアを冷却又は加熱して温度調節し、温度調節された所定流量の送風エアを送風機66によりパイプ34,36に送出するエア温度調節部61及び熱交換器60を循環する冷温水の温度を制御する冷温水温度調節部62及び制御装置68を含んでいる。冷温水温度調節部62は、冷温水を収容するタンク63、タンク63内の冷温水を冷却する冷凍機64、過熱する電気ヒータ65を有する。タンク63内で温度制御された冷温水はポンプ65により汲み上げられて熱交換器60に送られ、空調機35内の送風エアを温度調節してタンク63に戻る。タンクとポンプ65との間には熱交換器60に送出される水量を調整する流量制御弁67が介在されている。
【0033】
制御回路68には、温度計47により測定された基準ブロック46の内部温度Ts及び工場内の温度Trが温度計47,70により夫々測定されて入力され、制御回路68は、基準ブロック46の内部温度Tsをエア目標温度Tatとし、エア目標温度Tatと工場内温度Trとに基づいて熱交換器60を循環する冷温水の冷温水目標温度Twtを算出する。タンク63内の冷温水の温度Twが温度計71により測定されて制御回路68に入力され、冷温水目標温度Twtと冷温水実測温度Twとの差に基づいて冷凍機64、電気ヒータ65をオンオフ制御して冷温水の温度を目標温度Twtに制御する。制御装置68にはエア温度調節部61から送風機66により送出された送風エアの温度Taが温度計69により測定されて入力され、制御装置68はエア実測温度Taとエア目標温度Tatとの差に応じて流量調整弁67の開度を制御し、熱交換器60を循環する冷温水の流量を制御してカバー20内に供給する送風エアの温度を目標温度Tatに調節する。
【0034】
次に、本発明に係る工作機械の温度制御方法の実施形態を上述の装置の実施形態の作動とともに説明する。回転テーブル14上にクランプされたパレットPに取り付けられたワークWと主軸9に装着された工具Tとは、サーボモータ6,8,11によるコラム4、主軸台7、テーブル10のX,Y,Z軸方向の移動、サーボモータ13によるチルトテーブル12の旋回及び図略のサーボモータによる回転テーブル14の回転により相対的に移動され、工作物Wが工具Tにより加工される。加工エリア21及び後部エリア22には、空調機35により温度調整された送風エアがパイプ34,36を通ってポート30,31から夫々供給される。温度調整された送風エアはパイプ34,36を通ってポート33を経て各吹出しダクト32からコラム4の両側面に向けて吹き付けられる。加工エリア21内のクーラントミスト、切粉等の粉塵を含んだエアはバキュームポンプ51で吸い出され、フィルタにより濾過されてカバー20の外部に排出される。
【0035】
基準ブロック46の内部温度が温度計47により測定されて目標温度Tatとして制御回路68に入力され、空調機35のエア温度調節部61から送出された送風エアの温度Taが温度計69により測定されて制御回路68に入力される。制御回路68は目標温度Tatとエア実測温度Taとの差に基づいて流量制御弁67を開閉し、熱交換器60を循環する水量を制御してエア実測温度Taがエア目標温度Tatになるように制御する。エア目標温度Tatに調節された送風エアが加工エリア21、後部エリア22にポート30,31から供給され、両エリア21,22内の温度がTatに維持されてマシニングセンタ2のコラム4、テーブル10などの機械温度がTatになる。機械温度Tmはコラム4等に取り付けられた温度計48により測定され、機械温度Tmとエア目標温度Tatとの差が設定値以下になると制御装置68は加工準備完了信号を図略の数値制御装置に送出する。
【0036】
工場内温度Tr及び基準温度Tsが、一例として図5に示すように変化した場合、上記工作機械の温度制御方法により目標温度Tatに制御された送風エアを加工エリア流量及び後部エリア流量づつ加工エリア21及び後部エリア22に夫々供給した結果、頭書は基準温度Tsから乖離していた加工エリア21及び後部エリア22内の温度延いては機械温度Tmが時間の経過とともに基準温度Tsに良好に追従し、マシニングセンタ2のベッド3、コラム4、テーブル10等の各部位の温度が基準温度Tsと略等しくなって熱変形が減少し、加工精度が極めて向上した。そして、各ポート30,31,33の開口部での送風エアの流速を0.3m/s〜1.0m/sの範囲にある流速のうちの略等しい流速として、送風エアが乱流になる程度を抑えるとともに、送風エアによる機械各部位の冷却態様を同様にしたので、加工エリア21及び後部エリア22内の温度ムラを抑えることができて機械温度が局部的に低下することを防止できる。特に、各ポート30,31,33の開口部での送風エアの流速を0.4m/s〜0.5m/sの範囲内で略等しくすると、加工エリア21及び後部エリア22内の各所での温度ムラを極めて小さくすることができた。
【0037】
機械温度Tmを基準ブロック46の内部温度に早く近づけるために、カバーに供給される送風エアの目標温度を、基準ブロック46の内部温度が工場内温度Trより低い場合は、エア目標温度Tatを基準ブロック46の内部温度より若干低く、高い場合は若干高く設定してもよい。
【0038】
空調機35から送出される送風エアの量をウォームアップ時は多く、定常状態時には少なくするように制御してもよい。また、加工エリア21及び後部エリア22の各天井に開口されたポート30,31に流量制御弁を設け、この流量制御弁を手動又は自動で開度を調整して各エリア21,22に供給される送風エアの量を調整するようにしてもよい。
【0039】
研削盤、旋盤、フライス盤等の工作機械及びレーザ加工機などに本発明に係る加工機械の温度制御装置を適用してもよい。
【図面の簡単な説明】
【図1】 本発明に係る工作機械の温度制御装置の実施形態の側面断面図。
【図2】 図1のA−A断面図。
【図3】 工作機械の温度制御装置の外観斜視図。
【図4】 空調機を説明する図。
【図5】 各所の温度変化の実測値を示すグラフ。
【符号の説明】
1・・・ピット、2・・・マシニングセンタ、3・・・ベッド、4・・・コラム、6,8,11・・・サーボモータ、7・・・主軸台、9・・・主軸、10・・・テーブル、15・・・パレットチェンジャ、19・・・主軸モータ、20・・・カバー、21・・・加工エリア、22・・・後部エリア、32・・・吹出しダクト、35・・・空調機、34,36・・・パイプ、35・・・空調機、40,41・・・モータ隔離部、42・・・排熱カバー、46・・・基準温度ブロック、47,69,70,71・・・温度計、61・・・エア温度調節部、62・・・冷温水温度調節部、64・・・冷凍機、65・・・電気ヒータ、67・・・流量制御弁、68・・・制御装置、W・・・ワーク、T・・・工具。
The present invention relates to a method for controlling the temperature of a processing machine and an apparatus for carrying out the method.
