JPH0457651A - Method and apparatus for controlling spindle temperature of machine tool - Google Patents

Method and apparatus for controlling spindle temperature of machine tool

Info

Publication number
JPH0457651A
JPH0457651A JP16687490A JP16687490A JPH0457651A JP H0457651 A JPH0457651 A JP H0457651A JP 16687490 A JP16687490 A JP 16687490A JP 16687490 A JP16687490 A JP 16687490A JP H0457651 A JPH0457651 A JP H0457651A
Authority
JP
Japan
Prior art keywords
spindle
temperature
liquid temperature
liquid
cooling capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16687490A
Other languages
Japanese (ja)
Other versions
JPH0579458B2 (en
Inventor
Keizo Uchiumi
内海 敬三
Hiroyuki Fujita
藤田 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP16687490A priority Critical patent/JPH0457651A/en
Publication of JPH0457651A publication Critical patent/JPH0457651A/en
Publication of JPH0579458B2 publication Critical patent/JPH0579458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE:To provide a spindle cooling method adaptable to the rotational speed of the spindle over a wide range without few heat shocks by combining feed- forward control corresponding to the roational speed of the spindle with feed- back control corresponding to the spindle temperature. CONSTITUTION:Liquid temperature regulators A, B are disposed in series on the way of a cooling liquid circulating path 3 leading to a spindle device 1 to cool the cooling liquid through heat exchangers 8, 8. A chage-over valve of a first liquid temperature regulator A is changed over according to a command from a first control means built in a computer 13 so that an optimum cooling capacity is provided according to the rotational speed data of a spindle inputted from a NC device. Referring to a second liquid temperature regulator B, a detected temperature value of the cooling liquid right before returning to a tank 4 is inputted in real time from a thermometer 14 to a controller 15 and a change-over command is given to change-over valves 11', 12' according to a difference between a desired value and the detected value of spindle temperature to operate the second liquid temperature regulator B with a proper cooling capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、運転中の工作機械の主軸の発熱を循環する冷
却液によって吸収し、主軸の温度を目標値になるように
制御する方法とこれを実現するための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for absorbing heat generated in the spindle of a machine tool during operation by a circulating coolant and controlling the temperature of the spindle to a target value. The present invention relates to a device for realizing this.

[従来の技術] 一般に、工作機械は主軸の回転数やワークの切削抵抗等
の加工条件に応じて発熱し、主軸部とこれを支持してい
る機台部との温度に差を生しる。
[Prior art] Generally, machine tools generate heat depending on machining conditions such as the rotational speed of the spindle and the cutting resistance of the workpiece, resulting in a temperature difference between the spindle and the machine base that supports it. .

これによって工作機械の各部に熱歪みを生じ、加工精度
が低下するので、これを防ぐために主軸頭部分に冷却液
を循環させて発熱を吸収し、主軸温度と機台部の温度と
の差を常に一定値に維持するように制御する冷却システ
ムが設けられている。
This causes thermal distortion in various parts of the machine tool and reduces machining accuracy. To prevent this, coolant is circulated around the spindle head to absorb heat and reduce the difference between the spindle temperature and the temperature of the machine base. A cooling system is provided which is controlled to maintain a constant value at all times.

従来の主軸温度の制御方式は、例えば特公昭48−37
97号公報に開示されているように、主軸の予想最大発
熱量を充分に冷却し得る能力を有する冷却器を具え、主
軸温度と基準温度(大気温度又は機台温度)との差が所
定値を越えて上昇した場合には、冷却器を作動させて冷
却液を冷却し、低温となった冷却液を循環させて主軸温
度を低下させ、これが所定の値にまで低下すると冷却器
の作動を停止するように構成されている。又、この系で
は冷却液の温度を上昇させる必要がある場合に具えてヒ
ーターも設けられている。
The conventional spindle temperature control method is, for example,
As disclosed in Publication No. 97, it is equipped with a cooler capable of sufficiently cooling the expected maximum heat generation amount of the spindle, and the difference between the spindle temperature and the reference temperature (atmospheric temperature or machine stand temperature) is a predetermined value. If the temperature rises above the specified value, the cooler is operated to cool the coolant, the cooled coolant is circulated to lower the main shaft temperature, and when this drops to a predetermined value, the cooler is activated. Configured to stop. This system also includes a heater in case it is necessary to raise the temperature of the coolant.

