WO2023127352A1 - Cutting device, holder and cutting method - Google Patents

Cutting device, holder and cutting method Download PDF

Info

Publication number
WO2023127352A1
WO2023127352A1 PCT/JP2022/043022 JP2022043022W WO2023127352A1 WO 2023127352 A1 WO2023127352 A1 WO 2023127352A1 JP 2022043022 W JP2022043022 W JP 2022043022W WO 2023127352 A1 WO2023127352 A1 WO 2023127352A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
flow path
cutting
cutting tool
partial flow
Prior art date
Application number
PCT/JP2022/043022
Other languages
French (fr)
Japanese (ja)
Inventor
謙一郎 國友
亜未 佐々木
秀峰 小関
湧太 山田
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023127352A1 publication Critical patent/WO2023127352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/117Retention by friction only, e.g. using springs, resilient sleeves, tapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine

Definitions

  • the present invention relates to a cutting device, a holder that holds a cutting tool, and a cutting method.
  • Patent Document 1 discloses an additive manufacturing method equipped with a heat source in order to stably maintain a heated state when shaping and cutting an additive manufacturing object composed of a difficult-to-cut material having a machinability index of 50 or less.
  • An apparatus and heat cutting technique are disclosed.
  • a high-frequency induction heating, a semiconductor laser, and the like are exemplified as the heating source.
  • Patent Document 2 describes a tool holder for mounting a ceramic end mill by shrink fitting.
  • compressed air is sent into the cavity from the spindle to cut a work material made of a Ni-based super heat-resistant alloy
  • the contact point between the work material and the cutting edge of the end mill reaches a temperature range exceeding 800°C, resulting in smooth roughing. Machining is performed.At this time, since compressed air passes through the first gas flow passage, the chuck part is cooled by the compressed air, and the compressed air is jetted from the end face and cooled. Even if the temperature is exceeded, the chuck portion will not reach a high temperature to the extent that the end mill will come off.” (cited from the abstract).
  • Patent Document 1 With the technology disclosed in Patent Document 1, there is a possibility that the gripping force of the tool may decrease during heat cutting due to the difference between the coefficient of thermal expansion of the material of the cutting tool and the material of the tool holder.
  • Patent Document 2 the technique disclosed in Patent Document 2 is disclosed as "heating a work material and a cutting tool to a high temperature with cutting heat, and performing cutting in a temperature range where the mechanical strength of the work material decreases.” As described in (paragraph 0004), the heating efficiency is poor because the cutting heat is locally applied.
  • An object of the present invention is to provide a cutting device, a holder, and a cutting method that have good heating efficiency and can reduce the decrease in gripping force of the cutting tool during hot cutting.
  • a cutting apparatus which is one aspect of the present invention, comprises a working part that cuts a work material with a cutting tool held by a holder attached to a spindle or a machining head, a heating part that heats the work material, a controller, wherein the thermal expansion coefficient of the material of the holder is higher than the thermal expansion coefficient of the material of the cutting tool, and the holder has a gas flow path for cooling the holder with a cooling gas.
  • the control unit controls cutting of the work material by the cutting tool in a state where the work material is heated by the heating unit, and cools the holder during cutting. Control the gas supply.
  • a holder that is one aspect of the present invention is a holder that is attached to a spindle or a machining head and holds a cutting tool, and includes a tool insertion portion into which the cutting tool is inserted, and a cooling gas from the spindle or the machining head. is supplied, a gas flow path through which the cooling gas flows, and an outlet for discharging the cooling gas to the outside, and the holder has a longitudinal direction that extends along the spindle or the machining head is attached to the main shaft or the machining head so as to be parallel to the rotation axis that rotates the holder, and the gas flow path is connected to the center through and extends in the longitudinal direction of the holder.
  • a second partial flow path connected to the discharge port and extending in the longitudinal direction of the holder; a folded partial flow path connecting the first partial flow path and the second partial flow path; including.
  • a cutting method which is one aspect of the present invention, comprises a working part for cutting a work material with a cutting tool held by a holder attached to a spindle or a machining head; a heating part for heating the work material; , wherein the holder is made of a material having a coefficient of thermal expansion higher than that of the material of the cutting tool, and the heating unit cuts The work material is heated, and the working part supplies cooling gas to the holder having a gas flow path formed therein while the work material is being cut by the cutting tool.
  • FIG. 4 is a cross-sectional view of a configuration example of a holder;
  • FIG. 4 is a cross-sectional view of a configuration example of a holder;
  • FIG. 4 is a cross-sectional view of a configuration example of a holder;
  • FIG. 4 is a cross-sectional view of a configuration example of a holder;
  • FIG. 1 is a diagram showing the overall configuration of a cutting device (hereinafter referred to as a heating cutting device) 1 equipped with a heat source according to this embodiment.
  • the heating and cutting apparatus 1 includes a housing 10, a working portion 20 for cutting a material to be cut, a heating portion 30 for maintaining a heated state during cutting, and operations of the working portion 20 and the heating portion 30. and a control unit 40 for controlling the
  • the working section 20 includes an air compressor that supplies cooling air for cooling the holder, which will be described later.
  • the air compressor is connected to a holder that holds a cutting tool through a channel.
  • a valve for controlling the flow of cooling air is also provided on the channel. Opening and closing of the valve can be controlled by the controller 40 .
  • the example of the heating cutting apparatus 1 can be said to be a system in which the heating unit 30 is provided in a machining center equipped with an air compressor.
  • the heating unit 30 is provided in a machining center equipped with an air compressor.
  • air is used as a medium for cooling the holder
  • a gas other than air may be used.
  • the housing 10 accommodates the working part 20 and the heating part 30 and isolates the inside from the surroundings.
  • a door 11 is provided in the housing 10, and the door 11 is closed when the working part 20 and the heating part 30 are to be operated.
  • An operator of the heating and cutting apparatus 1 opens the door 11 and enters the housing 10 when carrying in a work material or taking out a work material after cutting. 1, the inside of the housing 10 can be visually recognized by seeing through the ceiling of the housing 10. As shown in FIG.
  • ⁇ work section 20> 2 shows the main part of the working part 20.
  • the working part 20 includes a spindle 21 and a machining head 25 attached to the spindle 21, as shown in FIGS.
  • the machining head 25 may be omitted, or a plurality of machining heads may be used together. In the following description, the case of using a machining head will be described.
  • the main shaft 21 is internally provided with a motor for rotating the cutting tool (more precisely, the holder holding the cutting tool).
  • the holder is attached to the spindle 21 in a form rotatable by a motor. A case where the machining head 25 is used will be described later.
  • the main shaft 21 has a flow path for supplying cooling air supplied from the air compressor to the holder 27 . Movement of the machining head 25 (meaning at least one of translational movement and angle change) according to instructions from the control unit 40 is realized by moving the main axis with an actuator provided in the working unit 20 .
  • a cutting tool 26 is attached to the machining head 25 via a holder 27, as shown in FIG.
  • the mechanism by which the machining head 25 transmits the rotation of the motor of the spindle 21 to the holder can be broadly classified into the following two types.
  • the machining head 25 and the holder 27 are fixed so as not to rotate, and the machining head 25 is rotated by a motor (an extension head is an example).
  • a rotating shaft connected to a motor is provided inside the machining head 25, and the holder 27 is fixed to the rotating shaft (an angular head is an example).
  • a cutting tool 26 suitable for the material of the work material 7 is selected. If the material 7 to be cut is a difficult-to-cut material, a ceramic cutting tool 26 is selected for heat cutting.
  • the work part 20 includes a table 28 to which the base material 3 of the work material is fixed.
  • a machining head 25 to which a cutting tool 26 is attached faces the substrate 3 attached to a table 28 from above and performs respective operations.
  • a region in which the machining head 25 operates is simply referred to as an operating region.
  • the structure for realizing the movement of the cutting tool for cutting can be realized in addition to the movement of the machining head 25 described above.
  • the machining head 25 may have an actuator inside to change the angle of the cutting tool.
  • the cutting tool may move relative to the work material by moving the table 28 described above. In the following example, the case where the machining head 25 moves will be described.
  • Heating unit 30 maintains the heated state in the heating cutting process.
  • the heating unit 30 includes a high-frequency power source 31 that outputs a high-frequency current, a high-frequency oscillator 33 that outputs the high-frequency current output from the high-frequency power source 31 as a high-frequency current of a desired frequency, and a high-frequency current output from the high-frequency oscillator 33.
  • a high frequency coil 35 is provided.
  • the high-frequency power source 31 , the high-frequency oscillator 33 and the high-frequency coil 35 are parts directly involved in heating the base material 3 and the work material 7 .
  • the objects to be heated are the base material 3 and the work material 7 .
  • the heating unit 30 further includes a chiller 36 and a temperature controller 37.
  • a chiller 36 circulates a cooling medium in the high frequency oscillator 33 , and a temperature controller 37 adjusts the temperature of the high frequency power supply 31 .
  • the heating unit 30 can operate stably without overheating.
  • the heating section 30 may comprise means for cooling other parts, such as the table 28 of the working section 20 .
  • heating may be performed by, for example, a semiconductor laser. Either one may be used, or both may be used in combination, such as heating the entire work material by high-frequency induction heating and heating the vicinity of the work point by a semiconductor laser.
  • Control unit 40 controls operations of the working unit 20 and the heating unit 30 .
  • An example of the control unit 40 is a CNC (Computerized Numerical Control) device.
  • the control section 40 controls the operations of the machining head 25 and the cutting tool 26 in order to move the machining head 25 into the operation area and perform a predetermined cutting process. After the predetermined cutting process is completed, the control unit 40 retracts the machining head 25 .
  • the movement of the machining head 25 is controlled by the operation of the actuator that moves the spindle 21 based on the NC program (data describing at least the trajectory and rotation speed of the cutting tool) stored in the control unit 40.
  • the control unit 40 includes, for example, a first temperature sensor 41 and a second temperature sensor 43 in order to realize an appropriate heating temperature by the heating unit 30.
  • a first temperature sensor 41 measures the temperature directly above the workpiece 7 and a second temperature sensor 43 is arranged to measure the temperature of the substrate 3 .
  • the control section 40 controls the operation of the heating section 30 based on the temperatures monitored by these temperature sensors.
  • the work material 7 is cooled after the cutting process is completed.
  • the current supply to the high frequency coil 35 is stopped.
  • the controller that controls the temperature of the heating unit 30 and the controller that controls the above-described cutting process may be configured as separate controllers.
  • FIG. 3 A flowchart of the heat cutting process is shown in Fig. 3. Although it is conceivable that the heat cutting process is controlled by the control unit 40 , part or all of each step may be performed by the user of the cutting device 1 .
  • the work material 7 is heated by the heating unit 30 (S01). At this time, it is preferable to heat the substrate 3 as well.
  • cooling air is supplied to the holder 27 to air-cool the holder 27 (S02). Subsequently, heating cutting is performed in a state where the holder 27 is cooled while maintaining the heated state of the work material 7 (S03).
  • the heating of the work material 7 is stopped (S05), and then the supply of cooling air to the holder 27 is stopped (S06).
  • the cooling air may be continuously supplied until the temperature of the holder 27 returns to room temperature. This is because if the heated holder 27 is stored in the tool magazine of the working section 20 by an automatic changer (ATC) of the working section 20, it may cause a fire or burns by the user. Conversely, the supply of cooling air may be interrupted while the cutting tool 26 is away from the work piece 7 . As a result, the possibility that the cooling air is unnecessarily discharged near the work material 7 can be suppressed.