[0001]
[Prior art]
Conventionally, in order to prevent a processing machine from being thermally deformed due to heat generated by processing, heat generated by a drive motor, and temperature change at an installation location, the entire machine is covered with a cover, and inside the cover There is one that supplies blown air whose temperature is adjusted by an air conditioner using a refrigerant such as Freon.
[0002]
[Problems to be solved by the invention]
In the above-described conventional apparatus, the tool processes the workpiece and covers the machining area where the heat generation is large and the rear area other than the machining area with a single cover, so a large amount of air blown to the machining area where the temperature change is large. Even if a small amount of blown air is supplied to the rear area where the volume is large but the temperature change is small, the blown air circulates in both areas, so the temperature in the cover is efficiently controlled to the target temperature. I couldn't. Further, since the drive motor for driving the main shaft and the movable part is also covered with the entire cover, there is a problem that a large amount of blown air must be supplied in order to remove the heat generated from the drive motor. Furthermore, since the refrigerant of the air conditioner that controls the temperature of the blown air is a gas and has a small heat capacity, the temperature control of the blown air is frequently performed, the temperature in the cover is not stable, and the temperature distribution becomes uneven, There was a problem that the part that the blown air hits was locally cooled or warmed and the machine temperature was not stable.
[0003]
  In order to solve the above-described problem, the structural feature of the invention according to claim 1 is that a tool support device for supporting a tool and a work support device for holding a work are mounted on a bed, and the tool support device In a temperature control method of a processing machine that processes a workpiece with a tool by relatively moving the workpiece holding device, the entire processing machine is covered with a cover,By a partition plate fixed to the coverInside the cover, a processing area where the tool processes the workpiece andA tool changer was installedDivided into the rear area,The partition plate is provided with a tool change door that allows the processing area and the rear area to communicate with each other in an openable and closable manner,Supplying blown air whose temperature is adjusted to the processing area and the rear area.
[0004]
The structural feature of the invention according to claim 2 is the temperature control method for a processing machine according to claim 1, wherein the flow rate of the temperature-adjusted blown air is based on a heat generation amount of a heat generating portion in the processing area. The flow rate of the blown air is determined by the processing area flow rate determined in this manner and the rear area flow rate determined based on the heat generation amount of the heat generating portion in the rear area.
[0005]
A structural feature of the invention according to claim 3 is the temperature control method for a processing machine according to claim 2, wherein each flow velocity is different from that in the processing area in order to satisfy the processing area flow rate and the rear area flow rate. It is that each ventilation opening part cross-sectional area determined so that it may become substantially equal with a rear part area.
[0006]
A structural feature of the invention according to claim 4 is the temperature control method for a processing machine according to claim 3, wherein each flow velocity for satisfying the processing area flow rate and the rear area flow rate is 0.3 m / s or more. It is that it is a substantially equal flow velocity among the flow velocity in the range of 1.0 m / s.
[0007]
The structural feature of the invention according to claim 5 is the temperature control method for a processing machine according to any one of claims 1 to 4, wherein the temperature-adjusted blown air is supplied from the ceiling in the processing area. Spraying towards the tool support device and feeding from the ceiling in the rear area.
[0008]
The structural feature of the invention according to claim 6 is the temperature control method for a processing machine according to any one of claims 1 to 5, wherein the temperature of the blown air is controlled by a heater and a refrigerator. This is performed by an air conditioner using as a refrigerant.
[0009]
A structural feature of the invention according to claim 7 is the temperature control method for a processing machine according to any one of claims 1 to 6, wherein a reference temperature block is located outside the cover under the same conditions as the bed installation location. The temperature of the blown air is adjusted based on the temperature of the reference block.
[0010]
The structural feature of the invention according to claim 8 is the temperature control method for a processing machine according to any one of claims 1 to 7, wherein the motor for driving the movable part of the processing machine is surrounded and isolated from the inside of the cover. The cover is provided with a motor isolation part that exhausts heat generated by the motor to the outside of the cover.