[発明が解決しようとする課題] しかし、この方式においては、大量の冷却液を栄、速に
冷却/加熱する必要があるため、ヒーター並びに冷却器
甚大容量のものとならざるを得ない。
[Problems to be Solved by the Invention] However, in this system, it is necessary to quickly cool/heat a large amount of cooling liquid, so the heater and cooler must have extremely large capacities.

従って、これらのヒーターや冷却器がオン・オフ作動す
ると、かなりのヒートショックが工作機械に加わり、か
えって加工精度に悪影響を及ぼしている。
Therefore, when these heaters and coolers are turned on and off, a considerable amount of heat shock is applied to the machine tool, which has an adverse effect on machining accuracy.

主軸の発熱量はその回転速度と正の相関を有することは
周知である。例えば、第4図に示すように、主軸を支持
するベアリングの発熱量は、主軸回転速度のほぼ二乗に
比例している。このため、加工条件に応じて主軸回転数
が低速域から高速域まで広い範囲にわたって変化するよ
うな場合、前述の系においては、冷却器やヒーターは主
軸の最高回転時の発熱量に対応する非常に大規模なもの
となり、オン・オフ時のヒートショックは益々増大する
傾向にある。
It is well known that the amount of heat generated by the spindle has a positive correlation with its rotation speed. For example, as shown in FIG. 4, the amount of heat generated by the bearing that supports the main shaft is approximately proportional to the square of the main shaft rotation speed. Therefore, when the spindle rotation speed changes over a wide range from low speed to high speed depending on the machining conditions, in the system described above, the cooler and heater must be adjusted to the maximum amount of heat generated when the spindle rotates at maximum speed. heat shock during on/off times tends to increase.

本発明は、このような従来技術の問題点を解決し、低速
域から高速域まで広い範囲にわたる主軸回転速度に対応
可能で、しかも機械に与えるヒートショックの少ない主
軸の冷却方法並びにこれを実施するための装置を提供す
ることを目的とする。
The present invention solves the problems of the prior art, and provides a method for cooling a spindle that can handle a wide range of spindle rotational speeds from low to high speeds, and that causes less heat shock to the machine, as well as a method for implementing the method. The purpose is to provide a device for

(課題を解決するための手段〕 この目的は、工作機械の主軸装置に液温調節機を通して
冷却液を循環させ、前記主軸装置の主軸温度を目標値に
維持するようにした工作機械の主軸温度制御方法におい
て、前記冷却液の循環路に第1液温調節機及び第2液温
調節機を直列又は並列に設け、前記主軸装置の主軸回転
速度と該主軸回転速度に対応する発熱を補償する冷却容
量との関係を予め記憶し、前記主軸装置の回転速度に対
応する、前記予め記憶してある冷却容量が発生されるよ
うに前記第1液温調節機を作動させると共に、前記主軸
装置の主軸温度を検出し、該検出温度が前記目標値にな
るように前記第2液温調節機の冷却容量を調節すること
を特徴とする工作機械の主軸温度制御方法によって達成
される。
(Means for Solving the Problem) This purpose is to maintain the spindle temperature of the machine tool at a target value by circulating a coolant through a liquid temperature controller in the spindle device of the machine tool. In the control method, a first liquid temperature regulator and a second liquid temperature regulator are provided in series or in parallel in the cooling liquid circulation path, and the spindle rotation speed of the spindle device and the heat generation corresponding to the spindle rotation speed are compensated for. The relationship between the cooling capacity and the cooling capacity is stored in advance, and the first liquid temperature controller is operated so as to generate the pre-stored cooling capacity that corresponds to the rotational speed of the main spindle device, and This is achieved by a method for controlling the spindle temperature of a machine tool, which comprises detecting the spindle temperature and adjusting the cooling capacity of the second liquid temperature regulator so that the detected temperature becomes the target value.