  • FIG. 1 A cross-sectional view of one configuration example of the holder 27 is shown in FIG.
  • An automatic changer (ATC) manipulator grip portion 51 is provided on the outer periphery of the holder 27.
  • ATC automatic changer
  • the upper portion of the manipulator grip portion 51 is inserted into the machining head 25, A lower portion than the manipulator grip portion 51 is exposed.
  • a portion above the manipulator gripping portion 51 is called a shank portion 59 .
  • the shank portion 59 contacts the machining head 25 .
  • the upper side and the lower side of the holder 27 are defined based on the state in which the holder 27 is attached to the machining head 25 .
  • the holder 27 is provided with a tool insertion portion 52 which is open at the bottom and into which the cutting tool 26 is inserted, and a center through 53 which is open at the top and into which air for cooling the holder 27 is introduced.
  • the center through 53 has a cylindrical shape with a gas stop 54 as a bottom surface.
  • a gas flow path 55 is provided from an opening in the inner wall of the center through 53 to an opening (exhaust port) 55d in the outer wall 55e of the holder. Cool the holder 27 while passing through.
  • the gas flow paths 55 are provided at two symmetrical locations. For example, three or more gas flow paths may be provided radially.
  • the flow of cooling air in holder 27 is shown as arrows 70 .
  • the holder 27 has a shape having a longitudinal direction up and down, and the longitudinal direction corresponds to a direction parallel to the rotation axis around which the machining head 25 rotates the holder 27 .
  • the holder is made of steel and has a coefficient of thermal expansion of 6 ⁇ 10 6 /° C. or more. It is about 10 6 /°C. Therefore, the coefficient of thermal expansion of the material of the holder is higher than that of the cutting tool. For this reason, the heat in the heating and cutting process is transferred to the holder, which reduces the gripping force of the cutting tool, and the cutting tool may fall out of the holder. For this reason, the holder 27 may be provided with a gas flow path for cooling the holder as in Patent Document 2. However, when cutting a work material having a height (depth) as shown in FIG. 2, in the conventional holder, the cooling air discharged from the holder 27 may hit and cool the work material.
  • the area around the tool insertion portion 52 into which the cutting tool 26 is inserted is a region that needs to be cooled from the viewpoint of preventing the tool from falling off. It is necessary to avoid hitting the work material as much as possible. More specifically, the positions on the workpiece where such cooling should be avoided are the cutting point that is currently being cut, the area that will become the cutting point within a predetermined period of time, and the surrounding area.
  • the size of this "predetermined time” and “periphery” depends on the temperature and flow rate of the cooling air, the thermal conductivity of the work material, the type of cutting tool, moving speed and number of rotations (related to frictional heat), heating Although it is considered to be related to the heating capacity of the part 30, since the number of revolutions of the cutting tool changes during the cutting process, accurate estimation of the predetermined time and the size of the circumference requires trial and error for each type of cutting tool. need. Therefore, it is important to prevent the cooling air from hitting the work material in order to perform heat cutting more easily.
  • the gas flow path 55 is preferably composed of the following partial flow paths as in the present embodiment.
  • First partial flow path 55 a a partial flow path connected to the center through 53 and extending in the longitudinal direction of the holder 27 . Cooling air flows from above to below in the partial channel.
  • the partial flow path preferably extends downward from at least the upper end of the tool insertion portion 52 .
  • Second partial flow path 55b a partial flow path that is connected to the discharge port 55d and extends in the longitudinal direction of the holder 27. Cooling air flows from below to above in the partial channel.
  • Return partial flow path 55c A partial flow path that is connected to the first partial flow path 55a and the second partial flow path 55b and turns the flow of cooling air upward from below.
  • discharge port 55d in this specification refers to the end face where the gas flow path 55 is exposed to the outer wall 55e of the holder 27.
  • the cooling air is discharged from the discharge port 55d not only in the surface direction of the discharge port 55d but also in the discharge direction determined by the extending direction of the second partial flow path 55b near the discharge port 55d.
  • the first partial flow path 55a does not need to be configured as a flow path whose entire flow path is parallel to the longitudinal direction, and may extend in the longitudinal direction as a whole. In the examples of FIGS. 4-7, it initially extends laterally and then in a direction parallel to the axis of rotation of the holder. Furthermore, the partial flow path may be a flow path that is slightly inclined from the longitudinal direction, and may include bent portions other than those described above.
  • the second partial flow path 55b does not need to be configured as a flow path that is parallel to the longitudinal direction as a whole, and may extend in the longitudinal direction as a whole.
  • a portion defining the discharge direction of the cooling air (sometimes referred to as a discharge direction defining portion flow path) extends in the lateral direction in the vicinity of the discharge port 55d.
  • the partial flow path may be a flow path that is slightly inclined from the longitudinal direction, and may include bent portions other than those described above.
  • the folded partial flow path 55c may be a portion where the first partial flow path 55a and the second partial flow path 55b of the modified example described above are connected.
  • the air flow path 55 is lengthened and the cooling effect is enhanced.
  • the outlet 55d opens at a position away from the work material, there is an effect that chips and the like are less likely to enter the gas flow path 55.
  • FIG. 4 shows an example in which two gas flow paths 55 are provided, a plurality of gas flow paths 55 may be provided.
  • the cross-sectional shape and cross-sectional size of the path are not particularly limited.
  • the discharge direction defining partial flow path of the second partial flow path 55b extends in the lateral direction so that the cooling air from the discharge port flows in the horizontal direction. It may be extended, or may be directed directly upward. As a result, the discharge direction of the cooling air can be directed upward. Examples thereof are shown in FIGS. 5 and 7, which will be described later.
  • the holder 27 may be divided and manufactured.
  • the holder 27 may be manufactured as three parts by the upper dividing surface 56 and the lower dividing surface 57, and the three parts may be integrated by welding or the like.
  • the parts above the upper dividing surface 56 and the parts between the upper dividing surface 56 and the lower dividing surface 57 each have one L-shaped flow path
  • the parts below the lower dividing surface 57 have the first flow path.
  • An example is shown in which the channel is divided so as to include a U-shaped folded channel connecting the partial channel 55a and the second partial channel 55b.
  • the upper parting surface 56 and the lower parting surface 57 are respectively welding surfaces.
  • FIG. 5 shows another embodiment, and is a cross-sectional view of a structural example of the holder 27a using the gas flow path 55 and the cover 61.
  • the configuration of the holder main body 50a except for the gas flow path 55 is the same as that of the holder main body 50 shown in FIG.
  • the first partial flow path 55a of the gas flow path 55 is formed inside the holder main body portion 50a, while the second partial flow path 55b is formed between the outer wall 55e of the holder main body portion 50a and the cover 61. to form.
  • the folded partial flow path 55c is a portion that connects the first partial flow path 55a and the second partial flow path 55b.
  • the flow path that needs to be formed in the holder body portion 50a is the first partial flow path (L-shaped flow path in FIG. 5) that does not have a flow path extending in the opposite direction.
  • the cover 61 may be welded to the holder main body 50a, or may be screwed to be removable. Making the cover 61 removable facilitates cleaning of the gas flow path 55 .
  • the holder main body portion 50a may be divided and manufactured.
  • the holder main body portion 50a may be manufactured as two parts by the dividing surface 58, and the two parts may be integrated by welding or the like.
  • the part above the dividing plane 58 and the part below the dividing plane 58 each include one L-shaped flow path.
  • the dividing surface 58 becomes the welding surface.
  • the holder body portion 50a shown in FIG. 5 without dividing the holder body portion 50 shown in FIG. 4 by an additional manufacturing apparatus.
  • Additive manufacturing is preferable in that the bent flow path can be integrally formed.
  • die steel which is excellent in hardness and thermal conductivity.
  • FIG. 6 is a cross-sectional view of another configuration example of the holder.
  • the center through 53 and the tool insertion portion 52 are separated by the gas stop 54, whereas the center through of the holder 27b does not have a gas stop, and the center through 53b is the tool insertion portion. It is different in that it is directly connected to 52b.
  • the air introduced from the center through 53 is blocked by the cutting tool held by the holder 27b. This allows the cooling air to be used to cool the cutting tool 26 .
  • Lowering the temperature of the cutting tool 26 can reduce the decrease in the hardness of the cutting tool itself, and thus has the advantage of increasing the difference in hardness between the cutting tool 26 and the work material 7 .
  • FIG. 7 shows an example in which the center through 53b and the tool insertion portion 52b are directly connected and the gas flow path 55 is provided with the cover 61 of FIG.
  • the heating and cutting device of the present invention may have an additive manufacturing function for executing an additive manufacturing process as in Patent Document 1.
  • the shaping section may be provided to shape the cut material as an additive product, and the heating section may be replaced to heat the additive product.
  • the cutting method of the present invention can be applied to the processing portion using the holder of the present invention. Also, for example, it can be applied to incremental machining that does not require a mold. In the incremental machining, preheating can be applied by the heating unit to increase molding efficiency, but since heat other than frictional heat is applied, it is preferable to be able to cool the holder.
  • the holder 27 may be manufactured by additive manufacturing technology. Additionally, different materials may be used during the additive manufacturing of the holder 27 . For example, different materials may be used for the upper portion and the lower portion of the upper dividing surface 56 in FIG. Alternatively, different materials may be used for the upper portion and the lower portion of the dividing surface 58 in FIG. For example, for the portion below the upper dividing surface 56, a material having a thermal expansion coefficient lower than that of the material above the upper dividing surface may be used. The same applies to the example of the dividing surface in FIG.
  • the welding surface when manufacturing the holder 27 or the holder main body 50 is not limited to the form shown in FIG. 4 or FIG.
  • At least one of the first partial flow path 55a, the second partial flow path 55b, and the folded partial flow path 55c should intersect with the welding surface. By doing so, it is possible to form these partial flow paths more easily from the surfaces to be welded surfaces of the respective parts.
  • the second partial flow path 55b may be omitted from the holder 27 depending on the cutting path and the shape and depth of the cutting material.
  • the holder may be in a state in which the cover 61 is removed.
  • the discharge direction defining partial flow path is not limited to the horizontal direction (in the case of the holders of FIGS. 5 and 7 with the cover 61 removed), and may extend below the horizontal direction as in Patent Document 2.
  • the material of the holder 27 and the material of the cutting tool 26 are combined so that the difference in thermal expansion coefficient can be minimized. It is better to limit the materials.
  • the thermal expansion coefficient of the material of the holder 27 is higher than that of the material of the cutting tool 26, materials other than the steel and ceramics described above may be used.
  • the cutting tool 26 is preferably made of ceramics (the material described in Patent Document 1).
  • heating cutting device 3: base material, 7: work material, 10: housing, 11: door, 20: working part, 21: spindle, 25: machining head, 26: cutting tool, 27, 27a, 27b, 27c: holder, 28: table, 30: heating unit, 31: high frequency power supply, 33: high frequency oscillator, 35: high frequency coil, 36: chiller, 37: temperature controller, 40: control unit, 41: first temperature sensor, 43: second temperature sensor, 50, 50a: holder main body, 51: manipulator gripping portion, 52, 52b: tool insertion portion, 53: center through, 54: gas stop, 55: gas flow path, 55a: first Partial flow path 55b: Second partial flow path 55c: Turning partial flow path 55d: Discharge port 55e: Outer wall 56: Upper parting surface 57: Lower parting surface 58: Parting surface 59: Shank part , 61: cover, 70: flow of cooling air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