[0011]
  A structural feature of the invention according to claim 9 is that a tool support device for supporting a tool and a work holding device for holding a work are mounted on a bed, and the tool support device and the work holding device are relatively relative to each other. In the temperature control device for a processing machine that moves the workpiece to a workpiece with a tool, the entire processing machine is covered with a cover,By a partition plate fixed to the coverInside the cover, a processing area where the tool processes the workpiece andA tool changer was installedDivided into the rear area,The partition plate is provided with a tool change door that allows the processing area and the rear area to communicate with each other in an openable and closable manner,An air supply device that supplies temperature-controlled blown air is provided, and the air supply device is connected to the processing area and the rear area, respectively.
  The structural feature of the invention according to claim 10 is the temperature control device for a processing machine according to claim 9, wherein the inner edge of the partition plate is slidable on the bed while supporting the tool support device. It is opposite to both sides of the column that is supported.
[0012]
  In the invention which concerns on Claim 1 comprised as mentioned above, in the temperature control method of the processing machine which processes a workpiece | work with a tool, the inside of the cover which covers the whole processing machine is provided.By a partition plate fixed to the coverThe machining area where the tool processes the workpiece andA tool changer was installedDivided into the rear area,The partition plate is provided with a tool changing door that allows the processing area and the rear area to be opened and closed,Since only the required amount of blown air whose temperature has been adjusted is supplied to the processing area and the rear area, the necessary amount of blown air is supplied to each area, so that the temperature control of the processing machine can be accurately and stably controlled. And can be done efficiently.
[0013]
In the invention according to claim 2 configured as described above, the flow rate of the blown air whose temperature has been adjusted is determined based on the processing area flow rate determined based on the heat generation amount of the heat generating portion of the processing area and the heat generating portion of the rear area. Since the rear area flow rate determined based on the heat generation amount is set, the temperatures of the processing area and the rear area can be controlled to be substantially equal.
[0014]
In the invention which concerns on Claim 3 comprised as mentioned above, each ventilation | gas_flowing opening part is satisfy | filled so that the processing area flow volume and rear area flow volume which are respectively required for a processing area and a rear area may be satisfy | filled, and each flow velocity may become substantially equal. Since the cross-sectional area has been determined, it is possible to supply the flow-controlled air with the required flow rate to the machining area and the rear area at a substantially equal flow rate with a simple configuration, and machine parts located in the machining area and the rear area, respectively. Can be controlled substantially equally.
[0015]
In the invention which concerns on Claim 4 comprised as mentioned above, each flow velocity for satisfy | filling a process area flow volume and a rear area flow volume was made into the substantially equal flow velocity of the range of 0.3 m / s-1.0 m / s. Therefore, the extent to which the blown air becomes a turbulent flow can be suppressed, temperature unevenness in each area can be suppressed, and the machine temperature can be prevented from decreasing locally.
[0016]
In the invention according to claim 5 configured as described above, the temperature-controlled air is supplied from the ceiling in the processing area and sprayed toward the tool support device, and is supplied from the ceiling in the rear area. The adjusted blown air is uniformly supplied to each area, the influence of the processing heat on the tool support device that supports the tool can be removed, and a reduction in processing accuracy due to the processing heat can be prevented.
[0017]
In the invention according to claim 6 configured as described above, the temperature of the blown air supplied to each of the processing area and the rear area is adjusted by an air conditioner using cold / hot water whose temperature is controlled by a heater and a refrigerator as a refrigerant. ing. Since the hot / cold water has a large heat capacity, the temperature change of the blown air can be moderated, the temperature distribution in the cover can be made uniform, and the thermal displacement of the machine can be reduced.
[0018]
In the invention according to claim 7 configured as described above, the reference temperature block is installed at a location outside the cover under the same conditions as the installation location of the bed of the processing machine, and the air flow is controlled based on the temperature of the reference block. The temperature is adjusted. The reference block is not affected by the heat generated by the processing and the heat generated by the drive motor, and has substantially the same temperature as when the bed is left at the installation location. Since the temperature of the machine is controlled by supplying blown air whose temperature is adjusted based on the temperature of the reference block to the inside of the cover, the thermal displacement of each part of the machine relative to the bed can be reduced to improve the machining accuracy.
[0019]
In the invention according to claim 8 configured as described above, the motor that drives the movable part of the processing machine is surrounded by the motor isolation part provided in the cover and isolated from the inside of the cover, and the heat generated by the motor is removed from the outside of the cover. Therefore, the temperature of the processing machine can be controlled with high accuracy without being affected by the heat generated by the motor. In particular, when the inside of the cover is cooled with blown air to control the temperature of the processing machine, the temperature control of the processing machine can be performed efficiently.
[0020]
  In the invention which concerns on Claim 9 comprised as mentioned above, in the temperature control apparatus of the processing machine which processes a workpiece | work with a tool, the inside of the cover which covers the whole processing machine is provided.By a partition plate fixed to the coverThe machining area where the tool processes the workpiece andA tool changer was installedDivided into the rear area,The partition plate is provided with a tool changing door that allows the machining area and the rear area to be opened and closed, and the air supply device connected to the machining area and the rear area respectively,As the temperature-controlled air is supplied to the processing area and the rear area, the necessary amount of air is supplied to each area to control the temperature of the processing machine accurately and stably. Can do.
  In the invention according to claim 10 configured as described above, in the temperature control device for a processing machine that processes a workpiece with a tool, the inner edge of the partition plate fixed to the cover that covers the entire processing machine supports the tool support device. Since it faces the both sides of the column that is slidably supported on the bed, even if the column is located at the retracted end, the machining area where the tool works the workpiece inside the cover and the tool change It can be divided into a rear area where the device is installed.