又、この方法を実施するための装置として、工作機械の
主軸装置に冷却液を循環させ、前記主軸装置の主軸温度
を目標値に維持するようにした工作機械の主軸温度制御
装置において、前記冷却液の循環路に直列又は並列に配
置された第1液温調節機と第2液温調節機と、前記主軸
装置の主軸回転速度と該主軸回転速度に対応する発熱を
補償する冷却容量との関係を予め記憶する記憶手段と、
前記主軸装置の回転速度に対応する、前記記憶手段に記
憶されている冷却容量が得られるように前記第1液温調
節機を作動させる第1制御手段と、前記主軸装置の主軸
温度を検出する主軸温度検出手段と、該主軸温度検出手
段によって検出された温度が前記目標値になるように前
記第2液温調節機を作動させる第2制御手段とを具えた
ことを特徴とする工作機械の主軸温度制御装置も提供さ
れる。
Further, as a device for carrying out this method, there is provided a spindle temperature control device for a machine tool which circulates a cooling liquid through a spindle device of a machine tool to maintain the spindle temperature of the spindle device at a target value. A first liquid temperature regulator and a second liquid temperature regulator arranged in series or in parallel in a liquid circulation path, a main spindle rotation speed of the main spindle device, and a cooling capacity that compensates for heat generation corresponding to the main spindle rotation speed. a storage means for storing the relationship in advance;
a first control means for operating the first liquid temperature controller so as to obtain a cooling capacity stored in the storage means that corresponds to the rotational speed of the main spindle device; and detecting a main shaft temperature of the main spindle device. A machine tool comprising: a spindle temperature detecting means; and a second control means for operating the second liquid temperature regulator so that the temperature detected by the spindle temperature detecting means reaches the target value. A spindle temperature control device is also provided.

〔作用] 工作機械の運転中は、前記第1液温調節機は第1制御手
段からの指令によって、現在の主軸回転速度に対応する
発熱量を補償する冷却容量を出力するようフィードフォ
ワード制御される。これによって主軸発熱の殆どは冷却
され、主軸温度を目標値に一致させるために必要な冷却
容量は残りわずかとなる。主軸の回転速度が変更された
場合には、第1液温調節機の冷却容量も変更され、主軸
の発熱の大部分が補償されるように冷却液の温度を調節
する。
[Function] During operation of the machine tool, the first liquid temperature regulator is feedforward controlled in response to a command from the first control means so as to output a cooling capacity that compensates for the amount of heat generated corresponding to the current spindle rotation speed. Ru. As a result, most of the heat generated by the spindle is cooled down, and only a small amount of cooling capacity remains necessary to bring the spindle temperature into agreement with the target value. When the rotation speed of the main shaft is changed, the cooling capacity of the first liquid temperature regulator is also changed, and the temperature of the cooling liquid is adjusted so that most of the heat generated by the main shaft is compensated for.

一方、第2液温調節機の方は、主軸温度検出手段によっ
てリアルタイムで計測された主軸温度に基づく第2制御
手段からの指令によって、主軸温度が目標値に一致する
ようにフィードバック制御される。
On the other hand, the second liquid temperature regulator is feedback-controlled by a command from the second control means based on the main shaft temperature measured in real time by the main shaft temperature detection means so that the main shaft temperature matches the target value.

このように、本発明によれば、記憶手段、第1制御手段
、並びに第1液温調節機による主軸回転速度に対応した
フィードフォワード制御と、主軸温度検出手段、第2制
御手段並びに第2液温調節機によるフィードバック制御
とを組み合わせることにより、きめの細かい、ヒートシ
ョックの小さい主軸温度の制御が可能になる。
As described above, according to the present invention, the storage means, the first control means, and the feedforward control corresponding to the spindle rotation speed by the first liquid temperature regulator, the spindle temperature detection means, the second control means, and the second liquid temperature control device are performed. By combining feedback control with a temperature controller, fine-grained spindle temperature control with minimal heat shock is possible.