Provided is a cutting device having good heating efficiency, and capable of reducing a decrease in gripping force of a cutting tool during hot machining. A cutting device comprising: a machining unit 20 that cuts a workpiece 7 with a cutting tool 26 held by a holder 27 attached to a main shaft 21 or a machining head 25; a heating unit 30 that heats the workpiece; and a control unit 40. A thermal expansion coefficient of the material of the holder is higher than a thermal expansion coefficient of the material of the cutting tool. A gas passage 55 for cooling the holder by a cooling gas is formed inside the holder. The control unit controls cutting of the workpiece with the cutting tool, in a state in which the workpiece is heated by the heating unit, and controls supply of the cooling gas to the holder during cutting.

Description

切削装置、ホルダおよび切削方法Cutting device, holder and cutting method
 本発明は、切削装置、切削工具を保持するホルダおよび切削方法に関する。 The present invention relates to a cutting device, a holder that holds a cutting tool, and a cutting method.
 特許文献1には、被削性指数が50以下であるような難切削材料から構成される付加製造体を造形、切削するとき、安定して加熱状態を維持するため、加熱源を備える付加製造装置、および加熱切削技術が開示されている。加熱源としては、高周波誘導加熱、半導体レーザなどが例示されている。 Patent Document 1 discloses an additive manufacturing method equipped with a heat source in order to stably maintain a heated state when shaping and cutting an additive manufacturing object composed of a difficult-to-cut material having a machinability index of 50 or less. An apparatus and heat cutting technique are disclosed. A high-frequency induction heating, a semiconductor laser, and the like are exemplified as the heating source.
 特許文献2には、「セラミックエンドミルを焼嵌めによって装着する工具ホルダである。シャンク部の空洞部からチャック部の筒状肉厚部内を通ってその端面に開口する第一ガス流通路を形成する。主軸から圧縮空気を空洞部に送り込んでNi基超耐熱合金製被削材の切削を行うと、被削材とエンドミルの刃先との接触箇所が800度を超える温度領域になって円滑な荒加工が行われる。このとき、圧縮空気が第一ガス流通路内を通過するため、チャック部がその圧縮空気により冷却され、端面から圧縮空気が噴出し冷却される。このため、切削部分が800度を超えても、チャック部がエンドミルが抜ける程度に高温となることはない。」と開示されている(要約書より引用)。 Patent Document 2 describes a tool holder for mounting a ceramic end mill by shrink fitting. When compressed air is sent into the cavity from the spindle to cut a work material made of a Ni-based super heat-resistant alloy, the contact point between the work material and the cutting edge of the end mill reaches a temperature range exceeding 800°C, resulting in smooth roughing. Machining is performed.At this time, since compressed air passes through the first gas flow passage, the chuck part is cooled by the compressed air, and the compressed air is jetted from the end face and cooled. Even if the temperature is exceeded, the chuck portion will not reach a high temperature to the extent that the end mill will come off.” (cited from the abstract).
国際公開第2020/111231号WO2020/111231 特開2017-87347号公報JP 2017-87347 A
 特許文献1に開示の技術では、切削工具の材料の熱膨張率と工具ホルダの材料の熱膨張率との差異によって、加熱切削中に工具の把持力が低下してしまう可能性がある。一方で特許文献2に開示の技術は、「切削熱で被削材と切削工具を高温加熱し、その被削材の機械的強度が低下する温度領域において切削を行うものである。」と開示(段落0004)される通り、切削熱で局所的に加熱を行うため、加熱効率が悪い。 With the technology disclosed in Patent Document 1, there is a possibility that the gripping force of the tool may decrease during heat cutting due to the difference between the coefficient of thermal expansion of the material of the cutting tool and the material of the tool holder. On the other hand, the technique disclosed in Patent Document 2 is disclosed as "heating a work material and a cutting tool to a high temperature with cutting heat, and performing cutting in a temperature range where the mechanical strength of the work material decreases." As described in (paragraph 0004), the heating efficiency is poor because the cutting heat is locally applied.
 本発明は、加熱効率が良く、且つ加熱切削中の切削工具の把持力の低下を軽減できる切削装置、ホルダおよび切削方法を提供することを目的とする。 An object of the present invention is to provide a cutting device, a holder, and a cutting method that have good heating efficiency and can reduce the decrease in gripping force of the cutting tool during hot cutting.
 本発明の一態様である切削装置は、主軸またはマシニングヘッドに取り付けられたホルダで保持された切削工具により被削材の切削加工を行う工作部と、前記被削材を加熱する加熱部と、制御部とを有し、前記ホルダの材料の熱膨張率は、前記切削工具の材料の熱膨張率よりも高く、前記ホルダは、前記ホルダを冷却用ガスで冷却するためのガス流路が内部に形成されており、前記制御部は、前記加熱部により前記被削材を加熱した状態で、前記切削工具による前記被削材の切削加工を制御し、切削加工中、前記ホルダへの冷却用ガスの供給を制御する。 A cutting apparatus, which is one aspect of the present invention, comprises a working part that cuts a work material with a cutting tool held by a holder attached to a spindle or a machining head, a heating part that heats the work material, a controller, wherein the thermal expansion coefficient of the material of the holder is higher than the thermal expansion coefficient of the material of the cutting tool, and the holder has a gas flow path for cooling the holder with a cooling gas. The control unit controls cutting of the work material by the cutting tool in a state where the work material is heated by the heating unit, and cools the holder during cutting. Control the gas supply.
 本発明の一態様であるホルダは、主軸またはマシニングヘッドに取り付けられ、切削工具を保持するホルダであって、前記切削工具が挿入される工具挿入部と、前記主軸または前記マシニングヘッドより冷却用ガスが供給されるセンタースルーと、前記冷却用ガスが流れるガス流路と、前記冷却用ガスを外部に排出する排出口と、を有し、前記ホルダは、長手方向が、前記主軸または前記マシニングヘッドが当該ホルダを回転させる回転軸と平行となるよう前記主軸または前記マシニングヘッドに取り付けられ、前記ガス流路は、前記センタースルーに接続され、前記ホルダの前記長手方向に延びる第1の部分流路と、前記排出口に接続され、前記ホルダの前記長手方向に延びる第2の部分流路と、前記第1の部分流路と前記第2の部分流路とを接続する折り返し部分流路と、を含む。 A holder that is one aspect of the present invention is a holder that is attached to a spindle or a machining head and holds a cutting tool, and includes a tool insertion portion into which the cutting tool is inserted, and a cooling gas from the spindle or the machining head. is supplied, a gas flow path through which the cooling gas flows, and an outlet for discharging the cooling gas to the outside, and the holder has a longitudinal direction that extends along the spindle or the machining head is attached to the main shaft or the machining head so as to be parallel to the rotation axis that rotates the holder, and the gas flow path is connected to the center through and extends in the longitudinal direction of the holder. a second partial flow path connected to the discharge port and extending in the longitudinal direction of the holder; a folded partial flow path connecting the first partial flow path and the second partial flow path; including.
 本発明の一態様である切削方法は、主軸またはマシニングヘッドに取り付けられたホルダで保持された切削工具により被削材を切削加工する工作部と、前記被削材を加熱する加熱部と、制御部と、を備える切削装置を用いる切削方法であって、前記ホルダは、前記切削工具の材料の熱膨張率よりも高い熱膨張率を有する材料で形成されており、前記加熱部は、切削する前記被削材を加熱し、前記工作部は、前記切削工具による前記被削材の切削中、内部にガス流路が形成された前記ホルダに冷却用ガスを供給する。 A cutting method, which is one aspect of the present invention, comprises a working part for cutting a work material with a cutting tool held by a holder attached to a spindle or a machining head; a heating part for heating the work material; , wherein the holder is made of a material having a coefficient of thermal expansion higher than that of the material of the cutting tool, and the heating unit cuts The work material is heated, and the working part supplies cooling gas to the holder having a gas flow path formed therein while the work material is being cut by the cutting tool.
 本発明によれば、加熱効率が良く、且つ加熱切削中の切削工具の把持力の低下を軽減できる切削装置、ホルダおよび切削方法を提供することができる。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 According to the present invention, it is possible to provide a cutting device, a holder, and a cutting method that have good heating efficiency and can reduce the decrease in gripping force of the cutting tool during heat cutting. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
切削装置の全体構成図である。1 is an overall configuration diagram of a cutting device; FIG. 工作部の主要部を示す図である。It is a figure which shows the principal part of a working part. 加熱切削工程のフローチャートである。It is a flow chart of a heat cutting process. ホルダの一構成例の断面図である。FIG. 4 is a cross-sectional view of a configuration example of a holder; ホルダの一構成例の断面図である。FIG. 4 is a cross-sectional view of a configuration example of a holder; ホルダの一構成例の断面図である。FIG. 4 is a cross-sectional view of a configuration example of a holder; ホルダの一構成例の断面図である。FIG. 4 is a cross-sectional view of a configuration example of a holder;
 以下、本発明の実施の形態について説明する。なお、本実施形態で示す図面は本発明の具体的例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Embodiments of the present invention will be described below. Although the drawings shown in this embodiment show specific examples of the present invention, they are for the purpose of understanding the present invention and are not used to interpret the present invention in a limited way. .
 図1は、本実施形態の加熱源を備える切削装置(以下、加熱切削装置という)1の全体構成を示す図である。加熱切削装置1は、ハウジング10と、切削対象である被削材に切削加工を施す工作部20と、切削加工中の加熱状態を維持する加熱部30と、工作部20と加熱部30の動作を制御する制御部40とを備える。なお、図示は省略するが、工作部20は、後述するホルダを冷却するための冷却用空気を供給する空気圧縮機を備える。空気圧縮機は、流路を介して切削工具を保持するホルダと接続される。また、流路上には冷却用空気の流れを制御する弁も備える。当該弁の開閉は、制御部40によって制御可能である。なお、加熱切削装置1の例は、空気圧縮機を備えたマシニングセンタに加熱部30を設けたシステムであるといえる。なお、本実施形態では、ホルダを冷却する媒体として空気を用いる例を説明するが、空気以外の気体(ガス)を用いてもよい。 FIG. 1 is a diagram showing the overall configuration of a cutting device (hereinafter referred to as a heating cutting device) 1 equipped with a heat source according to this embodiment. The heating and cutting apparatus 1 includes a housing 10, a working portion 20 for cutting a material to be cut, a heating portion 30 for maintaining a heated state during cutting, and operations of the working portion 20 and the heating portion 30. and a control unit 40 for controlling the Although illustration is omitted, the working section 20 includes an air compressor that supplies cooling air for cooling the holder, which will be described later. The air compressor is connected to a holder that holds a cutting tool through a channel. A valve for controlling the flow of cooling air is also provided on the channel. Opening and closing of the valve can be controlled by the controller 40 . Note that the example of the heating cutting apparatus 1 can be said to be a system in which the heating unit 30 is provided in a machining center equipped with an air compressor. In addition, in this embodiment, an example in which air is used as a medium for cooling the holder will be described, but a gas other than air may be used.
 <ハウジング10>
 ハウジング10は、工作部20、加熱部30を収容するとともに内部を周囲から隔離する。ハウジング10にはドア11が設けられており、工作部20および加熱部30を動作させる際には、ドア11は閉じられる。加熱切削装置1のオペレータは、被削材の搬入を行うとき、切削加工後の被削材を取り出すときなどは、ドア11を空けてハウジング10の内部に入る。なお、図1ではハウジング10の天井を透視することにより、内部を視認できるように作図している。
<Housing 10>
The housing 10 accommodates the working part 20 and the heating part 30 and isolates the inside from the surroundings. A door 11 is provided in the housing 10, and the door 11 is closed when the working part 20 and the heating part 30 are to be operated. An operator of the heating and cutting apparatus 1 opens the door 11 and enters the housing 10 when carrying in a work material or taking out a work material after cutting. 1, the inside of the housing 10 can be visually recognized by seeing through the ceiling of the housing 10. As shown in FIG.
 <工作部20>
 図2に工作部20の主要部を示す。工作部20は、図1および図2に示すように、主軸21と、主軸21に取り付けられるマシニングヘッド25を備える。なお、マシニングヘッド25は省略してもよく、複数のマシニングヘッドを併用してもよい。以後の説明ではマシニングヘッドを用いる場合について説明する。
<work section 20>