[0021]
Embodiment
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of a temperature control device for a processing machine that implements a temperature control method for a processing machine according to the present invention will be described with reference to the drawings. 1 to 3, a column 4 is supported on a bed 3 of a machining center 2 which is a processing machine installed in a pit 1 dug in a factory floor so as to be movable in the Z-axis direction in a horizontal plane. 3 is reciprocally moved in the Z-axis direction by a feed screw mechanism having a feed screw 5 rotatably supported by 3 and a servo motor 6 that rotationally drives the feed screw 5. A spindle base 7 as a tool support device for supporting a tool is supported on the column 4 so as to be movable in the vertical Y-axis direction, and is moved in the Y-axis direction by a pair of servo motors 8 and a feed screw mechanism (not shown). . A spindle 9 on which a tool T is detachably mounted at the tip is supported on the spindle base 7 in the Z-axis direction and is driven to rotate by a spindle motor 19.
[0022]
A table 10 is mounted on the bed 3 so as to face the column 4 so as to be movable in a horizontal plane in the X-axis direction, and is reciprocated in the X-axis direction by a pair of servo motors 11 and a feed screw mechanism (not shown). It has become. A tilt table 12 is supported on the table 10 so as to be rotatable about an A axis parallel to the X axis, and is rotated by a servo motor 13. On the tilt table 12, a rotary table 14 as a work holding device for holding the work is rotatably supported, and is indexed and rotated around the B axis by a servo motor. A pallet P on which the workpiece W is mounted is detachably mounted on the rotary table 14, and the workpiece W is moved by relative movement between the rotary table 14 and the headstock 7 in the X, Y, and Z axis directions and rotation around the A and B axes. Processing is performed by a tool T attached to the main shaft 9.
[0023]
A pallet changer 15 is installed in the pit 1 on the front side of the bed 3 and two pallet loading / unloading tables 15a and 15b are provided side by side in the X-axis direction. When the processing of the workpiece W is completed, the table 10 is moved in the X-axis direction, and the rotary table 14 indexed to the original position around the A and B axes is positioned at a position aligned with one pallet loading / unloading position. The pallet P on which the workpiece W on which the processing has been completed is loaded is carried out to an empty pallet carrying-in / out position, and then the table 10 is moved in the X-axis direction, and the other pallet P is loaded into the rotary table 14. The pallet P on which the workpiece W to be processed next is placed on the rotary table 14 is positioned at a position aligned with the exit position.
[0024]
Reference numeral 16 denotes a tool magazine for detachably storing a plurality of tools T. The tool magazine 16 is installed in the pit 1 on the side of the column 3 as shown in FIG. A tool changer 17 mounted above the column 3 is retracted to a retracted position where the column 3 is aligned with the tool magazine 16, and when the tool head 6 is raised to the upper tool change position, the next tool to be used. T is taken out from the tool magazine 16, and the used tool T is extracted from the main shaft 9, and both tools are exchanged.
[0025]
A cover 20 covers the entire machining center 2 and is divided into a processing area 21 where the tool T processes the workpiece W and a rear area 22 other than the processing area 21. That is, front and rear partition plates 23 a and 23 b extend from the lower end of the bed 3 to a position below the tool changer 17 of the column 4 from both side walls of the cover 20 toward both side walls of the column 4. The inner edges of the front and rear partition plates 23a and 23b are opposed to both side surfaces of the column 4 with a small gap, and are provided at positions where the front side of the column 4 located at the retracted end is slightly exposed to the processing area 21. .
[0026]
The upper and lower partition plates 24 extend horizontally from the upper ends of the front and rear partition plates 23 a and 23 b toward the table 10, bent upward, and connected to the ceiling of the cover 20. Both ends of the upper and lower partition plates 24 are connected to both side walls of the cover 20. A rectangular hole 25 that enters when the column 4 moves forward is formed in the upper and lower partition plates 24 continuously from the inner edges of the front and rear partition plates 23a and 23b. On the front surface of the column 14, a gutter 26 that closes a part of the rectangular hole 25 protrudes above the upper and lower partition plates 24 with a minute gap. Above the upper and lower partition plates 24, an opening / closing plate 27 that abuts the flange plate 26 and closes the rectangular hole 25 is mounted, and the opening / closing plate 27 is connected to a piston rod of a cylinder 28 fixed to the ceiling of the cover 20. Thus, the rectangular spring 25 is normally closed by being urged rearward by the spring force of the compression spring built in the cylinder 28 and abutting against the flange plate 26. When the column 4 is positioned at the retracted end, the opening / closing plate 27 is moved forward by the cylinder 28 to be separated from the flange plate 26 to open the rectangular hole 25, and the tool changer 17 can change the tool. A part of the upper and lower partition plates 24 extends to the center portion of the table 10 and is bent upward in order to allow the opening / closing plate 27 to move forward, and is connected to the ceiling of the cover 20. Accordingly, the inside of the cover 20 is divided into a processing area 21 in front of the front and rear partition plates 23 a and 23 b and below the upper and lower partition plates 24, and a rear area 22 other than the processing area 21.
[0027]
A pair of ports 30, 31 that can adjust the opening degree of supplying the temperature-controlled blown air are respectively opened on both sides of the ceiling corresponding to the processing area 21 and the rear area 22 of the cover 20. Below the both side edges of the rectangular hole 25, a blowout duct in which a number of air holes are opened obliquely downward in order to blow blown air from the upper side to the lower side of the column 4 that has entered the rectangular hole 25. 32 are respectively arranged, and each blowing duct 32 is connected to a port 33 having a rear end fixed to the front and rear partition plates 23a and 23b and having an adjustable opening degree provided on the ceiling of the cover 20 by a pipe. Ports 30, 31, and 33 provided on one side of the ceiling of the cover 20 are connected to an air conditioner 35 that sends out a predetermined flow of blown air through a pipe 34, and ports 30, 31, and 33 provided on the other side are pipes. 36 is connected to the air conditioner 35.