以下、図面に示す好適実施例に基づいて、本発明を更に
詳細に説明する。
Hereinafter, the present invention will be explained in more detail based on preferred embodiments shown in the drawings.

〔実施例〕〔Example〕

第1図は、本発明にかかる工作機械の主軸温度制御の原
理を示す模式図である。
FIG. 1 is a schematic diagram showing the principle of spindle temperature control of a machine tool according to the present invention.

工作機械の主軸装置lには、回転時の発熱を冷却するた
めに、その軸受2の領域に対して循環路3を通じてタン
ク4内の冷却液がポンプ5によって供給されている。
In order to cool down the heat generated during rotation of the spindle device l of the machine tool, cooling fluid in a tank 4 is supplied by a pump 5 to the area of the bearing 2 through a circulation path 3.

この循環路3の途中には、第1液温調節機Aと第2液温
調節機Bとが互いに直列に配置され、その熱交換機8.
8゛を介して循環路内を通過する冷却液を冷却するよう
に構成されている。
In the middle of this circulation path 3, a first liquid temperature regulator A and a second liquid temperature regulator B are arranged in series with each other, and the heat exchanger 8.
8. The cooling liquid passing through the circulation path is cooled.

第1液温調節機Aは、予想される主軸の最高回転速度に
おける主軸発熱量を打ち消す冷却能力を具えたものが選
ばれている。この第1液温調節機6は、その冷凍圧縮機
9から熱交換機8に至る冷媒ガス循環路10の途中に二
つのバイパスを有し、そのそれぞれに切替え弁11.1
2を具えている。
The first liquid temperature controller A is selected to have a cooling capacity that cancels out the amount of heat generated by the main shaft at the expected maximum rotational speed of the main shaft. This first liquid temperature regulator 6 has two bypasses in the middle of the refrigerant gas circulation path 10 from the refrigeration compressor 9 to the heat exchanger 8, and each bypass has a switching valve 11.1.
It has 2.

この切替え弁11.12は両者共閉位置にある場合には
全部の冷媒ガスが熱交換機8に流れて最も冷却容量が大
きくなり(これを100%冷却容量とする)、一方が閉
、他方が開の場合には65%、両者とも開の場合には3
5%の冷却容量をなり、更に冷凍圧縮機9を停止した場
合には冷却容量O%となるように、4段階に冷却容量を
切替えられるようになっている。
When these switching valves 11 and 12 are both in the closed position, all the refrigerant gas flows to the heat exchanger 8 and the cooling capacity becomes the largest (this is defined as 100% cooling capacity), and one is closed and the other is in the closed position. 65% if open, 3 if both are open
The cooling capacity can be switched in four stages, such that the cooling capacity is 5%, and when the refrigeration compressor 9 is stopped, the cooling capacity is 0%.

同様に第2液温調節機Bも冷媒ガス循環路10中に二つ
のバイパスを有し、それぞれに切替え弁11“、12°
を具えている。この両方の弁がともに閉の場合には冷却
容量は100%となり、方を閉、他方を開にすると50
%1両者を開にすると10%、冷凍圧縮機9“を停止す
ると0%となるようになっている。
Similarly, the second liquid temperature controller B also has two bypasses in the refrigerant gas circulation path 10, and each has a switching valve 11", a 12°
It is equipped with When both valves are closed, the cooling capacity is 100%, and when one is closed and the other is open, the cooling capacity is 50%.
%1 When both are opened, the value becomes 10%, and when the refrigeration compressor 9'' is stopped, the value becomes 0%.