2 shows the main part of the working part 20. As shown in FIG. The working part 20 includes a spindle 21 and a machining head 25 attached to the spindle 21, as shown in FIGS. The machining head 25 may be omitted, or a plurality of machining heads may be used together. In the following description, the case of using a machining head will be described.
 主軸21は、切削工具(より正確には切削工具を保持したホルダ)を回転させるためのモータを内部に備える。マシニングヘッド25を省略する場合、ホルダはモータによって回転可能な形態で主軸21に取り付けられる。マシニングヘッド25を用いる場合は後程示す。また、主軸21は、空気圧縮機より供給される冷却用空気をホルダ27に供給する流路を持つ。制御部40からの指示によるマシニングヘッド25の移動(並進移動と角度変更の少なくとも片方を意味する)は、工作部20が備えるアクチュエータにより主軸を移動させることで実現される。 The main shaft 21 is internally provided with a motor for rotating the cutting tool (more precisely, the holder holding the cutting tool). When the machining head 25 is omitted, the holder is attached to the spindle 21 in a form rotatable by a motor. A case where the machining head 25 is used will be described later. Further, the main shaft 21 has a flow path for supplying cooling air supplied from the air compressor to the holder 27 . Movement of the machining head 25 (meaning at least one of translational movement and angle change) according to instructions from the control unit 40 is realized by moving the main axis with an actuator provided in the working unit 20 .
 マシニングヘッド25には、図2に示すように、ホルダ27を介して切削工具26が取り付けられる。マシニングヘッド25が主軸21のモータの回転をホルダに伝える機構は大きく分けて、以下の2通りである。 A cutting tool 26 is attached to the machining head 25 via a holder 27, as shown in FIG. The mechanism by which the machining head 25 transmits the rotation of the motor of the spindle 21 to the holder can be broadly classified into the following two types.
 (1)マシニングヘッド25とホルダ27とは回転できないように固定し、モータによってマシニングヘッド25を回転させる(エクステンションヘッドが一例である)。 (1) The machining head 25 and the holder 27 are fixed so as not to rotate, and the machining head 25 is rotated by a motor (an extension head is an example).
 (2)マシニングヘッド25内部にモータと接続した回転軸を備え、当該回転軸にホルダ27が固定される(アンギュラヘッドが一例である)。 (2) A rotating shaft connected to a motor is provided inside the machining head 25, and the holder 27 is fixed to the rotating shaft (an angular head is an example).
 切削工具26には、被削材7の材料に適したものが選択される。被削材7が難削材である場合には、加熱切削を行うためセラミックス製の切削工具26を選択する。 A cutting tool 26 suitable for the material of the work material 7 is selected. If the material 7 to be cut is a difficult-to-cut material, a ceramic cutting tool 26 is selected for heat cutting.
 工作部20は、被削材の基材3が固定されるテーブル28を備えている。切削工具26が取り付けられたマシニングヘッド25は、テーブル28に取り付けられた基材3に上方から対向してそれぞれの動作を行う。マシニングヘッド25が動作する領域を、単に動作領域という。 The work part 20 includes a table 28 to which the base material 3 of the work material is fixed. A machining head 25 to which a cutting tool 26 is attached faces the substrate 3 attached to a table 28 from above and performs respective operations. A region in which the machining head 25 operates is simply referred to as an operating region.
 なお、切削加工のための切削工具の移動を実現する構造は、前述のマシニングヘッド25の移動以外にも実現できる。例えば、マシニングヘッド25が内部にアクチュエータを備え、切削工具の角度を変更してもよい。また、例えば、前述のテーブル28が移動することで、切削工具が被削材に対して相対的に移動してもよい。以後の例では、マシニングヘッド25が移動する場合について説明を行う。 The structure for realizing the movement of the cutting tool for cutting can be realized in addition to the movement of the machining head 25 described above. For example, the machining head 25 may have an actuator inside to change the angle of the cutting tool. Further, for example, the cutting tool may move relative to the work material by moving the table 28 described above. In the following example, the case where the machining head 25 moves will be described.
 <加熱部30>
 加熱部30は、加熱切削工程における加熱状態を維持する。
<Heating unit 30>
The heating unit 30 maintains the heated state in the heating cutting process.
 加熱部30は、高周波電流を出力する高周波電源31と、高周波電源31から出力された高周波電流を所望する周波数の高周波電流として出力する高周波発振器33と、高周波発振器33から出力された高周波電流が流れる高周波コイル35とを備える。高周波電源31、高周波発振器33および高周波コイル35は、基材3および被削材7の加熱に直接的に関わる部分である。 The heating unit 30 includes a high-frequency power source 31 that outputs a high-frequency current, a high-frequency oscillator 33 that outputs the high-frequency current output from the high-frequency power source 31 as a high-frequency current of a desired frequency, and a high-frequency current output from the high-frequency oscillator 33. A high frequency coil 35 is provided. The high-frequency power source 31 , the high-frequency oscillator 33 and the high-frequency coil 35 are parts directly involved in heating the base material 3 and the work material 7 .
 高周波コイル35に高周波電流が流れると磁界が形成され、この磁界の範囲内におかれる被加熱物の表面付近に高密度のうず電流が発生し、そのジュール熱で被加熱物を発熱させる。ここでの被加熱物は、基材3および被削材7である。 When a high-frequency current flows through the high-frequency coil 35, a magnetic field is formed, and a high-density eddy current is generated near the surface of the object to be heated placed within the range of this magnetic field, and the Joule heat causes the object to be heated. The objects to be heated here are the base material 3 and the work material 7 .
 加熱部30は、さらに、チラー36と温調器37とを備える。チラー36は、高周波発振器33に冷却媒体を循環させ、温調器37は高周波電源31の温度を調節する。チラー36と温調器37を設けることにより、加熱部30が過熱することなく安定した動作が行える。図示を省略するが、加熱部30は、他の部分、例えば工作部20のテーブル28を冷却する手段を備えることができる。 The heating unit 30 further includes a chiller 36 and a temperature controller 37. A chiller 36 circulates a cooling medium in the high frequency oscillator 33 , and a temperature controller 37 adjusts the temperature of the high frequency power supply 31 . By providing the chiller 36 and the temperature controller 37, the heating unit 30 can operate stably without overheating. Although not shown, the heating section 30 may comprise means for cooling other parts, such as the table 28 of the working section 20 .
 本実施形態では、高周波誘導加熱により被削材や基材の加熱を行う例を示したが、例えば半導体レーザにより加熱してもよい。また、いずれか一方を使用してもよいし、高周波誘導加熱により被削材全体を加熱しながら、半導体レーザにより加工点近傍を加熱する、というように両者を併用してもよい。 In this embodiment, an example of heating the work material and base material by high-frequency induction heating is shown, but heating may be performed by, for example, a semiconductor laser. Either one may be used, or both may be used in combination, such as heating the entire work material by high-frequency induction heating and heating the vicinity of the work point by a semiconductor laser.
 <制御部40>
 制御部40は、工作部20および加熱部30の動作を制御する。制御部40の一例が、CNC(Computerized Numerical Control)装置である。工作部20の動作について、制御部40は、マシニングヘッド25を動作領域に移動させ、所定の切削加工を行うためにマシニングヘッド25および切削工具26の動作を制御する。所定の切削加工が終われば、制御部40はマシニングヘッド25を退避させる。マシニングヘッド25の移動は、制御部40が記憶するNCプログラム(少なくとも切削工具の軌道と回転数が記述されたデータである)に基づいて、主軸21を移動させるアクチュエータの動作により制御される。
<Control unit 40>
The control unit 40 controls operations of the working unit 20 and the heating unit 30 . An example of the control unit 40 is a CNC (Computerized Numerical Control) device. Regarding the operation of the working section 20, the control section 40 controls the operations of the machining head 25 and the cutting tool 26 in order to move the machining head 25 into the operation area and perform a predetermined cutting process. After the predetermined cutting process is completed, the control unit 40 retracts the machining head 25 . The movement of the machining head 25 is controlled by the operation of the actuator that moves the spindle 21 based on the NC program (data describing at least the trajectory and rotation speed of the cutting tool) stored in the control unit 40.
 制御部40は、加熱部30による適切な加熱温度を実現するために、例えば、第1温度センサ41と第2温度センサ43を備える。第1温度センサ41は被削材7の直上における温度を測定し、第2温度センサ43は基材3の温度を測定するよう配置されている。制御部40は、これら温度センサでモニタされる温度に基づき、加熱部30の動作を制御する。 The control unit 40 includes, for example, a first temperature sensor 41 and a second temperature sensor 43 in order to realize an appropriate heating temperature by the heating unit 30. A first temperature sensor 41 measures the temperature directly above the workpiece 7 and a second temperature sensor 43 is arranged to measure the temperature of the substrate 3 . The control section 40 controls the operation of the heating section 30 based on the temperatures monitored by these temperature sensors.
 なお、切削加工が終われば、被削材7を冷却する。冷却工程が始まると高周波コイル35への電流の供給が止められる。または、冷却速度を設定したい場合は、高周波コイル35へ必要な電流を供給することもできる。なお、加熱部30の温度制御を行う制御部と、前述の切削加工を制御する制御部、とを別な制御部として構成してもよい。 It should be noted that the work material 7 is cooled after the cutting process is completed. When the cooling process starts, the current supply to the high frequency coil 35 is stopped. Alternatively, if it is desired to set the cooling rate, it is also possible to supply the required current to the high-frequency coil 35 . Note that the controller that controls the temperature of the heating unit 30 and the controller that controls the above-described cutting process may be configured as separate controllers.
 次に、本実施形態の切削方法について説明する。 Next, the cutting method of this embodiment will be described.
 加熱切削工程のフローチャートを図3に示す。当該加熱切削の工程は制御部40により制御されることが考えられるが、各ステップの一部またはすべては、切削装置1のユーザが行ってもよい。まず、加熱部30により被削材7を加熱する(S01)。この際基材3も加熱することは好ましい。続いて、工作部20ではホルダ27に冷却用空気を供給し、ホルダ27を空気冷却する(S02)。続いて、被削材7の加熱状態を維持しながらホルダ27を冷却した状態で、加熱切削加工を実施する(S03)。加熱切削加工が終了する(S04)と、被削材7の加熱を停止し(S05)、その後、冷却用空気のホルダ27への供給を停止する(S06)。なお、ホルダ27が常温に戻るまで冷却用空気を供給し続けてもよい。加熱状態であるホルダ27を工作部20が備える自動交換装置(ATC)で工作部20が備える工具マガジンに格納した場合、火災やユーザによるやけどの原因となる可能性があるからである。逆に、切削工具26が被削材7から離れている期間には冷却用空気の供給を中断させてもよい。これにより、被削材7近傍に不必要に冷却用空気が放出される可能性を抑えることができる。 A flowchart of the heat cutting process is shown in Fig. 3. Although it is conceivable that the heat cutting process is controlled by the control unit 40 , part or all of each step may be performed by the user of the cutting device 1 . First, the work material 7 is heated by the heating unit 30 (S01). At this time, it is preferable to heat the substrate 3 as well. Subsequently, in the working section 20, cooling air is supplied to the holder 27 to air-cool the holder 27 (S02). Subsequently, heating cutting is performed in a state where the holder 27 is cooled while maintaining the heated state of the work material 7 (S03). When the heat cutting is completed (S04), the heating of the work material 7 is stopped (S05), and then the supply of cooling air to the holder 27 is stopped (S06). The cooling air may be continuously supplied until the temperature of the holder 27 returns to room temperature. This is because if the heated holder 27 is stored in the tool magazine of the working section 20 by an automatic changer (ATC) of the working section 20, it may cause a fire or burns by the user. Conversely, the supply of cooling air may be interrupted while the cutting tool 26 is away from the work piece 7 . As a result, the possibility that the cooling air is unnecessarily discharged near the work material 7 can be suppressed.
 <ホルダ>
 次に、本実施形態におけるホルダについて説明する。
<Holder>
Next, the holder in this embodiment will be described.