[0028]
The sectional area of each opening of the ports 30 and 33 is a machining in which the total sectional area is determined based on the heat generation amount of the heat generating part of the machining area 21 in which the flow rate of the blown air supplied from both ports 30 and 33 to the machining area 21 In addition to satisfying the area flow rate, the flow velocity at each opening of the ports 30 and 33 is determined to be 0.3 m / s to 1.0 m / s, preferably 0.4 m / s to 0.5 m / s. Yes. The opening cross-sectional area of the port 31 is such that the flow rate of the blown air supplied from the port 31 to the rear area 22 satisfies the rear area flow rate determined based on the heat generation amount of the heat generating part of the rear area 22, and The flow rate is determined to be 0.3 m / s to 1.0 m / s, preferably 0.4 m / s to 0.5 m / s. Furthermore, the opening cross-sectional areas of the ports 30, 31, and 33 are determined so that the flow velocities at the respective openings are substantially equal.
[0029]
The cover 20 is provided with tunnel-shaped motor isolating portions 40 and 41 that surround the servo motors 6 and 11 that drive the column 4 and the table 10, respectively, and the heat generated by the servo motors 6 and 11 is transmitted to the servo motors 6 and 11. Heat is exhausted to the outside of the cover 20 by a fan provided at the rear end. A heat exhaust cover 42 surrounds the servo motor 8 that drives the headstock 7 and covers the top of the column 4 so as to collect heat generated by the main shaft motor 19 that rotationally drives the spindle 7. A winding-type cover 44 covering the elongated hole 43 formed in the direction passes through and opens to the outside of the cover. The central part of the wind-up cover 44 is fixed around the exhaust heat cover 42 in an airtight manner, and both ends are wound around a winder 45 attached to both ends of the elongated hole 43 in the Z-axis direction. The exhaust heat cover 42 moves following the movement of the exhaust heat cover 42 in the Z direction.
[0030]
A reference temperature block 46 is installed outside the cover 20 of the pit 1 where the bed 3 of the machining center 2 is installed. Thereby, the installation location of the reference block 46 is the same as the setting location of the bed 3 except for the difference between the inside and the outside of the cover 20. The internal temperature of the reference block 46 is measured by a thermometer 47, and the temperature of the blown air supplied to the cover 20 is adjusted based on the internal temperature. The reference block 46 is not affected by heat generated by processing, heat generated by the drive motor, and the like, and has substantially the same temperature as when the bed 3 is left in the pit 1.
[0031]
Ports 50 are provided on the ceiling of the cover 20 on both front sides of the processing area 21 and are connected to a vacuum pump 51 by pipes 52 to vacuum the air in the processing area 21 containing dust such as coolant mist and chips. Suctioned out at 51, filtered through a filter, and discharged to the outside of the cover 20. On the front surface of the cover 20, a loading / unloading port 53 for loading and unloading the pallet P between the table 10 and the pallet changer 15 is provided and is opened and closed by an opening / closing cover 54. Reference numeral 55 denotes a chip collection device that separates and collects chips generated by machining the workpiece W with the tool T from the coolant. The chips are discharged to the chip collection device 55 by a screw conveyor provided on the bed 1 below the table 10.
[0032]
As shown in FIG. 4, the air conditioner 35 that adjusts the temperature of the blown air supplied into the cover 20 cools or heats the blown air using a heat exchanger 60 that uses cold / hot water as a refrigerant to adjust the temperature. An air temperature adjusting unit 61 for sending the blown air having a predetermined flow rate to the pipes 34 and 36 by the blower 66, a cold / hot water temperature adjusting unit 62 for controlling the temperature of the cold / hot water circulating in the heat exchanger 60, and a control device 68. It is out. The cold / hot water temperature adjustment unit 62 includes a tank 63 for storing cold / hot water, a refrigerator 64 for cooling the cold / hot water in the tank 63, and an electric heater 65 for overheating. The cold / hot water whose temperature is controlled in the tank 63 is pumped up by the pump 65 and sent to the heat exchanger 60, and the temperature of the blown air in the air conditioner 35 is adjusted to return to the tank 63. Between the tank and the pump 65, a flow rate control valve 67 for adjusting the amount of water sent to the heat exchanger 60 is interposed.
[0033]
The control circuit 68 is supplied with the internal temperature Ts of the reference block 46 measured by the thermometer 47 and the temperature Tr in the factory measured by the thermometers 47 and 70, respectively. The temperature Ts is set as the air target temperature Tat, and the cold / hot water target temperature Twt of the cold / warm water circulating through the heat exchanger 60 is calculated based on the air target temperature Tat and the factory temperature Tr. The temperature Tw of the cold / hot water in the tank 63 is measured by the thermometer 71 and input to the control circuit 68, and the refrigerator 64 and the electric heater 65 are turned on / off based on the difference between the cold / hot water target temperature Twt and the measured cold / hot water temperature Tw. To control the temperature of the cold / hot water to the target temperature Twt. The temperature 68 of the blown air sent from the air temperature adjusting unit 61 by the blower 66 is measured and inputted to the control device 68 by the thermometer 69, and the control device 68 determines the difference between the actually measured air temperature Ta and the air target temperature Tat. Accordingly, the opening degree of the flow rate adjusting valve 67 is controlled, the flow rate of the cold / hot water circulating through the heat exchanger 60 is controlled, and the temperature of the blown air supplied into the cover 20 is adjusted to the target temperature Tat.