本発明の特徴とする点は主軸装置の冷却を前記二つの液
温冷却装置A、Bを組み合わせてきめ細かく制御するこ
とに特徴を有する。即ち、前述したように主軸の発熱量
はその回転速度に大きく依存している点に鑑み、主軸の
回転速度の変更に伴って先ず第1液温調節機Aの冷却容
量を変更してフィードフォワード制御を行い、大部分の
発熱をこれによって打ち消し、主軸温度の検出の結果こ
れに不足乃至は過剰があった場合には、更に第2液温調
節機Bの冷却容量の変更によってフィードバック制御す
るものである。
The present invention is characterized in that the cooling of the spindle device is finely controlled by combining the two liquid temperature cooling devices A and B. That is, in view of the fact that the amount of heat generated by the main shaft is largely dependent on its rotational speed as mentioned above, the cooling capacity of the first liquid temperature controller A is first changed in accordance with the change in the rotational speed of the main shaft, and feedforward is performed. Control is performed to cancel out most of the heat generation, and if there is a deficiency or excess in the main shaft temperature as a result of detection, feedback control is performed by changing the cooling capacity of the second liquid temperature controller B. It is.

第1液温調節機Aの切替え弁の切替え指令は、コンピュ
ータ13に内蔵された第1制御手段によって行われる。
A switching command for the switching valve of the first liquid temperature regulator A is issued by a first control means built in the computer 13.

このコンピュータ13のメモリには、当該工作機械の予
想される主軸回転速度とその際に生じる発熱を打ち消す
のに必要な冷却容量との関係式(第2図参照)が記憶さ
れており、NC装置から入力される主軸の回転速度デー
タに応じて、最適な冷却容量となるように弁に切替え指
令が発せられる。
The memory of this computer 13 stores a relational expression (see Fig. 2) between the expected spindle rotation speed of the machine tool and the cooling capacity required to cancel the heat generated at that time, and the NC device According to the rotational speed data of the main shaft input from the controller, a switching command is issued to the valve to achieve the optimum cooling capacity.

一方、第2液温調節機Bの切替え弁の切替えは、次のよ
うにして行われる。先ず主軸温度の代表値として、タン
ク4に戻る直前の冷却液の温度の検出値が、温度計14
によって、第2制御手段を構成する温度コントローラ1
5にリアルタイムに人力される。この第2制御手段15
においては、予め1定されている主軸温度の目標値とこ
の検出値との比較が行われ、その差に応じて切替え弁1
1゜12゛に切替え指令が発せられ、適宜な冷却容量で
第2液温調節機Bが作動せしめられる。
On the other hand, switching of the switching valve of the second liquid temperature regulator B is performed as follows. First, as a representative value of the main shaft temperature, the detected value of the temperature of the coolant immediately before returning to the tank 4 is measured by the thermometer 14.
The temperature controller 1 constituting the second control means
5. It is human-powered in real time. This second control means 15
, the detected value is compared with a predetermined target value of the main shaft temperature, and the changeover valve 1 is adjusted according to the difference.
A switching command is issued at 1° to 12°, and the second liquid temperature regulator B is operated at an appropriate cooling capacity.

運転の実際を第2図に基づいて説明すると、主軸回転速
度が低い間(L以下)は主軸発熱量が小さいので、第1
液温調節機Aの冷凍圧縮機は停止した状態(即ち冷却容
量O%)に維持され、専ら第2液温調ffi機Bによる
フィードバック制御のみが行われる。主軸回転速度が上
昇してLを越えると、第1液温調節機Aは変更された主
軸回転速度に見合う冷却容量となるように切替えられて
運転され、フィードフォワード制御を行う。即ち、主軸
回転速度がL−Mの間は35%の冷却容量、M〜Hの間
は65%の冷却容量、Hを越えた場合には100%の冷
却容量で作動する。この間に第2液温調節@Bの方はフ
ィードバック制御を続行する。
To explain the actual operation based on Fig. 2, while the spindle rotation speed is low (less than L), the spindle heat generation is small, so the first
The refrigeration compressor of the liquid temperature regulator A is maintained in a stopped state (that is, the cooling capacity is 0%), and only feedback control by the second liquid temperature regulator ffi machine B is performed. When the spindle rotational speed increases and exceeds L, the first liquid temperature regulator A is switched and operated to provide a cooling capacity corresponding to the changed spindle rotational speed, thereby performing feedforward control. That is, when the spindle rotational speed is between LM, the cooling capacity is 35%, between M and H, the cooling capacity is 65%, and when it exceeds H, the cooling capacity is 100%. During this time, the second liquid temperature control @B continues feedback control.