 ホルダ27の一構成例の断面図を図4に示す。ホルダ27の外周には自動交換装置(ATC)用マニピュレータ把持部51が設けられており、ホルダ27がマシニングヘッド25に取り付けられたとき、マニピュレータ把持部51より上部はマシニングヘッド25内に挿入され、マニピュレータ把持部51より下部が露出した状態となる。なお、当該マニピュレータ把持部51より上部はシャンク部59と呼ばれる。ホルダ27が取り付けられる際、マシニングヘッド25にシャンク部59が接する。本実施形態の説明では、マシニングヘッド25に取り付けられた状態を基準にホルダ27の上方と下方とを定義して説明する。ホルダ27には、下面に開口し切削工具26が挿入される工具挿入部52、ホルダ27を冷却する空気が導入されるセンタースルー53が上面に開口して設けられている。センタースルー53はガス止め54を底面とする円筒形状を有している。さらに、センタースルー53の内壁の開口から、ホルダの外壁55eの開口(排出口)55dに至るガス流路55が設けられており、センタースルー53を経由して供給される空気がガス流路55を通過する間にホルダ27を冷却する。本例ではガス流路55は対称する2か所に設けている。ガス流路は例えば放射状に3か所以上設けてもよい。ホルダ27における冷却用空気の流れを矢印70として示す。ホルダ27は、上下に長手方向を持つ形状であり、長手方向はマシニングヘッド25がホルダ27を回転させる回転軸と平行な方向に相当する。 A cross-sectional view of one configuration example of the holder 27 is shown in FIG. An automatic changer (ATC) manipulator grip portion 51 is provided on the outer periphery of the holder 27. When the holder 27 is attached to the machining head 25, the upper portion of the manipulator grip portion 51 is inserted into the machining head 25, A lower portion than the manipulator grip portion 51 is exposed. A portion above the manipulator gripping portion 51 is called a shank portion 59 . When the holder 27 is attached, the shank portion 59 contacts the machining head 25 . In the description of the present embodiment, the upper side and the lower side of the holder 27 are defined based on the state in which the holder 27 is attached to the machining head 25 . The holder 27 is provided with a tool insertion portion 52 which is open at the bottom and into which the cutting tool 26 is inserted, and a center through 53 which is open at the top and into which air for cooling the holder 27 is introduced. The center through 53 has a cylindrical shape with a gas stop 54 as a bottom surface. Further, a gas flow path 55 is provided from an opening in the inner wall of the center through 53 to an opening (exhaust port) 55d in the outer wall 55e of the holder. Cool the holder 27 while passing through. In this example, the gas flow paths 55 are provided at two symmetrical locations. For example, three or more gas flow paths may be provided radially. The flow of cooling air in holder 27 is shown as arrows 70 . The holder 27 has a shape having a longitudinal direction up and down, and the longitudinal direction corresponds to a direction parallel to the rotation axis around which the machining head 25 rotates the holder 27 .
 ホルダの材料は鋼であり、熱膨張率は6×10/℃以上である一方、ホルダが保持する切削工具の材料がセラミックスである場合、その熱膨張率は1.3~3.0×10/℃程度である。従って、切削工具の熱膨張率よりもホルダの材料の熱膨張率は高い。このため、加熱切削工程での熱がホルダに伝わることによって切削工具の把持力が低下し、ホルダから切削工具が抜け落ちるおそれがある。このため、ホルダ27には、特許文献2と同様にホルダを冷却するためのガス流路を設けることがある。しかしながら、図2に示したような高さ(深さ)のある被削材の切削を行うに際し、従来のホルダでは、ホルダ27から排出される冷却用空気が被削材に当たり冷却してしまうおそれがある。こうなると、加熱部30による被削材7の加熱が妨げられることになり、加熱切削加工の効果が阻害される。これに対して、図4乃至図7に開示した本実施形態のホルダでは、排出口55dからホルダ外部に排出される冷却用空気は被削材7や切削工具26には当たらず冷却を防ぐことができる。 The holder is made of steel and has a coefficient of thermal expansion of 6×10 6 /° C. or more. It is about 10 6 /°C. Therefore, the coefficient of thermal expansion of the material of the holder is higher than that of the cutting tool. For this reason, the heat in the heating and cutting process is transferred to the holder, which reduces the gripping force of the cutting tool, and the cutting tool may fall out of the holder. For this reason, the holder 27 may be provided with a gas flow path for cooling the holder as in Patent Document 2. However, when cutting a work material having a height (depth) as shown in FIG. 2, in the conventional holder, the cooling air discharged from the holder 27 may hit and cool the work material. There is In this case, the heating of the work material 7 by the heating unit 30 is hindered, and the effect of the heat cutting process is hindered. On the other hand, in the holder of this embodiment disclosed in FIGS. 4 to 7, the cooling air discharged from the discharge port 55d to the outside of the holder does not hit the workpiece 7 or the cutting tool 26, thus preventing cooling. can be done.
 加熱切削工程において、工具抜け落ちの観点からは、切削工具26が挿入される工具挿入部52の周囲が冷却する必要性の高い領域である一方、加熱状態を維持する観点では、冷却用の空気が被削材にあたるのをできるだけ避ける必要がある。より詳細に述べると、このような冷却を回避したい被削材上の位置は、現在切削中の切削点と、これから所定時間内に切削点となる領域と、その周辺である。なお、この「所定時間」と「周辺」の大きさは、冷却用空気の温度と流量、被削材の熱伝導率、切削工具の種類と移動速度と回転数(摩擦熱に関係)、加熱部30の加熱能力に関係すると考えられるが、切削工具の回転数は切削工程中に変化するため、所定時間と周辺の大きさを正確に推定することは切削工具の種類ごとのトライアンドエラーを要する。よって、冷却用の空気を被削材に当てないようにすることが、より簡易に加熱切削加工を行うために重要である。 In the heating and cutting process, the area around the tool insertion portion 52 into which the cutting tool 26 is inserted is a region that needs to be cooled from the viewpoint of preventing the tool from falling off. It is necessary to avoid hitting the work material as much as possible. More specifically, the positions on the workpiece where such cooling should be avoided are the cutting point that is currently being cut, the area that will become the cutting point within a predetermined period of time, and the surrounding area. The size of this "predetermined time" and "periphery" depends on the temperature and flow rate of the cooling air, the thermal conductivity of the work material, the type of cutting tool, moving speed and number of rotations (related to frictional heat), heating Although it is considered to be related to the heating capacity of the part 30, since the number of revolutions of the cutting tool changes during the cutting process, accurate estimation of the predetermined time and the size of the circumference requires trial and error for each type of cutting tool. need. Therefore, it is important to prevent the cooling air from hitting the work material in order to perform heat cutting more easily.
 このため、ガス流路55は本実施形態のように、以下の部分流路より構成されることが好ましい。 For this reason, the gas flow path 55 is preferably composed of the following partial flow paths as in the present embodiment.
 第1の部分流路55a:センタースルー53に接続され、ホルダ27の長手方向に延びる部分流路である。当該部分流路では、冷却用空気は上方から下方に流れる。ホルダ27の回転軸を基準としてみた場合、当該部分流路は、少なくとも工具挿入部52の上端より下方向に延びていることが好ましい。このようにすることで、切削工具26の保持を担当する、ホルダ27の一部(具体的には、工具挿入部52の横に位置するホルダ27の一部)の冷却を効率的に行うことになり、切削工具26の保持力の低下を低減する。 First partial flow path 55 a : a partial flow path connected to the center through 53 and extending in the longitudinal direction of the holder 27 . Cooling air flows from above to below in the partial channel. When viewed with respect to the rotation axis of the holder 27 , the partial flow path preferably extends downward from at least the upper end of the tool insertion portion 52 . By doing so, the part of the holder 27 (specifically, the part of the holder 27 located beside the tool insertion portion 52) responsible for holding the cutting tool 26 can be efficiently cooled. and reduces the decrease in holding force of the cutting tool 26.
 第2の部分流路55b:排出口55dに接続され、ホルダ27の長手方向に延びる部分流路である。当該部分流路では、冷却用空気は下方から上方に流れる。 Second partial flow path 55b: a partial flow path that is connected to the discharge port 55d and extends in the longitudinal direction of the holder 27. Cooling air flows from below to above in the partial channel.
 折り返し部分流路55c:第1の部分流路55aと、第2の部分流路55bとに接続し、冷却用空気の流れを下方から上方に折り返す部分流路である。 Return partial flow path 55c: A partial flow path that is connected to the first partial flow path 55a and the second partial flow path 55b and turns the flow of cooling air upward from below.
 なお、本明細書における排出口55dは、ガス流路55がホルダ27の外壁55eに露出した終端面を指す。冷却用空気は、排出口55dから、排出口55dの面方向に加え、排出口55d近傍の第2の部分流路55bの延びる方向によって定まる排出方向に向かって排出される。 It should be noted that the discharge port 55d in this specification refers to the end face where the gas flow path 55 is exposed to the outer wall 55e of the holder 27. The cooling air is discharged from the discharge port 55d not only in the surface direction of the discharge port 55d but also in the discharge direction determined by the extending direction of the second partial flow path 55b near the discharge port 55d.
 なお、第1の部分流路55aは、流路全体が長手方向に平行な流路として構成される必要はなく、全体として長手方向に延びていればよい。図4乃至図7の例では、最初は横方向に延び、その後ホルダの回転軸と平行な方向に伸びている。さらには、当該部分流路が長手方向から若干角度傾いた流路であってもよく、上記以外の屈曲部を含んでいてもよい。 It should be noted that the first partial flow path 55a does not need to be configured as a flow path whose entire flow path is parallel to the longitudinal direction, and may extend in the longitudinal direction as a whole. In the examples of FIGS. 4-7, it initially extends laterally and then in a direction parallel to the axis of rotation of the holder. Furthermore, the partial flow path may be a flow path that is slightly inclined from the longitudinal direction, and may include bent portions other than those described above.
 同様に、第2の部分流路55bは、流路全体が長手方向に平行な流路として構成される必要はなく、全体として長手方向に延びていればよい。図4及び図6の例では、排出口55d付近部分で、冷却用空気の排出方向を定める部分(排出方向規定部分流路と呼ぶことがある)が横方向に伸びている。さらには、当該部分流路が長手方向から若干角度傾いた流路であってもよく、上記以外の屈曲部を含んでいてもよい。また、折り返し部分流路55cは、上述したような変更例の第1の部分流路55aと第2の部分流路55bとが接続した部分であればよい。 Similarly, the second partial flow path 55b does not need to be configured as a flow path that is parallel to the longitudinal direction as a whole, and may extend in the longitudinal direction as a whole. In the examples of FIGS. 4 and 6, a portion defining the discharge direction of the cooling air (sometimes referred to as a discharge direction defining portion flow path) extends in the lateral direction in the vicinity of the discharge port 55d. Furthermore, the partial flow path may be a flow path that is slightly inclined from the longitudinal direction, and may include bent portions other than those described above. Further, the folded partial flow path 55c may be a portion where the first partial flow path 55a and the second partial flow path 55b of the modified example described above are connected.
 このようにガス流路55を構成することにより、空気の流路が長くなり冷却効果が高められる。また、排出口55dが被削材から離れた位置に開口することになり、切りくずなどがガス流路55に入りにくくなるといった効果も有する。 By configuring the gas flow path 55 in this way, the air flow path is lengthened and the cooling effect is enhanced. In addition, since the outlet 55d opens at a position away from the work material, there is an effect that chips and the like are less likely to enter the gas flow path 55.
 図4ではガス流路55を2本設けた例を示しているが、ガス流路55は複数設けられてもよく、その数、あるいはガス流路55の上記した以外の流路の形状、流路の断面形状や断面の大きさについては特に限定しない。ガス流路55の容積を大きくするほど、ガス流路55に流せる空気の量が多くなりホルダ27の冷却効率を高めることが可能になる一方、切削工具26を保持するホルダ27の剛性を低下させるおそれがあるので、ガス流路55はホルダ27の機械的強度を損なわない程度に設計する必要がある。また、図4および図6では、排出口からの冷却用空気が横方向に流れるよう、第2の部分流路55bの排出方向規定部分流路が真横方向に延びているが、斜め上方向に延びてもよいし、さらに真上方向にしてもよい。これにより、冷却用空気の排出方向をより上方に向けることができる。後程説明する図5および図7がその例となる。 Although FIG. 4 shows an example in which two gas flow paths 55 are provided, a plurality of gas flow paths 55 may be provided. The cross-sectional shape and cross-sectional size of the path are not particularly limited. As the volume of the gas flow path 55 is increased, the amount of air that can be flowed through the gas flow path 55 is increased and the cooling efficiency of the holder 27 can be improved, while the rigidity of the holder 27 holding the cutting tool 26 is reduced. Therefore, it is necessary to design the gas flow path 55 to such an extent that the mechanical strength of the holder 27 is not impaired. In addition, in FIGS. 4 and 6, the discharge direction defining partial flow path of the second partial flow path 55b extends in the lateral direction so that the cooling air from the discharge port flows in the horizontal direction. It may be extended, or may be directed directly upward. As a result, the discharge direction of the cooling air can be directed upward. Examples thereof are shown in FIGS. 5 and 7, which will be described later.