[0034]
Next, an embodiment of a temperature control method for a machine tool according to the present invention will be described together with the operation of the above-described apparatus embodiment. The workpiece W attached to the pallet P clamped on the rotary table 14 and the tool T attached to the spindle 9 include the column 4 by the servo motors 6, 8, 11, the spindle stock 7, and the X, Y, and X of the table 10. The workpiece W is moved by the tool T by the movement in the Z axis direction, the rotation of the tilt table 12 by the servo motor 13 and the rotation of the rotary table 14 by the servo motor (not shown). The processing area 21 and the rear area 22 are supplied with blown air whose temperature is adjusted by the air conditioner 35 from the ports 30 and 31 through the pipes 34 and 36, respectively. The temperature-adjusted blown air is blown through the pipes 34 and 36 through the ports 33 from the blowout ducts 32 toward both side surfaces of the column 4. Air containing dust such as coolant mist and chips in the processing area 21 is sucked out by the vacuum pump 51, filtered by a filter, and discharged to the outside of the cover 20.
[0035]
The internal temperature of the reference block 46 is measured by the thermometer 47 and input to the control circuit 68 as the target temperature Tat, and the temperature Ta of the blown air sent from the air temperature adjustment unit 61 of the air conditioner 35 is measured by the thermometer 69. To the control circuit 68. The control circuit 68 opens and closes the flow control valve 67 based on the difference between the target temperature Tat and the air measured temperature Ta, and controls the amount of water circulating through the heat exchanger 60 so that the air measured temperature Ta becomes the air target temperature Tat. To control. The blown air adjusted to the air target temperature Tat is supplied to the processing area 21 and the rear area 22 from the ports 30 and 31, and the temperatures in both the areas 21 and 22 are maintained at Tat, so that the column 4 and the table 10 of the machining center 2 are used. The machine temperature becomes Tat. The machine temperature Tm is measured by a thermometer 48 attached to the column 4 or the like, and when the difference between the machine temperature Tm and the air target temperature Tat becomes a set value or less, the control device 68 sends a machining preparation completion signal to a numerical control device (not shown). To send.
[0036]
When the factory temperature Tr and the reference temperature Ts are changed as shown in FIG. 5 as an example, the blower air controlled to the target temperature Tat by the temperature control method of the machine tool is processed by the processing area flow rate and the rear area flow rate. As a result of the supply to the rear area 22 and the rear area 22 respectively, the heading of the machining area 21 and the rear area 22 that deviated from the reference temperature Ts and the machine temperature Tm satisfactorily followed the reference temperature Ts over time. The temperature of each part such as the bed 3, the column 4, and the table 10 of the machining center 2 is substantially equal to the reference temperature Ts, the thermal deformation is reduced, and the processing accuracy is greatly improved. Then, the flow rate of the blown air at the openings of the ports 30, 31, 33 is set to a substantially equal flow rate in the range of 0.3 m / s to 1.0 m / s, and the blown air becomes turbulent. Since the degree of cooling of each part of the machine by the blown air is made the same while suppressing the degree, temperature unevenness in the processing area 21 and the rear area 22 can be suppressed, and the machine temperature can be prevented from lowering locally. In particular, when the flow velocity of the blown air at the openings of the ports 30, 31, and 33 is substantially equal within the range of 0.4 m / s to 0.5 m / s, the processing area 21 and the rear area 22 are arranged at various locations. The temperature unevenness could be extremely reduced.
[0037]
In order to quickly bring the machine temperature Tm close to the internal temperature of the reference block 46, the target temperature of the blown air supplied to the cover is determined based on the air target temperature Tat when the internal temperature of the reference block 46 is lower than the factory temperature Tr. If the temperature is slightly lower than the internal temperature of the block 46 and is higher, it may be set slightly higher.
[0038]
The amount of blown air sent from the air conditioner 35 may be controlled to be large during warm-up and small during steady state. Further, flow control valves are provided at ports 30 and 31 opened in the ceilings of the processing area 21 and the rear area 22, and the flow control valves are supplied to the areas 21 and 22 by manually or automatically adjusting the opening degree. The amount of blown air to be adjusted may be adjusted.
[0039]
You may apply the temperature control apparatus of the processing machine which concerns on machine tools, laser processing machines, etc., such as a grinding machine, a lathe, and a milling machine.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an embodiment of a temperature control device for a machine tool according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is an external perspective view of a temperature control device for a machine tool.
FIG. 4 is a diagram illustrating an air conditioner.
FIG. 5 is a graph showing measured values of temperature changes at various locations.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pit, 2 ... Machining center, 3 ... Bed, 4 ... Column, 6, 8, 11 ... Servo motor, 7 ... Spindle head, 9 ... Spindle, 10 ..Table, 15 ... Pallet changer, 19 ... Spindle motor, 20 ... Cover, 21 ... Processing area, 22 ... Rear area, 32 ... Blowout duct, 35 ... Air conditioning 34, 36 ... pipe, 35 ... air conditioner, 40, 41 ... motor isolation part, 42 ... waste heat cover, 46 ... reference temperature block, 47, 69, 70, 71 ... Thermometer, 61 ... Air temperature control unit, 62 ... Cold / hot water temperature control unit, 64 ... Refrigerator, 65 ... Electric heater, 67 ... Flow control valve, 68 ... -Control device, W ... work, T ... tool.