このようにして本発明の制御システムによって主軸の温
度を制御した結果の実例を第3図(a)に、従来のフィ
ードバック制御のみによる例を第3図(b)に示す。こ
れによれば、本発明の場合、主軸温度の代表値である戻
り油温はばらつきが少なく優れた制御が行われているこ
とが明らかである。
FIG. 3(a) shows an example of the result of controlling the temperature of the spindle using the control system of the present invention, and FIG. 3(b) shows an example using only conventional feedback control. According to this, it is clear that in the case of the present invention, the return oil temperature, which is a representative value of the spindle temperature, has little variation and is excellently controlled.

上に述べた例では液温調節機の冷却容量をそれぞれ4段
階に切り換える例について述べたが、切替え段数はこれ
に限定されるものではな(、必要に応じて適宜に設定可
能である。又、第1液温調節機並びに第2液温調節機は
、それぞれ複数台の液温調節機で構成されてもよい。
In the above example, the cooling capacity of the liquid temperature regulator is switched to four stages, but the number of switching stages is not limited to this (it can be set appropriately as necessary). , the first liquid temperature regulator and the second liquid temperature regulator may each be composed of a plurality of liquid temperature regulators.

なお、第1図に示した実施例は、第1液温調節機Aと第
2液温調節機Bが直列に配置されているが、2台の液温
調節機を並列に配置しても同等の効果が得られる。
Note that in the embodiment shown in FIG. 1, the first liquid temperature regulator A and the second liquid temperature regulator B are arranged in series, but even if two liquid temperature regulators are arranged in parallel. The same effect can be obtained.

〔発明の効果] 以上、詳述したように、本発明によれば、二つの液温調
節機を用いて、一方では主軸回転速度に応じて冷却容量
を変化させて主軸温度をフィードフォワード制御し、他
方では検出された実際の主軸温度に応じてフィードバッ
ク制御しているので、主軸の冷却に際して液温調節機の
オン・オフによるヒートショックが極めて少なくなる。
[Effects of the Invention] As described above in detail, according to the present invention, two liquid temperature controllers are used to feedforward control the spindle temperature by changing the cooling capacity according to the spindle rotation speed. On the other hand, since feedback control is performed according to the detected actual spindle temperature, heat shock caused by turning on and off the liquid temperature regulator when cooling the spindle is extremely reduced.

更に主軸の回転速度をステップ的に変化させた場合にも
、冷却のオーバシュートやアンダーシュートが小さくな
り、冷却効率が向上するとともに、加工精度が改善され
る。
Furthermore, even when the rotational speed of the spindle is changed stepwise, cooling overshoot and undershoot are reduced, cooling efficiency is improved, and machining accuracy is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による工作機械の主軸温度制御システム
の構成を示す冷却液循環路の模式図、第2図は主軸の回
転速度とこれによる発熱を補償するのに要する冷却容量
との関係図、第3図(a)、(b)は本発明による主軸
温度の制御結果と従来の方式による結果とを示すチャー
ト、 第4図は主軸の回転速度とこれによる主軸軸受の発熱量
との関係図、 第5図は本発明による工作機械の主軸温度制御システム
の第2実施例の構成を示す冷却液循環路の模式図である
。 1−主軸装置 2・−軸受 3−冷却液循環路 4−タンク 5−ポンプ 8.8”−熱交換機 9.9’  −−冷凍圧縮機 10.10°−冷媒ガス循環路 11.12.11′、12=−切替え弁13・−コンピ
ュータ 14−温度計 15=−温度コントローラ A・・−第1液温調節機 B−−第2液温調節機 主軸回転速度 第 図 (G) (b) 第 図
Fig. 1 is a schematic diagram of a coolant circulation path showing the configuration of a spindle temperature control system for a machine tool according to the present invention, and Fig. 2 is a diagram of the relationship between the rotational speed of the spindle and the cooling capacity required to compensate for the heat generated by this. , FIGS. 3(a) and 3(b) are charts showing the results of controlling the spindle temperature according to the present invention and those using the conventional method. FIG. 4 shows the relationship between the rotational speed of the spindle and the resulting heat generation amount of the spindle bearing. FIG. 5 is a schematic diagram of a coolant circulation path showing the configuration of a second embodiment of the spindle temperature control system for a machine tool according to the present invention. 1 - Main shaft device 2 - Bearing 3 - Coolant circulation path 4 - Tank 5 - Pump 8.8'' - Heat exchanger 9.9' - Refrigeration compressor 10.10° - Refrigerant gas circulation path 11.12.11 ', 12=-Switching valve 13--Computer 14-Thermometer 15=-Temperature controller A...-First liquid temperature regulator B--Second liquid temperature regulator Main shaft rotation speed diagram (G) (b) Diagram