 このような折り曲げられた流路の他の実施形態として、ホルダ27を分割して製造してもよい。例えば、図4において、上部分割面56及び下部分割面57により、ホルダ27を3つのパーツとして製造し、3つのパーツを溶着などにより一体化させてもよい。ここでは、上部分割面56より上部のパーツ、及び上部分割面56と下部分割面57との間のパーツにはそれぞれ1つのL字流路、下部分割面57より下部のパーツには第1の部分流路55aと第2の部分流路55bとを接続するU字の折り返し流路を含むように分割した例を示している。溶着で結合した場合、上部分割面56と下部分割面57がそれぞれ溶着面となる。 As another embodiment of such a bent flow path, the holder 27 may be divided and manufactured. For example, in FIG. 4, the holder 27 may be manufactured as three parts by the upper dividing surface 56 and the lower dividing surface 57, and the three parts may be integrated by welding or the like. Here, the parts above the upper dividing surface 56 and the parts between the upper dividing surface 56 and the lower dividing surface 57 each have one L-shaped flow path, and the parts below the lower dividing surface 57 have the first flow path. An example is shown in which the channel is divided so as to include a U-shaped folded channel connecting the partial channel 55a and the second partial channel 55b. When joining by welding, the upper parting surface 56 and the lower parting surface 57 are respectively welding surfaces.
 図5は、別の実施形態を示すもので、ガス流路55とカバー61を用いたホルダ27aの構成例の断面図である。ガス流路55を除くホルダ本体部50aの構成は図4に示したホルダ本体部50と同じである。ホルダ27aでは、ガス流路55のうち、第1の部分流路55aはホルダ本体部50a内に形成するが、第2の部分流路55bはホルダ本体部50aの外壁55eとカバー61との間に形成する。なお、本構成例では折り返し部分流路55cは、第1の部分流路55aと第2の部分流路55bとを接続する箇所である。この構成例によれば、ホルダ本体部50aに形成する必要のある流路は、逆方向に延びる流路を持たない第1の部分流路(図5ではL字流路)であり、流路の製造が容易になる。カバー61はホルダ本体部50aに溶着してもよいし、ねじ止めで取り外し可能としてもよい。カバー61を取り外し可能とすることで、ガス流路55の清掃が容易となる。 FIG. 5 shows another embodiment, and is a cross-sectional view of a structural example of the holder 27a using the gas flow path 55 and the cover 61. As shown in FIG. The configuration of the holder main body 50a except for the gas flow path 55 is the same as that of the holder main body 50 shown in FIG. In the holder 27a, the first partial flow path 55a of the gas flow path 55 is formed inside the holder main body portion 50a, while the second partial flow path 55b is formed between the outer wall 55e of the holder main body portion 50a and the cover 61. to form. In this configuration example, the folded partial flow path 55c is a portion that connects the first partial flow path 55a and the second partial flow path 55b. According to this configuration example, the flow path that needs to be formed in the holder body portion 50a is the first partial flow path (L-shaped flow path in FIG. 5) that does not have a flow path extending in the opposite direction. facilitating the manufacture of The cover 61 may be welded to the holder main body 50a, or may be screwed to be removable. Making the cover 61 removable facilitates cleaning of the gas flow path 55 .
 図4の例と同様に、ホルダ本体部50aを分割して製造してもよい。例えば、図5において、分割面58により、ホルダ本体部50aを2つのパーツとして製造し、2つのパーツを溶着などにより一体化させてもよい。ここでは、分割面58より上部のパーツ、及び分割面58より下部のパーツにそれぞれ1つのL字流路を含むように分割した例を示している。溶着で結合した場合、分割面58が溶着面となる。 As in the example of FIG. 4, the holder main body portion 50a may be divided and manufactured. For example, in FIG. 5, the holder main body portion 50a may be manufactured as two parts by the dividing surface 58, and the two parts may be integrated by welding or the like. Here, an example is shown in which the part above the dividing plane 58 and the part below the dividing plane 58 each include one L-shaped flow path. When joining by welding, the dividing surface 58 becomes the welding surface.
 さらに、図4に示したホルダ本体部50を分割することなく、あるいは図5に示したホルダ本体部50aを付加製造装置により付加製造することも可能である。付加製造は折れ曲がった流路を一体成形できる点で好ましい。材料としては、硬度と熱伝導率に優れたダイス鋼を用いるとよい。 Furthermore, it is also possible to additionally manufacture the holder body portion 50a shown in FIG. 5 without dividing the holder body portion 50 shown in FIG. 4 by an additional manufacturing apparatus. Additive manufacturing is preferable in that the bent flow path can be integrally formed. As a material, it is preferable to use die steel which is excellent in hardness and thermal conductivity.
 図6は、ホルダの他の構成例の断面図である。図4の構成では、センタースルー53と工具挿入部52とはガス止め54によって分離されているのに対して、ホルダ27bのセンタースルーはガス止めを備えておらず、センタースルー53bが工具挿入部52bと直結している点で相違している。この構成では、センタースルー53から導入された空気は、ホルダ27bに保持された切削工具によりせき止められる。これにより、冷却用空気は切削工具26の冷却に使用することができる。切削工具26の温度を低下させることは、切削工具自体の硬度低下を軽減できるため、切削工具26と被削材7との硬度差を大きくできる利点がある。また、図7にセンタースルー53bと工具挿入部52bとを直結させるとともに、ガス流路55を図5のカバー61を設けた構成と同様にした例を示す。 FIG. 6 is a cross-sectional view of another configuration example of the holder. In the configuration of FIG. 4, the center through 53 and the tool insertion portion 52 are separated by the gas stop 54, whereas the center through of the holder 27b does not have a gas stop, and the center through 53b is the tool insertion portion. It is different in that it is directly connected to 52b. In this configuration, the air introduced from the center through 53 is blocked by the cutting tool held by the holder 27b. This allows the cooling air to be used to cool the cutting tool 26 . Lowering the temperature of the cutting tool 26 can reduce the decrease in the hardness of the cutting tool itself, and thus has the advantage of increasing the difference in hardness between the cutting tool 26 and the work material 7 . Further, FIG. 7 shows an example in which the center through 53b and the tool insertion portion 52b are directly connected and the gas flow path 55 is provided with the cover 61 of FIG.
 <バリエーション>
 以上、本発明について実施例、変形例を挙げて説明した。上記した実施例、変形例は発明の要旨を変更しない範囲で種々変形が可能であり、また、これらを組み合わせて使用することも可能である。本発明の加熱切削装置は、特許文献1のように付加製造工程を実行する付加製造体製造機能を備えていてもよい。例えば、被削材を付加製造体として造形する造形部を備え、加熱部は、この付加製造体を加熱するように置換えることができる。そして加工部には、本発明のホルダを用いて本発明の切削方法を実施することができる。また、例えば、金型を不要としたインクリメンタル加工などにも適用できる。インクリメンタル加工では、加熱部により予熱を付与して成形効率を上げることができるが、摩擦熱以外の熱が加わるのでホルダを冷却できることは好ましい。
<Variation>
As described above, the present invention has been described with reference to examples and modifications. Various modifications can be made to the above-described embodiments and modifications without departing from the scope of the invention, and they can be used in combination. The heating and cutting device of the present invention may have an additive manufacturing function for executing an additive manufacturing process as in Patent Document 1. For example, the shaping section may be provided to shape the cut material as an additive product, and the heating section may be replaced to heat the additive product. The cutting method of the present invention can be applied to the processing portion using the holder of the present invention. Also, for example, it can be applied to incremental machining that does not require a mold. In the incremental machining, preheating can be applied by the heating unit to increase molding efficiency, but since heat other than frictional heat is applied, it is preferable to be able to cool the holder.
 また、複雑な流路55を実現するため、ホルダ27は付加製造技術によって製造されてもよい。加えて、ホルダ27の付加製造にあたり、途中で異なる材料を用いてもよい。例えば、図4における上部分割面56より上部と下部とは異なる材料を用いてもよい。または図5における分割面58より上部と下部とは、異なる材料を用いてもよい。例えば、上部分割面56より下部については、上部分割面より上部の材料の熱膨張率よりも低い熱膨張率をもつ材料を用いてもよい。図5の分割面の例についても同様である。 Also, in order to realize the complicated flow path 55, the holder 27 may be manufactured by additive manufacturing technology. Additionally, different materials may be used during the additive manufacturing of the holder 27 . For example, different materials may be used for the upper portion and the lower portion of the upper dividing surface 56 in FIG. Alternatively, different materials may be used for the upper portion and the lower portion of the dividing surface 58 in FIG. For example, for the portion below the upper dividing surface 56, a material having a thermal expansion coefficient lower than that of the material above the upper dividing surface may be used. The same applies to the example of the dividing surface in FIG.
 また、複数のパーツを溶着する場合における、ホルダ27又はホルダ本体部50を製造する際の溶着面は、図4又は図5の形態に限られない。少なくとも、第1の部分流路55a、第2の部分流路55b、折り返し部分流路55c、の少なくとも1つと、溶着面とが交差していればよい。このようにすれば、各パーツの溶着面となるべき表面からより容易にこれら部分流路を形成することができるからである。 In addition, when a plurality of parts are welded, the welding surface when manufacturing the holder 27 or the holder main body 50 is not limited to the form shown in FIG. 4 or FIG. At least one of the first partial flow path 55a, the second partial flow path 55b, and the folded partial flow path 55c should intersect with the welding surface. By doing so, it is possible to form these partial flow paths more easily from the surfaces to be welded surfaces of the respective parts.
 また、例えば、切削経路や切削材の形状や深さによっては、ホルダ27から第2の部分流路55bを省略してもよい。図5および図7を例として説明するとすれば、カバー61を取り外した状態のホルダであってもよいということである。加えて排出方向規定部分流路は、真横方向(カバー61を取り外した図5と図7のホルダの場合)に限らず、特許文献2のように真横方向より下に伸びていてもよい。 Further, for example, the second partial flow path 55b may be omitted from the holder 27 depending on the cutting path and the shape and depth of the cutting material. Using FIGS. 5 and 7 as an example, the holder may be in a state in which the cover 61 is removed. In addition, the discharge direction defining partial flow path is not limited to the horizontal direction (in the case of the holders of FIGS. 5 and 7 with the cover 61 removed), and may extend below the horizontal direction as in Patent Document 2.
 切削工具26の保持力低下を低減する視点では、ホルダ27の材料と切削工具26の材料との組み合わせは、出来るだけ熱膨張率の差を小さくできる材料の組合せが好ましいが、加熱切削を行う上では材料は限定した方がよい。加熱切削では、ホルダ27の材料の熱膨張率が切削工具26の材料の熱膨張率よりも高いものであれば、前述の鋼とセラミックス以外でもよい。ただし、加熱切削技術の視点では切削工具26はセラミックス(特許文献1に記載の素材)が好適である。 From the viewpoint of reducing the decrease in the holding force of the cutting tool 26, it is preferable to combine the material of the holder 27 and the material of the cutting tool 26 so that the difference in thermal expansion coefficient can be minimized. It is better to limit the materials. In the heat cutting, if the thermal expansion coefficient of the material of the holder 27 is higher than that of the material of the cutting tool 26, materials other than the steel and ceramics described above may be used. However, from the viewpoint of heat cutting technology, the cutting tool 26 is preferably made of ceramics (the material described in Patent Document 1).
1:加熱切削装置、3:基材、7:被削材、10:ハウジング、11:ドア、20:工作部、21:主軸、25:マシニングヘッド、26:切削工具、27,27a,27b,27c:ホルダ、28:テーブル、30:加熱部、31:高周波電源、33:高周波発振器、35:高周波コイル、36:チラー、37:温調器、40:制御部、41:第1温度センサ、43:第2温度センサ、50,50a:ホルダ本体部、51:マニピュレータ把持部、52,52b:工具挿入部、53:センタースルー、54:ガス止め、55:ガス流路、55a:第1の部分流路、55b:第2の部分流路、55c:折り返し部分流路、55d:排出口、55e:外壁、56:上部分割面、57:下部分割面、58:分割面、59:シャンク部、61:カバー、70:冷却用空気の流れ。 1: heating cutting device, 3: base material, 7: work material, 10: housing, 11: door, 20: working part, 21: spindle, 25: machining head, 26: cutting tool, 27, 27a, 27b, 27c: holder, 28: table, 30: heating unit, 31: high frequency power supply, 33: high frequency oscillator, 35: high frequency coil, 36: chiller, 37: temperature controller, 40: control unit, 41: first temperature sensor, 43: second temperature sensor, 50, 50a: holder main body, 51: manipulator gripping portion, 52, 52b: tool insertion portion, 53: center through, 54: gas stop, 55: gas flow path, 55a: first Partial flow path 55b: Second partial flow path 55c: Turning partial flow path 55d: Discharge port 55e: Outer wall 56: Upper parting surface 57: Lower parting surface 58: Parting surface 59: Shank part , 61: cover, 70: flow of cooling air.