Claims (10)

ベッド上に工具を支持する工具支持装置とワークを保持するワーク保持装置とを装架し、前記工具支持装置と前記ワーク保持装置とを相対的に移動させて工具によりワークを加工する加工機械の温度制御方法において、前記加工機械の全体をカバーで覆い、該カバーに固定された仕切り板によって該カバーの内部を工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、前記仕切り板には前記加工エリアと前記後部エリアとを開閉可能に連通する工具交換用の扉を設け、該加工エリアと後部エリアに温度調節された送風エアを供給することを特徴とする加工機械の温度制御方法。A processing machine that mounts a tool support device that supports a tool on a bed and a work support device that holds a work, and moves the tool support device and the work support device relative to each other to process the work with the tool. In the temperature control method, the entire processing machine is covered with a cover, and a processing area where the tool processes the workpiece inside the cover by a partition plate fixed to the cover, and a rear area where the tool changer is installed The partition plate is provided with a tool changing door that opens and closes the processing area and the rear area so as to be openable and closable, and blown air whose temperature is adjusted is supplied to the processing area and the rear area. Temperature control method for processing machines. 前記温度調節された前記送風エアの流量は、前記加工エリアの発熱部の発熱量に基づいて決められた加工エリア流量と、前記後部エリアの発熱部の発熱量に基づいて決められた後部エリア流量とからなる前記送風エアの流量であることを特徴とする請求項1に記載の加工機械の温度制御方法。 The flow rate of the temperature-adjusted blown air is determined based on the processing area flow rate determined based on the heat generation amount of the heat generating portion of the processing area and the rear area flow rate determined based on the heat generation amount of the heat generating portion of the rear area. The temperature control method for a processing machine according to claim 1, wherein the flow rate of the blown air is: 前記加工エリア流量と前記後部エリア流量を満たすために、夫々の流速が前記加工エリアと前記後部エリアとで略等しくなるよう決められた夫々の送風開口部断面積であることを特徴とする請求項2に記載の加工機械の温度制御方法。 The air blowing opening cross-sectional area determined so that the respective flow velocities are approximately equal in the machining area and the rear area in order to satisfy the machining area flow rate and the rear area flow rate. The temperature control method of the processing machine of 2. 前記加工エリア流量と前記後部エリア流量を満たすための夫々の流速は0.3m/s〜1.0m/sの範囲にある流速のうちの略等しい流速であることを特徴とする請求項3に記載の加工機械の温度制御方法。 The flow velocity for satisfying the machining area flow rate and the rear area flow rate is substantially equal to a flow velocity in a range of 0.3 m / s to 1.0 m / s. The temperature control method of the described processing machine. 前記温度調節された送風エアを前記加工エリアでは天井から供給するとともに前記工具支持装置に向けて吹き付け、前記後部エリアでは天井から供給することを特徴とする請求項1乃至4のいずれかに記載の加工機械の温度制御方法。 5. The temperature-controlled blown air is supplied from the ceiling in the processing area and sprayed toward the tool support device, and is supplied from the ceiling in the rear area. Temperature control method for processing machines. 前記送風エアの温度調節をヒータ及び冷凍機により温度制御された冷温水を冷媒とする空調機で行なうことを特徴とする請求項1乃至5のいずれかに記載の加工機械の温度制御方法。 The temperature control method for a processing machine according to any one of claims 1 to 5, wherein the temperature of the blown air is adjusted by an air conditioner using cold / hot water whose temperature is controlled by a heater and a refrigerator as a refrigerant. 基準温度ブロックを前記ベッドの設置場所と同じ条件の前記カバー外部の場所に設置し、該基準ブロックの温度に基づいて前記送風エアを温度調節することを特徴とする請求項1乃至6のいずれかに記載の加工機械の温度制御方法。 The reference temperature block is installed at a location outside the cover under the same conditions as the installation location of the bed, and the temperature of the blown air is adjusted based on the temperature of the reference block. The temperature control method of the processing machine as described in 2. 前記加工機械の可動部を駆動するモータを取り囲んでカバー内部から隔離し、該モータが発生する熱をカバー外部に排熱させるモータ隔離部をカバーに設けたことを特徴とする請求項1乃至7のいずれかに記載の加工機械の温度制御方法。 8. A motor isolating portion surrounding a motor that drives a movable portion of the processing machine and isolating it from the inside of the cover, and for dissipating the heat generated by the motor to the outside of the cover. The temperature control method of the processing machine in any one of. ベッド上に工具を支持する工具支持装置とワークを保持するワーク保持装置とを装架し、前記工具支持装置と前記ワーク保持装置とを相対的に移動させて工具によりワークを加工する加工機械の温度制御装置において、前記加工機械の全体をカバーで覆い、該カバーに固定された仕切り板によって該カバーの内部を工具がワークを加工する加工エリアと、工具交換装置が設置された後部エリアとに区分し、前記仕切り板には前記加工エリアと前記後部エリアとを開閉可能に連通する工具交換用の扉を設け、温度調節された送風エアを供給するエア供給装置を設け、該エア供給装置を前記加工エリアと後部エリアに夫々接続したことを特徴とする加工機械の温度制御装置。A processing machine that mounts a tool support device that supports a tool on a bed and a work support device that holds a work, and moves the tool support device and the work support device relative to each other to process the work with the tool. In the temperature control device, the entire processing machine is covered with a cover, and a processing area in which the tool processes the workpiece inside the cover by a partition plate fixed to the cover, and a rear area where the tool changer is installed The partition plate is provided with a tool changing door that opens and closes the processing area and the rear area, and is provided with an air supply device for supplying temperature-adjusted blown air. A temperature control device for a processing machine, wherein the temperature control device is connected to each of the processing area and the rear area. 請求項9において、前記仕切り板の内縁は、前記工具支持装置を支承して前記ベッド上に摺動可能に支承されたコラムの両側面と対向することを特徴とする加工機械の温度制御装置。10. The temperature control device for a processing machine according to claim 9, wherein an inner edge of the partition plate is opposed to both side surfaces of a column that is slidably supported on the bed by supporting the tool support device.