Claims (1)

【特許請求の範囲】 1、工作機械の主軸装置に液温調節機を通して冷却液を
循環させ、前記主軸装置の主軸温度を目標値に維持する
ようにした工作機械の主軸温度制御方法において、前記
冷却液の循環路に第1液温調節機及び第2液温調節機を
直列又は並列に設け、前記主軸装置の主軸回転速度と該
主軸回転速度に対応する発熱を補償する冷却容量との関
係を予め記憶し、前記主軸装置の回転速度に対応する、
前記予め記憶してある冷却容量が発生されるように前記
第1液温調節機を作動させると共に、前記主軸装置の主
軸温度を検出し、該検出温度が前記目標値になるように
前記第2液温調節機の冷却容量を調節することを特徴と
する工作機械の主軸温度制御方法。 2、工作機械の主軸装置に冷却液を循環させ、前記主軸
装置の主軸温度を目標値に維持するようにした工作機械
の主軸温度制御装置において、前記冷却液の循環路に直
列又は並列に配置された第1液温調節機と第2液温調節
機と、前記主軸装置の主軸回転速度と該主軸回転速度に
対応する発熱を補償する冷却容量との関係を予め記憶す
る記憶手段と、前記主軸装置の回転速度に対応する、前
記記憶手段に記憶されている冷却容量が得られるように
前記第1液温調節機を作動させる第1制御手段と、前記
主軸装置の主軸温度を検出する主軸温度検出手段と、該
主軸温度検出手段によって検出された温度が前記目標値
になるように前記第2液温調節機を作動させる第2制御
手段とを具えたことを特徴とする工作機械の主軸温度制
御装置。
[Scope of Claims] 1. A method for controlling the spindle temperature of a machine tool, in which a cooling liquid is circulated through a spindle device of the machine tool through a liquid temperature controller, and the spindle temperature of the spindle device is maintained at a target value. A first liquid temperature regulator and a second liquid temperature regulator are provided in series or in parallel in a cooling liquid circulation path, and there is a relationship between a spindle rotation speed of the spindle device and a cooling capacity that compensates for heat generation corresponding to the spindle rotation speed. is stored in advance and corresponds to the rotational speed of the spindle device,
The first liquid temperature regulator is operated so that the pre-stored cooling capacity is generated, the main shaft temperature of the main shaft device is detected, and the second liquid temperature controller is operated so that the detected temperature becomes the target value. A method for controlling the spindle temperature of a machine tool, the method comprising adjusting the cooling capacity of a liquid temperature controller. 2. In a spindle temperature control device for a machine tool, which circulates a coolant through a spindle device of a machine tool and maintains the spindle temperature of the spindle device at a target value, the device is arranged in series or parallel to the coolant circulation path. storage means for storing in advance the relationship between the first liquid temperature regulator and the second liquid temperature regulator, the spindle rotational speed of the spindle device and the cooling capacity that compensates for the heat generation corresponding to the spindle rotational speed; a first control means for operating the first liquid temperature controller so as to obtain a cooling capacity stored in the storage means corresponding to the rotational speed of the spindle device; and a spindle for detecting the spindle temperature of the spindle device. A main shaft of a machine tool, comprising: a temperature detecting means; and a second controlling means for operating the second liquid temperature regulator so that the temperature detected by the main shaft temperature detecting means reaches the target value. Temperature control device.
JP16687490A 1990-06-27 1990-06-27 Method and apparatus for controlling spindle temperature of machine tool Granted JPH0457651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16687490A JPH0457651A (en) 1990-06-27 1990-06-27 Method and apparatus for controlling spindle temperature of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16687490A JPH0457651A (en) 1990-06-27 1990-06-27 Method and apparatus for controlling spindle temperature of machine tool

Publications (2)

Publication Number Publication Date
JPH0457651A true JPH0457651A (en) 1992-02-25
JPH0579458B2 JPH0579458B2 (en) 1993-11-02

Family

ID=15839233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16687490A Granted JPH0457651A (en) 1990-06-27 1990-06-27 Method and apparatus for controlling spindle temperature of machine tool

Country Status (1)

Country Link
JP (1) JPH0457651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300834A (en) * 2000-04-18 2001-10-30 Makino Milling Mach Co Ltd Temperature control method and device of machine tool
JP2008030169A (en) * 2006-07-31 2008-02-14 Disco Abrasive Syst Ltd Machining water temperature controller
CN101518925A (en) * 2008-02-28 2009-09-02 株式会社迪思科 Process waste liquid treatment apparatus
JP2014073555A (en) * 2012-10-04 2014-04-24 Kowa Kogyo Kk Cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7187618B1 (en) 2021-07-06 2022-12-12 株式会社牧野フライス製作所 Machine tool temperature controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300834A (en) * 2000-04-18 2001-10-30 Makino Milling Mach Co Ltd Temperature control method and device of machine tool
JP2008030169A (en) * 2006-07-31 2008-02-14 Disco Abrasive Syst Ltd Machining water temperature controller
CN101518925A (en) * 2008-02-28 2009-09-02 株式会社迪思科 Process waste liquid treatment apparatus
JP2009202295A (en) * 2008-02-28 2009-09-10 Disco Abrasive Syst Ltd Processing device of machining waste liquid
TWI422459B (en) * 2008-02-28 2014-01-11 Disco Corp Processing waste treatment device (2)
JP2014073555A (en) * 2012-10-04 2014-04-24 Kowa Kogyo Kk Cooling device

Also Published As

Publication number Publication date
JPH0579458B2 (en) 1993-11-02

Similar Documents

Publication Publication Date Title
JP4786960B2 (en) Machine tool temperature control method and apparatus
US10688615B2 (en) Temperature control system and method thereof
KR100244739B1 (en) Temperature control apparatus and method with recirculated coolant
JP5583897B2 (en) Cooling tower and heat source system
JP5020664B2 (en) Temperature control device for machine tools
JPH0457651A (en) Method and apparatus for controlling spindle temperature of machine tool
JP6375175B2 (en) Oil cooler and control method of motor operated valve in oil cooler
JP2001300834A (en) Temperature control method and device of machine tool
JP2529905B2 (en) Machine tool temperature control method
TWI776424B (en) temperature control system
JP2000284832A (en) Temperature controller and valve control part of the same
JP6795840B2 (en) A method for controlling the temperature of the heat medium for temperature control, and a device for supplying the heat medium for temperature control using the method.
CN113245902B (en) Temperature regulating system and method thereof
JP5048999B2 (en) Temperature control system for machine tools
JPH0418984B2 (en)
JPH0463660A (en) Main spindle temperature control method for machine tool and device
JPH07266186A (en) Cooling system for machine tool
JPH0796405A (en) Pre-load variable type spindle unit
US11052504B1 (en) Temperature regulation system and temperature regulation method for machine tool
JP5286324B2 (en) Heating / cooling temperature controller
JPH01155020A (en) Exhaust heat recovering device for engine
JP2508640B2 (en) Cooling system
JP2000266039A (en) Device and method for cooling rotary shaft, and machine equipped with rotary shaft cooling device
JP2001074318A (en) Control method for cooling system
JPH02250746A (en) Cooling method for ball screw

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 17