Claims (14)

  1.  主軸またはマシニングヘッドに取り付けられたホルダで保持された切削工具により被削材の切削加工を行う工作部と、
     前記被削材を加熱する加熱部と、
     制御部とを有し、
     前記ホルダの材料の熱膨張率は、前記切削工具の材料の熱膨張率よりも高く、
     前記ホルダは、前記ホルダを冷却用ガスで冷却するためのガス流路が内部に形成されており、
     前記制御部は、前記加熱部により前記被削材を加熱した状態で、前記切削工具による前記被削材の切削加工を制御し、切削加工中、前記ホルダへの冷却用ガスの供給を制御する、ことを特徴とする切削装置。
    a work part that cuts a work material with a cutting tool held by a holder attached to a spindle or a machining head;
    a heating unit that heats the work material;
    a control unit;
    a coefficient of thermal expansion of a material of the holder is higher than a coefficient of thermal expansion of a material of the cutting tool;
    The holder has a gas flow path formed therein for cooling the holder with a cooling gas,
    The control unit controls cutting of the work material by the cutting tool while the work material is heated by the heating unit, and controls supply of cooling gas to the holder during cutting. , a cutting device characterized by:
  2.  請求項1において、
     前記ホルダは、前記冷却用ガスが供給されるセンタースルーと、前記冷却用ガスを前記ホルダの外部に排出する排出口と、を備え、
     前記ホルダは、長手方向が当該ホルダを回転させる回転軸と平行となるように、前記主軸または前記マシニングヘッドに取り付けられており、
     前記ホルダの前記ガス流路は、
     前記センタースルーに接続され、前記ホルダの前記長手方向に延びる第1の部分流路と、
     前記排出口に接続され、前記ホルダの前記長手方向に延びる第2の部分流路と、
     前記第1の部分流路と前記第2の部分流路とを接続する折り返し部分流路と、
    を含むことを特徴とする切削装置。
    In claim 1,
    The holder includes a center through through which the cooling gas is supplied, and an outlet for discharging the cooling gas to the outside of the holder,
    The holder is attached to the main shaft or the machining head so that the longitudinal direction is parallel to the rotation axis that rotates the holder,
    The gas flow path of the holder is
    a first partial channel connected to the center through and extending in the longitudinal direction of the holder;
    a second partial channel connected to the outlet and extending in the longitudinal direction of the holder;
    a folded partial flow path connecting the first partial flow path and the second partial flow path;
    A cutting device comprising:
  3.  請求項2において、
     前記ホルダは、ホルダ本体部と、前記ホルダ本体部に取り外し可能なカバーと、を有し、
     前記切削工具が挿入される工具挿入部、及び前記センタースルー及び前記第1の部分流路は、前記ホルダ本体部に形成されており、
     前記第2の部分流路及び前記排出口は、前記ホルダ本体部の外壁と前記カバーとの間に形成されている、
    ことを特徴とする切削装置。
    In claim 2,
    The holder has a holder main body and a cover removable from the holder main body,
    A tool insertion portion into which the cutting tool is inserted, and the center through and the first partial flow path are formed in the holder main body,
    The second partial channel and the outlet are formed between an outer wall of the holder main body and the cover,
    A cutting device characterized by:
  4.  請求項1乃至3のいずれか1項において、
     前記切削工具の材料は、セラミックスであることを特徴とする切削装置。
    In any one of claims 1 to 3,
    A cutting device, wherein the material of the cutting tool is ceramics.
  5.  主軸またはマシニングヘッドに取り付けられ、切削工具を保持するホルダであって、
     前記切削工具が挿入される工具挿入部と、
     前記主軸または前記マシニングヘッドより冷却用ガスが供給されるセンタースルーと、
     前記冷却用ガスが流れるガス流路と、
     前記冷却用ガスを外部に排出する排出口と、を有し、
     前記ホルダは、長手方向が、前記主軸または前記マシニングヘッドが当該ホルダを回転させる回転軸と平行となるよう前記主軸または前記マシニングヘッドに取り付けられ、
     前記ガス流路は、
     前記センタースルーに接続され、前記ホルダの前記長手方向に延びる第1の部分流路と、
     前記排出口に接続され、前記ホルダの前記長手方向に延びる第2の部分流路と、
     前記第1の部分流路と前記第2の部分流路とを接続する折り返し部分流路と、
    を含むことを特徴とするホルダ。
    A holder that is attached to a spindle or machining head and holds a cutting tool,
    a tool insertion portion into which the cutting tool is inserted;
    a center through through which a cooling gas is supplied from the spindle or the machining head;
    a gas flow path through which the cooling gas flows;
    a discharge port for discharging the cooling gas to the outside,
    The holder is mounted on the spindle or the machining head so that the longitudinal direction is parallel to the axis of rotation of the spindle or the machining head that rotates the holder;
    The gas flow path is
    a first partial channel connected to the center through and extending in the longitudinal direction of the holder;
    a second partial channel connected to the outlet and extending in the longitudinal direction of the holder;
    a folded partial flow path connecting the first partial flow path and the second partial flow path;
    A holder comprising:
  6.  請求項5において、
     前記センタースルーと前記工具挿入部とはガス止めによって分離されていることを特徴とするホルダ。
    In claim 5,
    A holder, wherein the center through and the tool insertion portion are separated by a gas stop.
  7.  請求項5において、
     前記センタースルーと前記工具挿入部とが直結していることを特徴とするホルダ。
    In claim 5,
    A holder, wherein the center through and the tool insertion portion are directly connected.
  8.  請求項5乃至7のいずれか1項において、
     複数の前記ガス流路が設けられたことを特徴とするホルダ。
    In any one of claims 5 to 7,
    A holder comprising a plurality of said gas flow paths.
  9.  請求項5乃至7のいずれか1項において、
     前記ホルダは、複数のパーツで形成され、前記第1の部分流路と、前記第2の部分流路と、前記折り返し部分流路と、の少なくとも1つと交差する溶着面を備え、
     前記複数のパーツは前記溶着面において固定されていることを特徴とするホルダ。
    In any one of claims 5 to 7,
    The holder is formed of a plurality of parts, and has a welding surface that intersects with at least one of the first partial flow path, the second partial flow path, and the folded partial flow path,
    A holder, wherein the plurality of parts are fixed at the welding surface.
  10.  請求項5乃至7のいずれか1つにおいて、
     ホルダ本体部と、
     前記ホルダ本体部に取り外し可能なカバーと、を有し、
     前記工具挿入部、前記センタースルー及び前記第1の部分流路は、前記ホルダ本体部に形成されており、
     前記第2の部分流路及び前記排出口は、前記ホルダ本体部の外壁と前記カバーとの間に形成されることを特徴とするホルダ。
    In any one of claims 5 to 7,
    a holder main body;
    and a removable cover on the holder main body,
    The tool insertion portion, the center through and the first partial flow path are formed in the holder main body,
    The holder, wherein the second partial channel and the outlet are formed between an outer wall of the holder body and the cover.
  11.  請求項10において、
     前記ホルダ本体部は、複数のパーツで形成され、前記第1の部分流路と交差する溶着面を備え、
     前記複数のパーツは前記溶着面において固定されていることを特徴とするホルダ。
    In claim 10,
    The holder main body is formed of a plurality of parts and has a welding surface that intersects with the first partial flow path,
    A holder, wherein the plurality of parts are fixed at the welding surface.
  12.  主軸またはマシニングヘッドに取り付けられたホルダで保持された切削工具により被削材を切削加工する工作部と、前記被削材を加熱する加熱部と、制御部と、を備える切削装置を用いる切削方法であって、
     前記ホルダは、前記切削工具の材料の熱膨張率よりも高い熱膨張率を有する材料で形成されており、
     前記加熱部は、切削する前記被削材を加熱し、
     前記工作部は、前記切削工具による前記被削材の切削中、内部にガス流路が形成された前記ホルダに冷却用ガスを供給する、
     ことを特徴とする切削方法。
    A cutting method using a cutting apparatus comprising a working part for cutting a work material with a cutting tool held by a holder attached to a spindle or a machining head, a heating part for heating the work material, and a control part. and
    The holder is made of a material having a coefficient of thermal expansion higher than that of the material of the cutting tool,
    The heating unit heats the work material to be cut,
    The working part supplies a cooling gas to the holder having a gas flow path formed therein during cutting of the work material by the cutting tool.
    A cutting method characterized by:
  13.  請求項12において、
     前記ホルダは、前記冷却用ガスが供給されるセンタースルーと、前記冷却用ガスを前記ホルダの外部に排出する排出口と、を備え、
     前記ホルダは、長手方向が当該ホルダを回転させる回転軸と平行となるように、前記主軸または前記マシニングヘッドに取り付けられており、
     前記ホルダの前記ガス流路は、
     前記センタースルーに接続され、前記ホルダの前記長手方向に延びる第1の部分流路と、
     前記排出口に接続され、前記ホルダの前記長手方向に延びる第2の部分流路と、
     前記第1の部分流路と前記第2の部分流路とを接続する折り返し部分流路と、
    を含み、
     前記冷却用ガスは前記センタースルーを経由して前記ガス流路に供給される、
    ことを特徴とする切削方法。
    In claim 12,
    The holder includes a center through through which the cooling gas is supplied, and an outlet for discharging the cooling gas to the outside of the holder,
    The holder is attached to the main shaft or the machining head so that the longitudinal direction is parallel to the rotation axis that rotates the holder,
    The gas flow path of the holder is
    a first partial channel connected to the center through and extending in the longitudinal direction of the holder;
    a second partial channel connected to the outlet and extending in the longitudinal direction of the holder;
    a folded partial flow path connecting the first partial flow path and the second partial flow path;
    including
    the cooling gas is supplied to the gas flow path via the center through;
    A cutting method characterized by:
  14.  請求項12または13において、
     前記切削工具の材料は、セラミックスであることを特徴とする切削方法。
    In claim 12 or 13,
    The cutting method, wherein the material of the cutting tool is ceramics.
PCT/JP2022/043022 2021-12-28 2022-11-21 Cutting device, holder and cutting method WO2023127352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213580 2021-12-28
JP2021213580 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127352A1 true WO2023127352A1 (en) 2023-07-06

Family

ID=86998840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043022 WO2023127352A1 (en) 2021-12-28 2022-11-21 Cutting device, holder and cutting method

Country Status (1)

Country Link
WO (1) WO2023127352A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011036A (en) * 2001-06-29 2003-01-15 Ntn Corp Attachment main shaft device
JP2003519016A (en) * 1999-12-31 2003-06-17 マウエル,フォルクマール Tools, milling tools, milling, mechanisms consisting of tools and revolvers, and methods of manufacturing tools
US20100270757A1 (en) * 2002-07-17 2010-10-28 Kevin Beckington Tool coolant application and direction assembly
JP2012500728A (en) * 2008-08-29 2012-01-12 フランツ・ハイマー・マシーネンバウ・カーゲー Tool holder device
WO2012101929A1 (en) * 2011-01-24 2012-08-02 Lee Sung Geun Tool holder and machine tool
JP2017087347A (en) * 2015-11-10 2017-05-25 株式会社Mstコーポレーション Shrink fitting type tool holder for ceramic end mill
WO2020111231A1 (en) * 2018-11-29 2020-06-04 日立金属株式会社 Manufacturing method for additively manufactured body and manufacturing device for additively manufactured body
JP2020521646A (en) * 2017-06-08 2020-07-27 グーリング カーゲーGuhring Kg Cutting tools

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519016A (en) * 1999-12-31 2003-06-17 マウエル,フォルクマール Tools, milling tools, milling, mechanisms consisting of tools and revolvers, and methods of manufacturing tools
JP2003011036A (en) * 2001-06-29 2003-01-15 Ntn Corp Attachment main shaft device
US20100270757A1 (en) * 2002-07-17 2010-10-28 Kevin Beckington Tool coolant application and direction assembly
JP2012500728A (en) * 2008-08-29 2012-01-12 フランツ・ハイマー・マシーネンバウ・カーゲー Tool holder device
WO2012101929A1 (en) * 2011-01-24 2012-08-02 Lee Sung Geun Tool holder and machine tool
JP2017087347A (en) * 2015-11-10 2017-05-25 株式会社Mstコーポレーション Shrink fitting type tool holder for ceramic end mill
JP2020521646A (en) * 2017-06-08 2020-07-27 グーリング カーゲーGuhring Kg Cutting tools
WO2020111231A1 (en) * 2018-11-29 2020-06-04 日立金属株式会社 Manufacturing method for additively manufactured body and manufacturing device for additively manufactured body

Similar Documents

Publication Publication Date Title
US10279444B2 (en) Laser assisted machining system for ceramics and hard materials
WO2015151840A1 (en) Three-dimensional lamination device
JP5951018B2 (en) EDM method
JP4865371B2 (en) Spindle cooling device for machine tools
EP1614497A1 (en) Method and apparatus for repairing or building up surfaces on a workpiece while the workpiece is mounted on a machine tool
US10889098B2 (en) Method, data processing device, and machine tool for generating dimensional tool paths and control signals for material dispositioning
JP6836143B2 (en) Machine Tools
JP6887450B2 (en) Systems and methods for temperature control in the additive manufacturing process
JP2020523476A (en) System and method for solidification rate control during additive manufacturing
JP2017194942A (en) Control data generation method, information processing device, machine tool, and program
WO2023127352A1 (en) Cutting device, holder and cutting method
JP4623040B2 (en) Temperature control device for processing machine
JP5201502B2 (en) Machine tool temperature control device
JP3982298B2 (en) Temperature control method and apparatus for processing machine
JP2007245285A (en) Device for cooling main spindle of machine tool
JP6688829B2 (en) Machine Tools
JP7362306B2 (en) Three-dimensional lamination apparatus and method
TWI746167B (en) Lamination molding apparatus
JP2008264977A (en) Working facility
JP7274948B2 (en) Three-dimensional lamination apparatus and method
JP2022095534A (en) Molded object manufacturing method and molded object
KR101652774B1 (en) Machine tool
JP7102640B1 (en) Additional manufacturing method, additional manufacturing system, and additional manufacturing program
JP2008214750A (en) Heat treatment apparatus, heat treatment method, and compound machine using the same
KR100602493B1 (en) Foam material heating tool and shaping apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570731

Country of ref document: JP