JP2002092315A 2002-03-28 2002-03-28 Temperature control method and apparatus for processing machine Expired - Fee Related JP3982298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092315A JP3982298B2 (en) 2002-03-28 2002-03-28 Temperature control method and apparatus for processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092315A JP3982298B2 (en) 2002-03-28 2002-03-28 Temperature control method and apparatus for processing machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007097147A Division JP4623040B2 (en) 2007-04-03 2007-04-03 Temperature control device for processing machine

Publications (2)

Publication Number Publication Date
JP2003291050A JP2003291050A (en) 2003-10-14
JP3982298B2 true JP3982298B2 (en) 2007-09-26

Family

ID=29237179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092315A Expired - Fee Related JP3982298B2 (en) 2002-03-28 2002-03-28 Temperature control method and apparatus for processing machine

Country Status (1)

Country Link
JP (1) JP3982298B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254334A (en) * 2004-03-09 2005-09-22 Osaka Kiko Co Ltd Machine tool for restraining influence of environment temperature
JP4210308B2 (en) * 2007-04-03 2009-01-14 ファナック株式会社 Machine tool with the main body covered with a cover
JP5201502B2 (en) * 2007-10-24 2013-06-05 株式会社ニイガタマシンテクノ Machine tool temperature control device
JP5603030B2 (en) 2009-06-23 2014-10-08 Dmg森精機株式会社 Temperature control device for processing machine
JP5484934B2 (en) * 2010-01-28 2014-05-07 東芝機械株式会社 Precision processing machine temperature control device
JP5615735B2 (en) * 2011-02-24 2014-10-29 Ntn株式会社 Machine Tools
JP6030980B2 (en) * 2013-03-26 2016-11-24 株式会社荏原製作所 Polishing apparatus temperature control system and polishing apparatus
CN104768704B (en) 2013-09-13 2016-04-06 山崎马扎克公司 Vertical machining centre
WO2015059806A1 (en) * 2013-10-24 2015-04-30 コマツNtc株式会社 Machine tool
KR102162497B1 (en) * 2020-03-04 2020-10-06 이성수 Mct processing system
JP7007427B2 (en) * 2020-06-17 2022-01-24 Dmg森精機株式会社 Machine tool air supply / exhaust system
CN116214258B (en) * 2023-05-05 2023-07-18 新乡职业技术学院 Temperature-control numerical control machining tool

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178147A (en) * 1985-01-31 1986-08-09 Okuma Mach Works Ltd Temperature controller
JP2555331B2 (en) * 1986-12-04 1996-11-20 株式会社井上ジャパックス研究所 Precision processing equipment
JPH0763917B2 (en) * 1987-05-21 1995-07-12 ファナック株式会社 Ultra-precision machine tool
JPH0611744Y2 (en) * 1987-09-22 1994-03-30 豊田工機株式会社 Machine tool with standby workpiece temperature adjustment device
JPH02117848U (en) * 1989-03-06 1990-09-20
JPH0623647A (en) * 1992-07-06 1994-02-01 Hitachi Seiko Ltd Printed board drill
JPH10138085A (en) * 1996-11-11 1998-05-26 Hookosu Kk Column movable type machining center
JP3728457B2 (en) * 1997-09-12 2005-12-21 株式会社前川製作所 Machining plant cooling system
JP2000052183A (en) * 1998-08-11 2000-02-22 Okuma Corp Damage preventing device for cover device
JP3794938B2 (en) * 2000-10-04 2006-07-12 株式会社牧野フライス製作所 Processing machine equipment

Also Published As

Publication number Publication date
JP2003291050A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP1195225B1 (en) Machine tool with air conditioned room
JP3982298B2 (en) Temperature control method and apparatus for processing machine
JP4623040B2 (en) Temperature control device for processing machine
JP6001701B2 (en) System that can perform work on workpieces immediately
JP6309939B2 (en) A machining system comprising an enclosure that defines a space in which a workpiece is machined
JP4342511B2 (en) Processing machine equipment
JP5201502B2 (en) Machine tool temperature control device
US6923603B2 (en) Machine tool with a feature for preventing a thermal deformation
JP5084848B2 (en) Processing machine equipment
JP4891690B2 (en) Processing water temperature controller
JP2555331B2 (en) Precision processing equipment
JP4214492B2 (en) Workpiece cooling device for machine tools
KR102218302B1 (en) Numerical control machine tool
JP6858323B2 (en) Machine tool temperature control device
JPH0611744Y2 (en) Machine tool with standby workpiece temperature adjustment device
JP2000225536A (en) Thermal deformation preventing method and machine tool for cutting
JP2008264977A (en) Working facility
JPH01140945A (en) Machine tool wherein air of room temperature is circulated
JPH09300173A (en) Method and system of cooling main spindle of machine tool
JP2011056599A (en) Temperature control system
JPH07237085A (en) Main spindle cooling device for finishing machine
JP6552344B2 (en) Processing device
JP7187618B1 (en) Machine tool temperature controller
CN219283901U (en) Food package box drying equipment
WO2023127352A1 (en) Cutting device, holder and cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3982298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees